EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako
|
|
|
- Charlotte Marier
- il y a 9 ans
- Total affichages :
Transcription
1 EXERCICE : I) ; ; r t S EXERCICES SR LES SITES NMÉRIQES Sit MathsTICE d Adama Traoré Lycé Tchiqu Bamako désigat rspctivmt l prmir trm, l ièm trm, la raiso t la somm ds prmir trms d u suit arithmétiqu, calculr : ) t S, coaissat 7 ; ; r 5 ; ) t S, coaissat 6 ; 7 ; r ; ) r t S, coaissat 97; 64 ; ; 4) t, coaissat 5; r 4 ; S ; 5) t r ; 6 ; S 54 ; r 4 ; S, coaissat 8, 5 6) t, coaissat 7 II) Calculr das l cas suivat d u suit géométriqu : ) t S, coaissat ; q ; 5 ; ) q t S, coaissat 6 ; ; 5 ; ) t S, coaissat 54 ; q ; 4 ; 4) t, coaissat q,5 ; 7 ; S 57, 5 ;, coaissat 48 ; 4 ; S 6 5) t q EXERCICE : ; ; ; ) Etudir l ss d variatio d chacu ds sui ts suivats défiis par a) u 8 ; b) v 5 4 ; c) w 7 - ) Qull st la atur d la suit (u )? Précisr so prmir trm u t sa raiso ) Soit la suit (t ) défii par t t t t 4 O pos k t ; motrr qu (k ) st u suit géométriqu dot détrmira la raiso t l prmir trm EXERCICE : O cosidèr la suit ( ) défii sur N par u 4 u u 4 ) rpréstr graphiqumt ls ciq prmirs tr ms d la suit ( ) sur l ax ds abscisss ) O pos v u α (α R) a) Détrmir α pour qu (V ) soit u suit géométriqu b) E déduir qu N ; c) N ; o ot S u u u Trouvr l xprssio d S foctio d) Détrmir ls limits ds suits (u ) t (S ) Exrcics sur ls Suits Numériqus Pag sur 9 Adama Traoré Profssur Lycé Tchiqu
2 EXERCICE 4 : O cosidèr la suit ( ) défii sur N par ) Calculr u t u ) Justifir qu >, u ) O pos v (u ) a) Motrr qu (v ) st u suit arithmétiqu b) Calculr v puis u foctio d u u u u 4 EXERCICE 5 : O cosidèr la suit ( ) défii sur N par u u u ) Calculr ls trms u ; u ; u ) O pos v u u ; la suit (v ) st-ll géométriqu? ) Soit S v v v a) Calculr S foctio d b) Motrr qu S u u c) E déduir l xprssio d u puis cll d u foctio d EXERCICE 6 : I O cosidèr la suit (V ) défii par : V 5V V 8 ) Calculr V ; V ; V4 ; ) O pos V Démotrr qu (u ) st u suit géométriqu ) Démotrr qu la suit (V ) st covrgt t trouvr sa limit ; 4) Calculr S 5) Calculr : lim S II Soit a, b, c, d, ciq trms cosécutifs d u suit arithmétiqu d a b d 6 raiso r tll qu : d 4 ) Exprimr a, b, d t foctio d c t r ) Détrmir ls ombrs réls a, b, c, d, Exrcics sur ls Suits Numériqus Pag sur 9 Adama Traoré Profssur Lycé Tchiqu
3 EXERCICE 7 : I) ) Trouvr ombrs cosécutifs a, b, c d u s uit arithmétiqu sachat qu : a b c 7 5a 6b c Dor la raiso d ctt suit ) Trouvr ombrs a, b, c progrssio géom étriqu sachat qu : a b c 4 c a II) Soit ( ) u suit arithmétiqu croissat tll qu : 9 5 Calculr l prmir trm t la raiso r d ctt suit, puis xprimr l trm gééral foctio d Soit (V ) la suit défii par : V a) Motrr qu (V ) st u suit géométriqu dot o détrmira V t q b) Calculr : P V V V V EXERCICE 8 : Détrmir u progrssio arithmétiqu d quatr trms a, b, c, d ayat pour raiso r 6 tll qu l produit ds trms st égal à 85 Soit la suit arithmétiqu ( ) d raiso r, (r ) tl qu das ct ordr ; 4 ; 7 sot trms cosécutifs d u suit géométriqu d raiso q a) Motrr qu r t q b) Sachat qu, calculr puis foctio d c) Soit la suit (V ) défii par : V ; Calculr S puis déduir P V V V Exrcics sur ls Suits Numériqus Pag sur 9 Adama Traoré Profssur Lycé Tchiqu
4 EXERCICE 9 : ) L Opératio Puits, u trpris d forag stim l coût d u puits à grad diamètr comm suit : l prmir mètr crusé coût F l scod mètr crusé coût 5 F t chaqu mètr crusé coût 5 F d plus qu l précédt Qull srait la profodur maximal d c puits si l crédit alloué à l trpris st d F? ) société Forstièr décid d crér u bosqut (Ptit bois, touff d arbrs) à chaqu kilomètr tr dux vills A t B distat d Km Au prmir kilomètr l bosqut compt 5 arbrs Au scod kilomètr l bosqut compt arbrs t à chaqu kilomètr qui suit l bosqut compt 7 arbrs d plus qu l précédt Qul st l ombr d arbrs qu compt l drir bosqut? Qul st l ombr total d arbrs qu la société doit platr? EXERCICE : Trouvr spt trms d u suit géométriqu : ; ; ; 4 ; 5 ; 6 ; 7 tls qu : t Soit la suit ( ) défii par : a) Calculr ; ; 5 b) O pos V α Qull valur faut-il dor à α pour qu (V ) soit u suit géométriqu c) Exprimr foctio d puis calculr S V V V EXERCICE : A/ soit ( ) défii par la rlatio Motrr qu la suit ( ) st à trm positif t majoré par Démotrr par récurrc qu ( ) st croissat ; la suit ( ) st-ll covrgt?justifir Exrcics sur ls Suits Numériqus Pag 4 sur 9 Adama Traoré Profssur Lycé Tchiqu
5 B/ Soit u la suit défii par t O pos ε N ; S i i ; ( ε N) Motrr qu u st à trms positifs Motrr qu u st décroissat E déduir qu u covrg t trouvr sa limit S 4 Motrr qu pour tout d N EXERCICE : épargat dispos au r javir 6 d u capital C F qu il plac à la Bak of Africa (BOA) à u taux d 6% l a Au bout d chaqu aé l capital st augmté ds itérêts qu il produit O désig par C la valur du capital au bout d aés ) Calculr C ; C ; C ) Démotrr qu : C C (,6 ) ) Au bout d combi d tmps l capital C aura-t-il doublé? 4) E supposat l prix du marché stabl, qull aé so capital put payr u voitur dot l prix st F? EXERCICE : A/ O pos ε N, fois ) Calculr foctio d ) Soit S ( a) a aa aaa aaa 4 aaa Calculr : S () foctio d 4 fois ) Calculr S (a) foctio d t d a 4) Calculr S S () S () S (9) B/ Soit ( ) ; ( ) ; ( ) ; ; ( ) ; droits d u pla P, sécats dux à dux ds poits disticts Soit p l ombrs ds régios du pla, détrmiés par p d cs droits Etablir u rlatio tr p t p E déduir foctio d EXERCICE 4: Soit ( ) t (V ) dux suits défiis par : 4 4 t V O pos d V t w V motrr qu (d ) st u suit arithmétiqu dot o précisra la raiso t l r trm motrr qu la suit (W ) st u suit géométriqu dot o précisra la raiso t l r trm déduir d c qui précèdt ls somms suivats : S t S Ʌ V V V Exrcics sur ls Suits Numériqus Pag 5 sur 9 Adama Traoré Profssur Lycé Tchiqu
6 EXERCICE 5: L étud d la productio itériur brut, au Mali ( milliard d fracs) a doé l résultat suivat : Si P() désig la productio itériur d l aé uméroté, ( εn), l P( ) P( ) P( ) rapport :, costat O suppos P() 4 a) calculr P() foctio d P() ; b) calculr P() t P() c) calculr P() foctio d P() t E déduir P() (O arrodira au milliard supériur) A partir d qull aé la productio sra-t-ll supériur ou égal à P()? A partir d qull aé la productio sra-t-ll supériur ou égal à 4? EXERCICE 6 : pour tout tir aturl o pos : I ( x ) a) calculr I foctio d à l aid d u itégratio par partis b) Etudir la covrgc d la suit (I ) x dx pour tout tir aturl o pos : S I i i a) Calculr S foctio d t détrmir la limit d S quad td vrs b) calculr u valur approché d S EXERCICE 7 : O pos I * x dx t IN, I x(l x) ) Calculr I puis I utilisat u itégratio par partis ) Pour tout N* établir qu : I I ) Motrr qu la suit d trm gééral I st décroissat sur [ ;] 4 ) E déduir utilisat la rlatio d récurr c d la qustio ) qu I Calculr lim I t lim I dx Exrcics sur ls Suits Numériqus Pag 6 sur 9 Adama Traoré Profssur Lycé Tchiqu
7 EXERCICE 8 : A/- soit la suit ( ) défii par t 6 ; ) démotrr qu ( ) st à trms positifs t majoré par 5 ) Qull st la limit évtull d la suit ( )? ) Etudir l ss d variatio, puis la covrgc d ( ) 4) Démotrr qu pour tout tir aturl, o a : t B/- bi qui valait au départ 5 Frs s dépréci d aé aé suivat la loi suivat : La valur du bi d l aé cosidéré st égal au produit du bi d l aé précédt par,65, c produit augmté d 55 frs ) Au bout d combi d aés l bi sra-t-il ifériur à 57 84,6 Frs? ) Est-il possibl qu l bi soit u momt ifériur à 57 4? EXERCICE 9 : L pla complx st rapporté au rpèr (O, i ; j) uité graphiqu cm Soit A l poit d affix, A ' l poit d affix i t A l miliu du sgmt [A A ' ] Plus gééralmt si A st u poit d affix z ; o désig par A l poit d affix iz t par A l miliu d [A ; A ] O ot P t θ l modul t l argumt d z ) Détrmir ls affixs ds poits A ; A ; t A Calculr P ; P ; P t θ ; θ ; θ ) a) Pour tout tir, xprimr Z foctio d Z b) Exprimr P t θ foctio d c) Détrmir la limit d la suit (P ) Itrprétr géométriqumt c résultat d) Comparr ls moduls t ls argumts d Z t Z 8 ) Établir qu : A A A A 4 ) Après avoir xprimé A A foctio d, détrmir foctio d la loguur D d la lig brisé : A A A A A A Détrmir la limit d la suit (D ) Exrcics sur ls Suits Numériqus Pag 7 sur 9 Adama Traoré Profssur Lycé Tchiqu
8 EXERCICE : foctioair cosacr 8% d so rvu à u éparg C foctioair voit so rvu aul augmtr d % par a t décid d dimiur la part d l éparg das so rvu aul d,5% par a L rvu iitial du foctioair st R 4 F O désig par R l rvu aul du foctioair t E l éparg aull au bout d aés ( N) ) Calculr l éparg iitial E du foctioair ) Calculr l rvu R t l éparg E d l aé suivat ( ) ; ) Calculr l rvu R t l éparg E d l aé suivat ( ) ; 4 ) Exprimr R foctio d R t ; puis E foctio d E t 5 ) Calculr la limit d E quad td vrs EXERCICE : Soit la suit ( Z ) la suit défii sur N par z z i ( z ) ) Soit das l pla complx P mui du rpèr ort hoormé (O ;I ;J) ls poits M d affixs Z Placr M ; M ; M ; M t M 4 ) Soit ( X ) t ( Y ) ls suits d ombrs réls défiis par IN, Z X iy Exprimr X t Y rspctivmt foctio d ( X ) t ( Y ) E déduir ( X ) t ( ) foctio d Y ) Motrr qu ( X ) t ( Y ) sot covrgts t dor lurs limits rspctivs Qu put-o déduir pour la suit ( Z )? EXERCICE : I - Soit u suit arithmétiqu d prmir trm u t d raiso r ) Calculr u t r sachat qu u 78 t u u u 85 ) Trouvr la plus ptit valur d pour laqull u u u 68 II - Soit la foctio f : t t a pour t [ ; ], f ) Motrr qu pour tout d *, o a : dt t l ; ) O cosidèr la suit d trm gééral Motrr qu ( ) st mooto à trms positifs ; coclur Exrcics sur ls Suits Numériqus Pag 8 sur 9 Adama Traoré Profssur Lycé Tchiqu
9 EXERCICE : Pour tout tir aturl o ul ; o pos I ) Motrr qu I l x ) Motrr qu pour tout tir aturl o ul, o a : I ) Motrr qu pour tout tir aturl o ul, o a : 4 ) Motrr qu N* la suit ( I ) st décroissat x dx I ( ) EXERCICE 4 : Pour tout tir aturl o ul ; o pos I l t dt t ) Motrr qu pour tout tir aturl o ul, o a : ) Motrr qu N* la suit ( I ) st boré I ) Motrr qu N* la suit st covrgt 4 ) Motrr pour N*, o a : I I I I I EXERCICE 5 : Soit a t b dux réls strictmt positifs O défiit la suit ( ), pour tout tir aturl, par a ; b ; 6 O cosidèr ls suits (V ) t (W ) défiis, pour tout tir aturl, V t W ) Motrr qu (V ) st u suit géométriqu d raiso q t d prmir trm V b a Détrmir, pour tout tir aturl, V foctio d, a t b ) Motrr aussi qu (W ) st u suit géométriqu t xprimr W foctio d, a t b ) E déduir foctio d, a t b 4 ) Motrr qu si ( ) st u suit géométriqu, alors sa raiso put êtr qu q ou q 5 ) détrmir la limit d la suit ( ) Exrcics sur ls Suits Numériqus Pag 9 sur 9 Adama Traoré Profssur Lycé Tchiqu
Exponentielle exercices corrigés
Trmial S Foctio potill Ercics corrigés Fsic 996, rcic Fsic 996, rcic 3 3 Fsic 996, rcic 4 4 Fsic, rcic 6 3 5 Fsic, rcic 4 3 6 Baqu 4 4 7 Epo + air, Amériqu du Nord 5 5 8 Basiqu, N Calédoi, ov 4 7 9 Basiqus
Comportement d'une suite
Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer
Séries numériques. Chap. 02 : cours complet.
Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm
Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1
Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a
Chapitre 3 : Fonctions d une variable réelle (1)
Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s
x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.
EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite
capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...
Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1
a g c d n d e s e s m b
PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7
Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X
Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour
f n (x) = x n e x. T k
EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr
Solutions particulières d une équation différentielle...
Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod
Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :
Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +
[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =
[http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.
CHAPITRE 2 SÉRIES ENTIÈRES
CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.
1 Mesure et intégrale
1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios
EXERCICES : DÉNOMBREMENT
Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris
Séries réelles ou complexes
6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés
Séquence 5. La fonction logarithme népérien. Sommaire
Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa
Etude de la fonction ζ de Riemann
Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.
FILTRAGE. ANALOGIQUE et NUMERIQUE. (Vol. 8)
Dpt GEII IUT Bordaux I FILTRAGE AALOGIQUE t UMERIQUE (Vol. 8) G. Couturir Tl : 5 56 84 57 58 mail : [email protected] Sommair I-Itroductio p. II-Filtrag aalogiqu p. 4 II-- Filtrs pass-bas d'ordr
Limites des Suites numériques
Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **
. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1
Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S
Chap. 5 : Les intérêts (Les calculs financiers)
Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie
Corrigé du baccalauréat S Pondichéry 13 avril 2011
Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand
SÉRIES STATISTIQUES À DEUX VARIABLES
1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1
Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES
DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces
Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot
Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars
c. Calcul pour une évolution d une proportion entre deux années non consécutives
Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages
UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4
UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»
Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.
II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café
4 Approximation des fonctions
4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour
Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe
Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das
Les Nombres Parfaits.
Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus
La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe
1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios
CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013
Enrichissmnt modal du Slctiv Mass Scaling Sylvain GAVOILLE 1 * CSMA 2013 11 Colloqu National n Calcul ds Structurs 13-17 Mai 2013 1 ESI, [email protected] * Autur corrspondant Résumé En raison
Dares Analyses. Plus d un tiers des CDI sont rompus avant un an
Dares Aalyses javier 2015 N 005 publicatio de la directio de l'aimatio de la recherche, des études et des statistiques Plus d u tiers des CDI sot rompus avat u a Le cotrat de travail à durée idétermiée
FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI
FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires
Statistique descriptive bidimensionnelle
1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets
Chapitre 3 : Transistor bipolaire à jonction
Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats
2 ième partie : MATHÉMATIQUES FINANCIÈRES
2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul
55 - EXEMPLES D UTILISATION DU TABLEUR.
55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique
II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009
M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted
Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3
1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que
STATISTIQUE : TESTS D HYPOTHESES
STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie
Suites et séries de fonctions
[http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de
Studio 12 scan control scan control. professional light desk user s manual rel. 1.41
Studio ca cotrol ca cotrol profioal light dk ur maual rl Coig Gééral Lir atttivmt l coig d écurité trouvat da ctt otic, car ll fourit d importat iformatio cocrat la écurité d itallatio, d utiliatio t d
LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.
Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la
Logiciel de synchronisation de flotte de baladeurs MP3 / MP4 ou tablettes Androïd
easylab Le logiciel de gestio de fichiers pour baladeurs et tablettes Visualisatio simplifiée de la flotte Gestio des baladeurs par idividus / classes / groupes / activités Activatio des foctios par simple
Module 3 : Inversion de matrices
Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que
FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12
1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30
RECHERCHE DE CLIENTS simplifiée
RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE
Processus et martingales en temps continu
Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de
Des prestations textiles personnalisées pour l hôtellerie et la restauration
Ds prstatios txtils prsoalisés por l hôtllri t la rstaratio ti i R E R A R-GZ 992 por l trti profssiol d li Sivi d l hyiè t d la qalité ds txtils R_Hotl_Gastro_Iformatio_FRANZOESISCH.idd 1 1 19.04.2010
Guide de correction TD 6
Guid d corrction TD 6 JL Monin nov 2004 Choix du point d polarisation 1- On décrit un montag mttur commun à résistanc d mttur découplé, c st à dir avc un condnsatur n parallèl sur R. La condition d un
DETERMINANTS. a b et a'
2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio
14 Chapitre 14. Théorème du point fixe
Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de
Processus géométrique généralisé et applications en fiabilité
Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR
3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.
3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios
Vu la loi n 17-99 portant code des assurances prom ulguée par le dahir n 1-02-238 du 25 rejeb 1423 (3 octobre 2002), telle qu'elle a été complétée ;
Arrêté du ministr s financs t la privatisation n 2241-04 du 14 kaada 1425 rlatif à la présntation s opérations d'assurancs (B.O. n 5292 du 17 févrir 2005). Vu la loi n 17-99 portant co s assurancs prom
Compte Sélect Banque Manuvie Guide du débutant
GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de
PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS
PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie
e x dx = e x dx + e x dx + e x dx.
Chtr Foctos Gmm t foctos d Bssl Chtr Focto Gmm t foctos d Bssl Détrmto d l focto Gmm L focto Gmm st très sml à dédur à rtr d l tégrl d'eulr: Ctt tégrl st u focto d rmètr ; ll st rrésté r l symbol () t
Terminale S. Terminale S 1 F. Laroche
Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM
A. RENSEIGNEMENTS GÉNÉRAUX. (Adresse civique) 3. Veuillez remplir l'annexe relative aux Sociétés en commandites assurées à la partie E.
Chubb du Canada Compagni d Assuranc Montréal Toronto Oakvill Calgary Vancouvr PROPOSITION POLICE POUR DES INSTITUTIONS FINANCIÈRES Protction d l Actif Capital d Risqu A. RENSEIGNEMENTS GÉNÉRAUX 1. a. Nom
Dénombrement. Chapitre 1. 1.1 Enoncés des exercices
Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.
20. Algorithmique & Mathématiques
L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus
Impôts 2012. PLUS ou moins-values
Impôt 2012 PLUS ou moin-values SUR VALEURS MOBILIÈRES ET DROITS SOCIAUX V v ti t à d f co o OP m à l Et L no di (o 20 o C c tit po Po c c or o o ou c l ou d 2 < Vou avz réalié d cion d valur mobilièr t
STATISTIQUE AVANCÉE : MÉTHODES
STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................
UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. [email protected] ) page 1
UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. [email protected] ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Divorce et séparation
Coup d oeil sur Divorce et séparatio Être attetif aux besois de votre efat Divorce et séparatio «Les premiers mois suivat u divorce ou ue séparatio sot très stressats. Votre patiece, votre cohérece et
Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.
Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Les nouveaux relevés de compte
Ifo CR Les ouveaux relevés de compte Les relevés de compte actuels du Crédit Agricole de Champage-Bourgoge sot issus de la migratio iformatique sur le GIE AMT e 2001 : petit format (mais A4 pour les Professioels),
Cours de Statistiques inférentielles
Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios
au Point Info Famille
Qustion / Répons au Point Info Famill Dossir Vivr un séparation La séparation du coupl st un épruv souvnt longu t difficil pour la famill. C guid vous présnt ls différnts démarchs n fonction d votr situation
AVENIR EMPRUNTEUR. Etude Personnalisée. Caractéristiques du (des) prêt(s) Cotisations ASSURE 1 ASSURE 2. Votre conseiller
AVENIR EMPRUNTEUR Etude Personnalisée ASSURE ASSURE Fumeur : Statut : Profession exacte : Nombre de kms professionnels/an trajet domicile/travail) : Activité de travaux manuels réguliers ou de manutention
Matériau pour greffe MIS Corporation. Al Rights Reserved.
Matériau pour grff MIS Corporation. All Rights Rsrvd. : nal édicaux, ISO 9001 : 2008 atio itifs m rn pos méd int i dis c a u x 9 positifs 3/42 té ls s dis /CE ur r l E. po ou u x U SA t s t appr o p a
Régulation analogique industrielle ESTF- G.Thermique
Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité
Réseau des bibliothèques du Pays de Pamiers Guide du Numérique
Réau d bibliothèqu du Pay d Pamir Guid du Numériqu Sit Intrnt du réau d lctur http://www.pamir.raubibli.fr C qu vou pouvz fair dpui notr it Intrnt : EXPLORER LE CATALOGUE : Plu d 80 000 documnt ont à votr
Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.
ycé Clnca PCS - Physq ycé Clnca PCS (O.Granr) ég snsoïdal forcé pédancs os fondantals - Pssanc ycé Clnca PCS - Physq ntérêt ds corants snsoïdax : Expl d tnsons snsoïdals : tnson d sctr (50 H 0 V) s lgns
STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO
Des résultats du Programme de réductio des risques STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO 1. Cotexte La puaise tere Lygus lieolaris (figure 1) est
Comment les Canadiens classent-ils leur système de soins de santé?
Novembre Les sois de saté au Caada, c est capital bulleti o 4 Commet les Caadies classet-ils leur système de sois de saté? Résultats du sodage iteratioal du Fods du Commowealth sur les politiques de saté
POLITIQUE ECONOMIQUE ET DEVELOPPEMENT
POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier
TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )
RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude
Intégrales généralisées
3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle
Convergences 2/2 - le théorème du point fixe - Page 1 sur 9
Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios
La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison
ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 58 2000 La tarificatio hospitalière : de l eveloppe globale à la cocurrece par comparaiso Michel MOUGEOT * RÉSUMÉ. Cet article cosidère différetes politiques de
RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY
LO 4 : SOLUTO P L MTHO OTO, MLLM T KLY SOLUTO P L MTHO OTO, MLLM T KLY MTHO OTO. toductio Le théoème de oto va ous pemette de éduie u cicuit complexe e gééateu de couat éel. e gééateu possède ue souce
Options Services policiers à Moncton Rapport de discussion
Optios Services policiers à Mocto Rapport de discussio Le 22 ovembre 2010 Also available i Eglish TABLE DES MATIÈRES Chapitre 1.0 Sommaire 3 Chapitre 2.0 Problématique 4 Chapitre 3.0 Cotexte 5 Chapitre
Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions
Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter
Sommaire Chapitre 1 - L interface de Windows 7 9
Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18
Formation d un ester à partir d un acide et d un alcool
CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester
Augmentation de la demande du produit «P» Prévision d accroître la capacité de production (nécessité d investir) Investissement
Augmetatio de la demade du produit «P» Prévisio d accroître la capacité de productio (écessité d ivestir) Ivestissemet Etude de retabilité du produit «P» Jugemet de l opportuité et de la retabilité du
Introduction : Mesures et espaces de probabilités
Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,
