EC 4 Circuits linéaires du second ordre en régime transitoire

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "EC 4 Circuits linéaires du second ordre en régime transitoire"

Transcription

1 4 ircuis linéaires du second ordre en régime ransioire PSI I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0, le condensaeur éan déchargé e l inensié nulle.. Équaion différenielle en u () On applique la loi des mailles : u G () u R () u L () u () = 0 avec u G () =, u R () = Ri(), u L () = L di() e i() = du () soi u L () = L d u () d où R du () + L d u () + u () = d u () + R L du () + u () L = L Équaion différenielle du deuxième ordre linéaire à cœfficiens consans (qui doiven êre ous du même signe pour que le sysème soi sable) e avec second membre. Le circui es donc d ordre deux. 3. Reour sur la mécanique ee équaion ressemble foremen à celle que nous avons vue en mécanique pour l oscillaeur harmonique. Si on reprend le bilan de force pour l oscillaeur harmonique e que l on rajoue une force de froemen visqueux ( F = λ v), alors l équaion du mouvemen s écri : m a = Σ F mẍ = λẋ k(x l 0 ) m d x + λdx + kx = kl 0 4. Mise sous forme canonique On rerouve donc une équaion analogue en mécanique. On rouve le même ype d équaion dans d aures domaines de la physique e, pour faire des analogies enre ces différenes disciplines, on la me sous forme canonique : d α + ω 0 dα Q + ω 0α = quelque chose 1

2 4 avec ici, pour un RL série : ircuis linéaires du second ordre en régime ransioire d u () + ω 0 du () +ω Q 0u () = ω0 avec ω 0 = 1 e Q = Lω 0 L R = 1 = 1 L Rω 0 R ω 0 es la pulsaion propre du circui (en radian par seconde; rad.s 1 ) e Q le faceur de qualié, nombre sans dimension. ou encore ü + τ u + ω 0u () = ω 0 avec τ = Q ω 0 le emps de relaxaion du circui. Dans le cas mécanique, on avai : w 0 = k m w 0 Q = λ m 5. Résoluion de l équaion différenielle : charge du condensaeur Méhode de résoluion Pour la résoluion d une elle équaion différenielle : 1. On rouve une soluion pariculière sol P. On résou l équaion homogène associée (c es à dire avec le second membre =0) ü + ω 0 Q u + ω 0u () = 0 3. La soluion générale es la somme de la soluion pariculière e de la soluion de l équaion homogène : sol = sol P + sol H 4. On rouve les consanes d inégraion à l aide des relaions de coninuié. Remarques qualiaives Même sans résoudre l équaion, plusieurs choses son à savoir : 1. La soluion es sable si les coefficiens son de même signe.. Le comporemen qualiaif va dépendre de la valeur de Q (a) Q < 1 : Régime apériodique (b) Q > 1 : Régime pseudo-périodique (c) Q = 1 : Régime criique Régime apériodique : Q < 1 es à dire pour 1 L > 1 R > L = R R la résisance criique du circui. On pose (jusificaion en cours de mahs) : z 1 = ω 0 Q ( ) 1 1 = ω 0 Q + 4Q 1 < 0 e z = ω 0 + Q On pose aussi : τ 1 = 1 z 1 e τ = 1 z, la soluion sol H es de la forme Ae τ 1 + Be τ ( ) 1 1 = ω 0 Q 4Q 1 < 0 On voi que τ 1 e τ son homogènes à des durées. Pour avoir la soluion complèe, on a besoin d une soluion pariculière. On la cherche sous la forme d une consane. Si on pose sol P = K alors ω 0 K = ω 0 K = PSI Page /??

3 4 ircuis linéaires du second ordre en régime ransioire D où la soluion complèe : u () = + Ae τ 1 + Be τ Déerminaion des consanes : il y a deux consanes à déerminer car l équaion différenielle es du second ordre. oninuié de la ension aux bornes du condensaeur u () : à = 0, u () = 0 = + A + B oninuié de l inensié du couran dans la bobine : i = du () = ( A τ 1 e τ 1 + B τ e τ ) e à = 0 +, i = 0 = ( A τ 1 + B τ ) A = τ 1B τ A = τ 1 τ τ 1 e B = τ τ τ 1 e finalemen : [ u () = 1+ τ 1 e τ 1 τ e τ τ 1 τ τ 1 ] τ ; i() = du () = u R() R e u L () = L di() q() ou u () i() ou u R () 0 τ 1 τ 0 τ 1 τ u L () τ 0 τ 1 oninuié de u () (donc de q()) e de i() (donc de u R ()) e disconinuié de u L (). Régime criique : Q = 1 es le cas où la résisance R du circui es égale à la résisance criique R = L. La soluion de l équaion homogène es alors de la forme : A(1 + B)e τ PSI Page 3/??

4 4 ircuis linéaires du second ordre en régime ransioire avec A une consane de la dimension d une ension e B une consane de la dimension de l inverse d un emps. D où la soluion complèe : u () = + A(1 + B)e τ On uilisera les condiions de coninuié pour déerminer A e B : oninuié de la ension aux bornes du condensaeur u () : à = 0, u () = 0 = + A A = oninuié de l inensié du couran dans la bobine : i = du () = (ABe τ A(1 + τ B)e τ ) e à = 0, i = 0 B = 1 u () = [1 (1 + τ τ )e τ ] e i() = L e τ u () i() 0 τ 0 τ Même forme mais reour plus rapide à un régime permanen. Régime pseudo-périodique : Q > 1 es à dire pour R < R = L la résisance criique du circui. On pose ω = ω > 0 homogène à une pulsaion, c es la pseudo-pulsaion. T = π es 4Q ω la pseudo-période du phénomène. On pose aussi τ = Q ω 0, homogène à une durée, c es le emps de relaxaion qui caracérise la durée des phénomènes ransioires. sol H peu s écrire sous une forme réelle : e τ (A cos ω + B sin ω) La soluion complèe es : u () = + e τ (A cos ω + B sin ω) Déerminaion des consanes : oninuié de la ension aux bornes du condensaeur u () : à = 0, u () = 0 = + A A = PSI Page 4/??

5 4 ircuis linéaires du second ordre en régime ransioire oninuié de l inensié du couran dans la bobine : i = du () = (e τ [(ωb A ) cos ω+( ωa τ B) sin ω)] e à = 0, τ i = 0 = (ωb A τ ) B = τω e finalemen : u () = [1 e 1 τ (cos ω + ωτ sin ω)] e on monre que i = du () = ω 0 ω e τ sin ω u () 0 T T τ 3T 4T i() ω 0 ω 0 T T 3T 4T ω 0 ω Remarques : es grandeurs oscillen à l inérieur d une enveloppe exponenielle ±e τ fau racer au préalable. = ±e ω 0 Q La pseudo pulsaion ω es inférieure à ω 0 e par conséquen, la pseudo-période es supérieure à la pulsaion propre T 0 = π ω 0. T 0 T = 1 1 4Q On considère généralemen que pour Q assez grand, Q correspond environ au nombre d oscillaions discernables. qu il PSI Page 5/??

6 4 ircuis linéaires du second ordre en régime ransioire Régime harmonique Q On a alors le cas idéal où R = 0, il n y a pas d amorissemen, c es le cas pariculier Q 1 pour lequel la parie réelle des racines es nulles. L équaion différenielle sans second membre prend alors la forme : ü + ω0 u () = 0 soi e les soluions son de la forme : soi la soluion générale : ü = ω 0 u () u () = A cos ω 0 + B sin ω 0 u () = + A cos ω 0 + B sin ω 0 Déerminaion des consanes : oninuié de la ension aux bornes du condensaeur u () : à = 0, u () = 0 = + A oninuié de l inensié du couran dans la bobine : i = du () = ( ω 0 A sin ω 0 + ω 0 B cos ω 0 )] e à = 0, i = 0 = (ω 0 B) d où A = B = 0 u () = (1 cos ω) e i = ω 0 sin ω 0 u () 0 T 0 T 0 3T 0 4T 0 i() ω 0 T 0 T 0 3T 0 4T 0 0 ω 0 Remarques : On es dans le cas Q 1 τ e il n y a pas de décroissance e T = T 0. Dans la réalié, le cas R es impossible à obenir car le circui conien forcémen des élémens résisifs qui dissipen de l énergie sous forme de chaleur. On peu néanmoins obenir R = 0 en ajouan un circui conenan un AO qui simule une résisance négaive (voir TP). PSI Page 6/??

7 4 II Réponse libre du circui RL série ircuis linéaires du second ordre en régime ransioire Si on se place mainenan dans le cas suivan : u R () ¹ R L i u G () = 0 pour > 0 +q 1 u L () u () Avec le condensaeur chargé à l insan iniial (u (0 ) = ) e on bascule K à = 0, on obien les graphes suivans pour u ()(). u () 0 T T 3T 4T Le régime criique es celui pour lequel on aein le plus rapidemen le régime permanen 1. Inéressan si on veu limier la durée du régime ransioire (amorisseurs d auomobiles). 1. Je sais que ce n es pas ce que vous voyez en SI e cela dépend de la définiion exace que l on prend plus «plus rapidemen» e de la olérance que l on se donne pour dire si le régime permanen es aein, mais qualiaivemen, les régimes pour lesquels le reour es le plus rapide, quelque soi la définiion, corresponden à un faceur de qualié proche de 1. PSI Page 7/??

8 4 ircuis linéaires du second ordre en régime ransioire III as d un circui RL parallèle 1. ircui e condiions iniiales i i R +q u R L avec par exemple u (0 ) = : condensaeur chargé.. Équaion différenielle en u () D après la loi des nœuds, avec i () =. du(), i R () = u() e u() = L di L() R. du() + u() R + 1 L ou encore, sous forme canonique, i + i R + i L = 0 i L () = 1 L u(). = 0. d u() i L u(). soi + 1 du() + u() R L = 0 d u() + 1 du() + u() R L = 0 d u() + ω 0 du() + ω u() 0 Q p L = 0 3. omparaison avec le RL série On rerouve la même équaion canonique donc le même ype de soluions selon la valeur des Q p e des condiions iniiales. On a la même fréquence propre ω 0 mais avec cee fois ω 0 = 1 Q p R Q p = Rω 0 = R L Q parallèle = 1 Q série c es à dire l inverse de Q série. Le faceur de qualié augmene quand R augmene. es cohéren car on rerouve bien un circui L série quand R end vers l infini, c es à dire en remplaçan le résisor par un inerrupeur ouver. PSI Page 8/??

9 4 ircuis linéaires du second ordre en régime ransioire Table des maières PSI Lycée Poincaré

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

B34 - Modulation & Modems

B34 - Modulation & Modems G. Pinson - Physique Appliquée Modulaion - B34 / Caracérisiques d'un canal de communicaion B34 - Modulaion & Modems - Définiions * Half Duplex ou simplex : ransmission un sens à la fois ; exemple : alky-walky

Plus en détail

Intégration de Net2 avec un système d alarme intrusion

Intégration de Net2 avec un système d alarme intrusion Ne2 AN35-F Inégraion de Ne2 avec un sysème d alarme inrusion Vue d'ensemble En uilisan l'inégraion d'alarme Ne2, Ne2 surveillera si l'alarme inrusion es armée ou désarmée. Si l'alarme es armée, Ne2 permera

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Mathématiques financières. Peter Tankov

Mathématiques financières. Peter Tankov Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Le mécanisme du multiplicateur (dit "multiplicateur keynésien") revisité

Le mécanisme du multiplicateur (dit multiplicateur keynésien) revisité Le mécanisme du muliplicaeur (di "muliplicaeur kenésien") revisié Gabriel Galand (Ocobre 202) Résumé Le muliplicaeur kenésien remone à Kenes lui-même mais il es encore uilisé de nos jours, au moins par

Plus en détail

NUMERISATION ET TRANSMISSION DE L INFORMATION

NUMERISATION ET TRANSMISSION DE L INFORMATION , Chapire rminale S NUMERISATION ET TRANSMISSION DE L INFORMATION I TRANSMISSION DE L'INFORMATION ) Signal e informaion ) Chaîne de ransmission de l informaion La chaîne de ransmission d informaions es

Plus en détail

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons

Plus en détail

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB) Filrage opimal par Mohamed NAJIM Professeur à l École naionale supérieure d élecronique e de radioélecricié de Bordeaux (ENSERB) Filre adapé Définiions Filre adapé dans le cas de brui blanc 3 3 Cas d un

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires 25 Lechapitreprécédent avait pour objet l étude decircuitsrésistifsalimentéspar dessourcesde tension ou de courant continues. Par

Plus en détail

3 POLITIQUE D'ÉPARGNE

3 POLITIQUE D'ÉPARGNE 3 POLITIQUE D'ÉPARGNE 3. L épargne exogène e l'inefficience dynamique 3. Le modèle de Ramsey 3.3 L épargne opimale dans le modèle AK L'épargne des sociéés dépend largemen des goûs des agens, de faceurs

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

Cahier technique n 114

Cahier technique n 114 Collecion Technique... Cahier echnique n 114 Les proecions différenielles en basse ension J. Schonek Building a ew Elecric World * Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés

Plus en détail

Relation entre la Volatilité Implicite et la Volatilité Réalisée.

Relation entre la Volatilité Implicite et la Volatilité Réalisée. Relaion enre la Volailié Implicie e la Volailié Réalisée. Le cas des séries avec la coinégraion fracionnaire. Rappor de Recherche Présené par : Mario Vázquez Velasco Direceur de Recherche : Benoî Perron

Plus en détail

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle Aricle «Les effes à long erme des fonds de pension» Pascal Belan, Philippe Michel e Berrand Wigniolle L'Acualié économique, vol 79, n 4, 003, p 457-480 Pour cier ce aricle, uiliser l'informaion suivane

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

DE L'ÉVALUATION DU RISQUE DE CRÉDIT

DE L'ÉVALUATION DU RISQUE DE CRÉDIT DE L'ÉALUAION DU RISQUE DE CRÉDI François-Éric Racico * Déparemen des sciences adminisraives Universié du Québec, Ouaouais Raymond héore Déparemen Sraégie des Affaires Universié du Québec, Monréal RePAd

Plus en détail

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite DOCUMENT DE TRAVAIL 2003-12 Impac du vieillissemen démographique sur l impô prélevé sur les rerais des régimes privés de reraie Séphane Girard Direcion de l analyse e du suivi des finances publiques Ce

Plus en détail

CANAUX DE TRANSMISSION BRUITES

CANAUX DE TRANSMISSION BRUITES Canaux de ransmissions bruiés Ocobre 03 CUX DE TRSISSIO RUITES CORRECTIO TRVUX DIRIGES. oyer Canaux de ransmissions bruiés Ocobre 03. RUIT DE FOD Calculer le niveau absolu de brui hermique obenu pour une

Plus en détail

MODÈLE BAYÉSIEN DE TARIFICATION DE L ASSURANCE DES FLOTTES DE VÉHICULES

MODÈLE BAYÉSIEN DE TARIFICATION DE L ASSURANCE DES FLOTTES DE VÉHICULES Cahier de recherche 03-06 Sepembre 003 MODÈLE BAYÉSEN DE TARFCATON DE L ASSURANCE DES FLOTTES DE VÉHCULES Jean-François Angers, Universié de Monréal Denise Desardins, Universié de Monréal Georges Dionne,

Plus en détail

LE PARADOXE DES DEUX TRAINS

LE PARADOXE DES DEUX TRAINS LE PARADOXE DES DEUX TRAINS Énoné du paradoxe Déaillons ou d abord le problème dans les ermes où il es souen présené On dispose de deux oies de hemins de fer parallèles e infinimen longues Enre les deux

Plus en détail

CHELEM Commerce International

CHELEM Commerce International CHELEM Commerce Inernaional Méhodes de consrucion de la base de données du CEPII Alix de SAINT VAULRY Novembre 2013 1 Conenu de la base de données Flux croisés de commerce inernaional (exporaeur, imporaeur,

Plus en détail

Calcul Stochastique 2 Annie Millet

Calcul Stochastique 2 Annie Millet M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

Cahier technique n 141

Cahier technique n 141 Collecion Technique... Cahier echnique n 141 Les perurbaions élecriques en BT R. Calvas Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés à l inenion des ingénieurs e echniciens

Plus en détail

M HAMED EL GADDAB & MONGI SLIM

M HAMED EL GADDAB & MONGI SLIM Sous la direction : M HAMED EL GADDAB & MONGI SLIM Préparation et élaboration : AMOR YOUSSEF Présentation et animation : MAHMOUD EL GAZAH MOHSEN BEN LAMINE AMOR YOUSSEF Année scolaire : 2007-2008 RECUEIL

Plus en détail

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE Ce aricle es disponible en ligne à l adresse : hp://www.cairn.info/aricle.php?id_revue=ecop&id_numpublie=ecop_149&id_article=ecop_149_0073 Risque associé au conra d assurance-vie pour la compagnie d assurance

Plus en détail

Estimation des matrices de trafics

Estimation des matrices de trafics Cédric Foruny 1/5 Esimaion des marices de rafics Cedric FORTUNY Direceur(s) de hèse : Jean Marie GARCIA e Olivier BRUN Laboraoire d accueil : LAAS & QoSDesign 7, av du Colonel Roche 31077 TOULOUSE Cedex

Plus en détail

Charges électriques - Courant électrique

Charges électriques - Courant électrique Courant électrique Charges électriques - Courant électrique Exercice 6 : Dans la chambre à vide d un microscope électronique, un faisceau continu d électrons transporte 3,0 µc de charges négatives pendant

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES

CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES Thomas Jeanjean To cie his version: Thomas Jeanjean. CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES. 22ÈME

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Mémoire présenté et soutenu en vue de l obtention

Mémoire présenté et soutenu en vue de l obtention République du Cameroun Paix - Travail - Parie Universié de Yaoundé I Faculé des sciences Déparemen de Mahémaiques Maser de saisique Appliquée Republic of Cameroon Peace Wor Faherland The Universiy of Yaoundé

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1........................................................................................................ Je prends un bon dépar.......................................................................................

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A UIMBERTEAU UIMBERTEAU TRAVAUX PRATIQUES 5 ISTALLATIO ELECTRIQUE DE LA CAE D'ESCALIER DU BATIMET A ELECTROTECHIQUE Seconde B.E.P. méiers de l'elecroechnique ELECTROTECHIQUE HABITAT Ver.. UIMBERTEAU TRAVAUX

Plus en détail

No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa

No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa No 996 3 Décembre La coordinaion inerne e exerne des poliiques économiques : une analyse dynamique Fabrice Capoën Pierre Villa CEPII, documen de ravail n 96-3 SOMMAIRE Résumé...5 Summary...7. La problémaique...9

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique

Plus en détail

Evaluation des Options avec Prime de Risque Variable

Evaluation des Options avec Prime de Risque Variable Evaluaion des Opions avec Prime de Risque Variable Lahouel NOUREDDINE Correspondance : LEGI-Ecole Polyechnique de Tunisie, BP : 743,078 La Marsa, Tunisie, Insiu Supérieur de Finance e de Fiscalié de Sousse.

Plus en détail

Amplificateur à deux étages : gains, résistances "vues", droites de charges, distorsion harmonique

Amplificateur à deux étages : gains, résistances vues, droites de charges, distorsion harmonique Problème 6 Amplificateur à deux étages : gains, résistances "ues", droites de charges, distorsion harmonique Le circuit analysé dans ce problème est un exemple représentatif d'amplificateur réalisé à composants

Plus en détail

Sélection de portefeuilles et prédictibilité des rendements via la durée de l avantage concurrentiel 1

Sélection de portefeuilles et prédictibilité des rendements via la durée de l avantage concurrentiel 1 ASAC 008 Halifax, Nouvelle-Écosse Jacques Sain-Pierre (Professeur Tiulaire) Chawki Mouelhi (Éudian au Ph.D.) Faculé des sciences de l adminisraion Universié Laval Sélecion de porefeuilles e prédicibilié

Plus en détail

CAHIER 13-2000 ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE

CAHIER 13-2000 ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE CAHIER 13- ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE Jean-Michel BOSCO N'GOMA CAHIER 13- ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS

Plus en détail

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau Ecole des HEC Universié de Lausanne FINANCE EMPIRIQUE Eric Jondeau FINANCE EMPIRIQUE La prévisibilié des rendemens Eric Jondeau L hypohèse d efficience des marchés Moivaion L idée de base de l hypohèse

Plus en détail

MIDI F-35. Canal MIDI 1 Mélodie Canal MIDI 2 Basse Canal MIDI 10 Batterie MIDI IN. Réception du canal MIDI = 1 Reproduit la mélodie.

MIDI F-35. Canal MIDI 1 Mélodie Canal MIDI 2 Basse Canal MIDI 10 Batterie MIDI IN. Réception du canal MIDI = 1 Reproduit la mélodie. / VARIATION/ ACCOMP PLAY/PAUSE REW TUNE/MIDI 3- LESSON 1 2 3 MIDI Qu es-ce que MIDI? MIDI es l acronyme de Musical Insrumen Digial Inerface, une norme inernaionale pour l échange de données musicales enre

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

BILAN EN ELECTRICITE : RC, RL ET RLC

BILAN EN ELECTRICITE : RC, RL ET RLC IN N TIIT :, T I. INTNSIT : = dq d en couran varable I = Q en couran connu Méhode générale d éablssemen des équaons dfférenelles : lo d addvé des ensons pus relaons dq caracérsques :, lo d Ohm u = aux

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Partie 1 - Séquence 3 Original d une fonction

Partie 1 - Séquence 3 Original d une fonction Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Surface de Volatilité et Introduction au Risque de Crédit

Surface de Volatilité et Introduction au Risque de Crédit Modèles de Taux, Surface de Volailié e Inroducion au Risque de Crédi Alexis Fauh Universié Lille I Maser 2 Mahémaiques e Finance Spécialiés Mahémaiques du Risque & Finance Compuaionelle 214/215 spread

Plus en détail

UNIVERSITE JOSEPH FOURIER GRENOBLE I THESE. présentée par. Ioana - Cristina MOLDOVAN. pour obtenir le grade de DOCTEUR. Spécialité : Physique

UNIVERSITE JOSEPH FOURIER GRENOBLE I THESE. présentée par. Ioana - Cristina MOLDOVAN. pour obtenir le grade de DOCTEUR. Spécialité : Physique UIVERSITE JOSEPH FOURIER GREOBLE I THESE pésenée pa Ioana - Cisina MOLDOVA pou obeni le gade de DOCTEUR Spécialié : Physique Eude phooméique de l aome de sodium applicaion aux éoiles lases LGS e PLGS Souenance

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE SEANCE 3 PLANS DE TRESORERIE Obje de la séance 3 : dans la séance 2, nous avons monré commen le besoin de financemen éai couver par des

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP. Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Ned s Expat L assurance des Néerlandais en France

Ned s Expat L assurance des Néerlandais en France [ LA MOBILITÉ ] PARTICULIERS Ned s Expa L assurance des Néerlandais en France 2015 Découvrez en vidéo pourquoi les expariés en France choisissen APRIL Inernaional pour leur assurance sané : Suivez-nous

Plus en détail

1.1.1 Signaux à variation temporelle continue-discrète

1.1.1 Signaux à variation temporelle continue-discrète Chapitre Base des Signaux. Classi cation des signaux.. Signaux à variation temporelle continue-discrète Les signaux à variation temporelle continue sont des fonctions d une ou plusieurs variables continues

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS

EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS CEDRIC TAPSOBA Diplômé IDS Inern/ CARE Regional Program Coordinaor and Gender Specialiy Service from USAID zzz WA-WASH Program Tel: 70 77 73 03/

Plus en détail

La fonction de production dans l analyse néo-classique

La fonction de production dans l analyse néo-classique La oncion de producion dans l analyse néo-classique Jean-Marie Harribey La oncion de producion es une relaion mahémaique éablie enre la quanié produie e le ou les aceurs de producion uilisés, ou encore

Plus en détail

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD LA COUCHE PHYSIQUE 1 FONCTIONS GENERALES Cee couche es chargée de la conversion enre bis informaiques e signaux physiques Foncions principales de la couche physique : définiion des caracérisiques de la

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Pour 2014, le rythme de la reprise économique qui semble s annoncer,

Pour 2014, le rythme de la reprise économique qui semble s annoncer, En France, l invesissemen des enreprises reparira--il en 2014? Jean-François Eudeline Yaëlle Gorin Gabriel Sklénard Adrien Zakharchouk Déparemen de la conjoncure Pour 2014, le ryhme de la reprise économique

Plus en détail