Sujets d examen Cours «Physique des Plasmas I», Printemps 2014
|
|
|
- Alain Carrière
- il y a 10 ans
- Total affichages :
Transcription
1 ujets d examen ous «Physique des Plasmas I», Pintemps 2014 L examen oal pote su un des 22 sujets. Il due 30min avec 30min de pépaation. ous avez le doit de etie un deuxième sujet si le 1 e ne vous convient pas. Pendant la pépaation l'étudiant à doit aux notes de cous et aux execices. Pendant l'examen oal uniquement l extait «mathématique» du «NRL Plasma Fomulay» (ici attaché) est utilisable. Le sujet d examen donne le cade généal et au cous de l examen des questions généales poches du sujet d examen seont posées. 1) Définition des plasmas. Ecantage de Debye. Quelques popiétés impotantes. 2) Généation d un plasma de laboatoie à basse densité, sonde de Langmui. 3) Eléments de collisions coulombiennes, esistivité d un plasma et conséquences dans le modèle de la MHD. 4) Mouvement d'une paticule chagée dans un champ électique (statique et lentement vaiable) et dans un champ magnétique statique homogène B o. 5) Mouvement d'une paticule chagée dans un champ magnétique statique et inhomogène: vaiation du mouvement paallèle. 6) Mouvement d'une paticule dans un champ magnétique statique et inhomogène: mouvement pependiculaie. 7) Mouvement d'une paticule dans un champ magnétique statique dans un champ électique oscillant à une féquence poche de la féquence cycloton. 8) Illustation à pati des mouvements de paticules dans des champs statiques du confinement d'un plasma dans un champ magnétique tooïdal et dans un champ magnétique "mioi". 9) Les invaiants adiabatiques : consevation du moment magnétique, le deuxième invaiant. Illustation su chauffage pa compession adiabatique. 10) Pincipes et poblèmes de la fusion themonucléaie contôlée. 11) Electodynamique d'un plasma dans le modèle fluide: les équations à deux fluides et de Maxwell; la notion de fonction diélectique. 12) L'onde électomagnétique dans un plasma homogène non magnétisé. Illustation de possibles diagnostiques. 13) L'onde de plasma dans un plasma chaud homogène non magnétisé. 14) L'onde ionique acoustique dans un plasma chaud homogène non magnétisé. 15) Faisceau d électons : ondes et instabilités électostatiques en pésence d un teme de dissipation. 16) Modèle à un fluide : équations de la MHD idéale. Plasma gelé dans les lignes de champ magnétique. onsevation du flux magnétique.
2 17) Equations de la MHD : Nombe de Reynolds magnétique, limite de la MHD idéale. 18) MHD idéale. onditions d équilibe et équilibes 1D : theta-pinch, z-pinch, scew-pinch. 19) Modèle de la MHD idéale : l onde d Alfven compessionnelle et l onde magnétosonique. 20) Modèle de la MHD idéale : l onde d Alfven de cisaillement (shea Alfven wave). 21) Instabilité de Rayleigh-Taylo : desciption phénoménologique à pati du mouvement du cente de guidage et linéaisation des équations de la MHD idéale pou cette instabilité. 22) MHD idéale : linéaisation des équations de la MHD idéale avec conditions aux bods pou un plasma non-homogène (de taille finie) en pésence d une coque métallique de conductibilité infinie sans inteface plasma-vide.
3 2009 NRL PLAMA FORMULARY J.D. Huba Beam Physics Banch Plasma Physics Division Naval Reseach Laboatoy Washington, D uppoted by The Office of Naval Reseach 1
4 ETOR IDENTITIE 4 Notation: f, g, ae scalas; A, B, etc., ae vectos; T is a tenso; I is the unit dyad. (1) A B = A B = B A = B A = A B = A B (2) A (B ) = ( B) A = (A )B (A B) (3) A (B ) + B ( A) + (A B) = 0 (4) (A B) ( D) = (A )(B D) (A D)(B ) (5) (A B) ( D) = (A B D) (A B )D (6) (fg) = (gf) = f g + g f (7) (fa) = f A + A f (8) (fa) = f A + f A (9) (A B) = B A A B (10) (A B) = A( B) B( A) + (B )A (A )B (11) A ( B) = ( B) A (A )B (12) (A B) = A ( B) + B ( A) + (A )B + (B )A (13) 2 f = f (14) 2 A = ( A) A (15) f = 0 (16) A = 0 If e 1, e 2, e 3 ae othonomal unit vectos, a second-ode tenso T can be witten in the dyadic fom (17) T = i,j T ije i e j In catesian coodinates the divegence of a tenso is a vecto with components (18) ( T) i = j (T ji/x j ) [This definition is equied fo consistency with Eq. (29)]. In geneal (19) (AB) = ( A)B + (A )B (20) (ft) = f T+f T 4
5 Let = ix + jy + kz be the adius vecto of magnitude, fom the oigin to the point x, y, z. Then (21) = 3 (22) = 0 (23) = / (24) (1/) = / 3 (25) (/ 3 ) = 4πδ() (26) = I If is a volume enclosed by a suface and d = nd, whee n is the unit nomal outwad fom, (27) (28) (29) (30) (31) (32) d f = d A = d T = d A = df d A d T d A d (f 2 g g 2 f) = d (f g g f) d (A B B A) = d (B A A B) If is an open suface bounded by the contou, of which the line element is dl, (33) d f = dlf 5
6 (34) d A = dl A (35) (d ) A = dl A (36) d ( f g) = fdg = gdf DIFFERENTIAL OPERATOR IN URILINEAR OORDINATE 5 ylindical oodinates Divegence A = 1 (A ) + 1 A φ φ + A z z Gadient ul ( f) = f ; ( A) = 1 ( f) φ = 1 A z φ A φ z f φ ; ( f) z = f z ( A) φ = A z A z ( A) z = 1 (A φ) 1 A φ Laplacian 2 f = 1 ( ) f f 2 φ + 2 f 2 z 2 6
7 Laplacian of a vecto ( 2 A) = 2 A 2 A φ 2 φ A 2 ( 2 A) φ = 2 A φ + 2 A 2 φ A φ 2 ( 2 A) z = 2 A z omponents of (A )B B (A B) = A + A φ B φ + A B z z A φb φ B φ (A B) φ = A + A φ B φ φ + A B φ z z + A φb B z (A B) z = A + A φ B z φ + A B z z z Divegence of a tenso ( T) = 1 (T ) + 1 T φ φ + T z z T φφ ( T) φ = 1 (T φ) + 1 T φφ φ + T zφ z + T φ ( T) z = 1 (T z) + 1 T φz φ + T zz z 7
8 pheical oodinates Divegence A = 1 2 (2 A ) + 1 sin θ θ (sin θa θ) + 1 A φ sin θ φ Gadient ( f) = f ; ( f) θ = 1 f θ ; ( f) φ = 1 sin θ f φ ul ( A) = 1 sin θ θ (sin θa φ) 1 sin θ A θ φ ( A) θ = 1 A sin θ φ 1 (A φ) ( A) φ = 1 (A θ) 1 A θ Laplacian 2 f = 1 2 ( ) 2 f sin θ θ ( ) sin θ f + θ 1 2 sin 2 θ 2 f φ 2 Laplacian of a vecto ( 2 A) = 2 A 2A 2 A θ 2 2 θ 2cot θa θ sin θ A φ φ ( 2 A) θ = 2 A θ A θ A θ 2 sin 2 θ 2 cos θ 2 sin 2 θ A φ φ ( 2 A) φ = 2 A φ A φ 2 sin 2 θ sin θ A φ + 2 cos θ A θ 2 sin 2 θ φ 8
9 omponents of (A )B B (A B) = A + A θ B θ + A φ sin θ B φ A θb θ + A φ B φ B θ (A B) θ = A + A θ B θ θ + A φ B θ sin θ φ + A θb cot θa φb φ B φ (A B) φ = A + A θ B φ θ + A φ B φ sin θ φ + A φb + cot θa φb θ Divegence of a tenso ( T) = 1 2 (2 T ) + 1 sin θ θ (sin θt θ) + 1 T φ sin θ φ T θθ + T φφ ( T) θ = 1 2 (2 T θ ) + 1 sin θ θ (sin θt θθ) + 1 T φθ sin θ φ + T θ cot θt φφ ( T) φ = 1 2 (2 T φ ) + 1 sin θ θ (sin θt θφ) + 1 T φφ sin θ φ + T φ + cot θt φθ 9
Chapitre 6: Moment cinétique
Chapite 6: oment cinétique Intoduction http://www.youtube.com/watch?v=vefd0bltgya consevation du moment cinétique 1 - angula momentum consevation 1 - Collège éici_(360p).mp4 http://www.youtube.com/watch?v=w6qaxdppjae
FINANCE Mathématiques Financières
INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.
11.5 Le moment de force τ (tau) : Production d une accélération angulaire
11.5 Le moment de foce τ (tau) : Poduction d une accéléation angulaie La tige suivante est soumise à deux foces égales et en sens contaie: elle est en équilibe N La tige suivante est soumise à deux foces
CHAPITRE VI : Le potentiel électrique
CHPITRE VI : Le potentiel électiue VI. 1 u chapite III, nous avons vu ue losu'une foce est consevative, il est possible de lui associe une énegie potentielle ui conduit à une loi de consevation de l'énegie.
CONSTANTES DIELECTRIQUES
9 E7 CONTANTE DIELECTRIQUE I. INTRODUCTION Dans cette expéience, nous étuieons es conensateus et nous éiveons les popiétés e iélectiques tels que l'ai et le plexiglas. II. THEORIE A) Conensateus et iélectiques
Validation CFD axisymétrique de modèle zonal des écoulements gazeux de chambre de combustion de moteur Diesel
CONSERVATOIRE NATIONAL DES ARTS ET METIERS Cente d enseignement de Genoble Mémoie Mécanique des stuctues et des systèmes Validation CFD axisymétique de modèle zonal des écoulements gazeux de Auditeu: Jean-Michel
où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.
7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux... 7. Test d austement de Kolmogoov-Sminov... 7.. Test
Mécanique du point : forces Newtoniennes (PCSI)
écanique du oint : foces Newtoniennes (PCSI Question de cous On admet que, losqu'il est soumis à une foce Newtonienne F K u, la tajectoie d'un cos est lane et décite a mc K +e cosθ où C θ est une constante
Permis de feu. Travail par point chaud. r Soudage r Brasage. r Découpage r Tronçonnage. r Meulage r Autres. r Poste à souder r Tronçonneuse
Pemis de feu Tavail pa point chaud Patage vote engagement Ce document doit ête établi avant tout tavail pa point chaud (soudage, découpage, meulage, ) afin de péveni les isques d incendie et d explosion
( Mecanique des fluides )
INSTITUT NTION GRONOMIUE ERTEMENT U GENIE RUR SECTION YRUIUE GRICOE YRUIUE GENERE ( Mecanique des fluides ) TRONC COMMUN ème NNEE atie : Statique des Fluides ( ydostatique ) atie : ynamique des Fluides
M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d
Chapite 2: But: connaîte les lois auxquelles doit obéi un cops solide en équilibe. Ceci pemet de décie la station debout ainsi que les conditions nécessaies pou teni une tasse dans la main, souleve une
PHYSIQUE DES SEMI-CONDUCTEURS
Dépatement Mico-électonique et télécommunications Pemièe année 004/005 PHYSIQUE DES SEMI-CONDUCTEURS Rouge Violet Infa-Rouge Visible Ulta-Violet Cd x Hg 1-x Te InSb Ge Si GaAs CdSe AlAs CdS GaP SiC GaN
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
DEUXIEME ANNEE TRONC COMMUN TECHNOLOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS ONDES
UNIVERSITE DES SCIENCES ET DE A TECHNOOGIE HOUARI BOUMEDIENNE INSTITUT DE PHYSIQUE DEPARTEMENT DES ENSEIGNEMENTS DE PHYSIQUE DE BASE DEUXIEME ANNEE TRONC COMMUN TECHNOOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS
A la mémoire de ma grande mère A mes parents A Mon épouse A Mes tantes et sœurs A Mes beaux parents A Toute ma famille A Mes amis A Rihab, Lina et
Remeciements e tavail a été effectué au sein du laboatoie optoélectonique et composants de l univesité Fehat Abbas (Sétif, Algéie) en collaboation avec le goupe MALTA consolido du Dépatement du Physique
5. Les conducteurs électriques
5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,
FUSION PAR CONFINEMENT MAGNÉTIQUE
FUSION PAR CONFINEMENT MAGNÉTIQUE Séminaire de Xavier GARBET pour le FIP 06/01/2009 Anthony Perret Michel Woné «La production d'énergie par fusion thermonucléaire contrôlée est un des grands défis scientifiques
TRAVAUX DIRIGÉS DE M 6
D M 6 Coection PCSI 1 013 014 RVUX DIRIGÉS DE M 6 Execice 1 : Pemie vol habité (pa un homme) Le 1 avil 1961, le commandant soviétique Y Gagaine fut le pemie cosmonaute, le vaisseau spatial satellisé était
CLOUD CX263 MÉLANGEUR
COUD CX6 MÉANGEU Clealy bette soun ZONE ZONE MUSIC SOUCE MUSIC SOUCE MUSIC SOUCE MUSIC EVE MUSIC EVE MUSIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE 6 6 6 5 5 5 MICOPHONE CX6 4 4 4 F HF F HF
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Automatique Linéaire 1 Travaux Dirigés 1A ISMIN
Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe
Pour réaliser la fusion thermonucléaire contrôlée (voir
Comment je vois le monde Plasma thermonucléaire confiné magnétiquement : un système complexe Le projet ITER (International Thermonuclear Experimental Reactor) a popularisé les recherches sur la fusion
SOMMAIRE. ATRACOM-Centrafrique Manuel de Procédures Administratives Financiers et Comptables
ATRACOM-Centafique Manuel de Pocédues Administatives Financies et Comptables G MODULE G GESTION DE LA TRESORERIE SOMMAIRE G MODULE G GESTION DE LA TRESORERIE... 1 G.1 COMPOSANTES DE LA TRESORERIE... 2
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
PHYSIQUE 2 - Épreuve écrite
PHYSIQUE - Épreuve écrite WARIN André I. Remarques générales Le sujet de physique de la session 010 comprenait une partie A sur l optique et une partie B sur l électromagnétisme. - La partie A, à caractère
Groupe professionnel énergie de Centrale Nantes Intergroupe des centraliens de l énergie
Groupe professionnel énergie de Centrale Nantes Intergroupe des centraliens de l énergie Conférence du 19 mai 2006 rue Jean Goujon, 19h certitudes et incertitudes sur la fusion nucléaire - rôle d ITER
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Serveur vidéo IP. caméras analogiques PC serveur. PC Client 1. Serveur de stockage ( optionnel )
Sony RealShot Manage V3 Info Poduit Mas 2005 RealShot Manage V3.0 Logiciel de gestion des caméas IP MJPEG, MPEG-4, Audio, il sait tout enegiste! Une nouvelle vesion du logiciel RealShot Manage de Sony
Quelques éléments d écologie utiles au forestier
BTSA Gestion Foestièe Module D41 V.1.1. Avil 1997 Quelques éléments d écologie utiles au foestie Paysage vosgien : un exemple d écocomplexe divesifié. Sylvain Gaudin CFPPA/CFAA de Châteaufaine E 10 ue
PHYSIQUE. Calculatrices autorisées. Quelques enjeux de la fusion thermonucléaire inertielle laser
PHYSIQUE Calculatrices autorisées Quelques enjeux de la fusion thermonucléaire inertielle laser Les différentes parties sont très largement indépendantes Tout résultat donné par l énoncé peut être utilisé
0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par
Probabilités) Calculus on Fock space and a non-adapted quantum Itô formula Nicolas Privault Abstract - The aim of this note is to introduce a calculus on Fock space with its probabilistic interpretations,
CONDUCTEURS EN EQUILIBRE ELECTROSTATIQUE
Chapit II CONDUCTEURS EN EQUILIRE ELECTROSTTIQUE En élcticité, un conductu st un miliu matéil dans lqul ctains chags élctiqus, dits «chags libs», sont suscptibls d s déplac sous l action d un champ élctiqu.
Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.
Filtres passe-bas Ce court document expose les principes des filtres passe-bas, leurs caractéristiques en fréquence et leurs principales topologies. Les éléments de contenu sont : Définition du filtre
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique
Chapitre I- Le champ électrostatique I.- Notions générales I..- Phénomènes électrostatiques : notion de charge électrique Quiconque a déjà vécu l expérience désagréable d une «décharge électrique» lors
INTRODUCTION A LA FUSION THERMONUCLEAIRE
INTRODUCTION A LA FUSION THERMONUCLEAIRE I) PRINCIPE Considérons l'énergie de liaison par nucléons pour différents noyaux (Fig. I.1). En examinant la figure I-1, nous constatons que deux types de réactions
Roulements à rotule sur deux rangées de rouleaux en deux parties
Roulements à otule su deux angées de ouleaux en deux paties Réduction des coûts gâce au changement apide du oulement difficilement accessible Contenu Changement apide du oulement 2 Réduction des coûts
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI
Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides
TP 7 : oscillateur de torsion
TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
DOSSIER DE CANDIDATURE PEDAGOGIQUE En seconde Année du MASTER «Sciences de l Ingénieur» (SDI) Année universitaire 2008-2009
DOSSIER DE CANDIDATURE PEDAGOGIQUE En seconde Année du MASTER «Sciences de l Ingénieur» (SDI) En seconde année de la composante Mécanique du master SDI, il est possible de candidater dans l une ou l autre
Magister en : Electrotechnique
انج س ت انجضائش ت انذ مشاط ت انشعب ت République Algéienne Démocatique et Populaie صاسة انتعه ى انعان انبحث انعه Minitèe de l Eneignement Supéieu et de la Recheche Scientifique Univeité Mohamed Khide Bika
Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure.
Étude du comportement mécanique du plâtre pris en relation avec sa microstructure Sylvain Meille To cite this version: Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Objectifs du cours Modélisation de la Turbulence M2 - EE
Objectifs du cours Modélisation de la Turbulence M2 - EE Gomez Thomas Institut Jean Le Rond d Alembert Caractériser et classifier les écoulements turbulents. Introduire les outils mathématiques. Introduire
Guide de l acheteur de logiciel de Paie
Note pespicacité Pivilégie les essouces humaines Guide de l acheteu de logiciel de Paie Table des matièes Intoduction Tendances écentes de Paie L automation de Paie avec libe-sevice pou employés Analyse
Introduction aux plasmas. Magneto-hydrodynamique
Master 1 de Physique 2ème année de Magistère de Physique Université Joseph Fourier Introduction aux plasmas magnétisés Magneto-hydrodynamique Jonathan Ferreira IPAG- Institut de Planétologie et d Astrophysique
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
I - Quelques propriétés des étoiles à neutrons
Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est
Informations Techniques A7 A141. Roulements à Billes à Gorge Profonde. Roulements à Billes à Contact Oblique. Roulements à Billes Auto-Aligneurs
ROULEMENTS Pages Infomations Techniques A7 A141 Infos Tech. Roulements à Billes à Goge Pofonde B4 B45 Roulements à Billes à Contact Oblique Roulements à Billes Auto-Aligneus Roulements à Rouleaux Cylindiques
CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté
CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons
ITER et les recherches sur la fusion
À quoi ressemblera ITER dans quelques années. ITER et les recherches sur la fusion par confi nement magnétique Jean Jacquinot ([email protected]) Conseiller scientifi que auprès de l Administrateur
Po ur d o nne r un é lan à vo tre re traite
Po u d o nne un é lan à vo te e taite ez a p é P aite t e e vot joud'hui dès au E N EN T TR RE E N NOOUUSS,, CC EESSTT FFAA CC I I LL EE DD EE SS EE O M M PP RR EE NN DDRRE E CC O Toutes les gaanties de
Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.
TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter
Mouvement d'une particule chargée dans un champ magnétique indépendant du temps
Moueent d'une patiule hagée dans un hap agnétique indépendant du teps iblio: Pee elat Gaing Magnétise Into expéientale: Dispositif: On obsee une déiation du faseau d'életons losqu'il aie ae une itesse
Instabilités bi- et tridimensionnelles dans une couche limite décollée compressible subsonique
Instabilités bi- et tridimensionnelles dans une couche limite décollée compressible subsonique M. Merle a,b, U. Ehrenstein b, J-C. Robinet a a. Laboratoire DynFluid - Arts et Métiers ParisTech, 151 Boulevard
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière
Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Algèbre 1 : (Volume horaire total : 63 heures) UE1 : Analyse et algèbre
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Univ. Béjaia, Faculté de la Technologie, Département d électronique
Univ. Béjaia, Faculté de la Technologie, Dépatement d électonique L INTELLIGENCE ARTIFICIELLE APPLIQUEE AUX TELECOMMUNICATIONS Thème : Intelligence économique et télécommunication Poposé pa : D A/. KHIREDDINE
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Scénarios économiques en assurance
Motivation et plan du cours Galea & Associés ISFA - Université Lyon 1 [email protected] [email protected] 18 octobre 2013 Motivation Les nouveaux référentiels prudentiel et d'information nancière
À propos d ITER. 1- Principe de la fusion thermonucléaire
À propos d ITER Le projet ITER est un projet international destiné à montrer la faisabilité scientifique et technique de la fusion thermonucléaire contrôlée. Le 8 juin 005, les pays engagés dans le projet
MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .
MESURE ET PRECISIO La détermination de la valeur d une grandeur G à partir des mesures expérimentales de grandeurs a et b dont elle dépend n a vraiment de sens que si elle est accompagnée de la précision
DiaDent Group International
www.diagun.co.k DiaDent Goup Intenational Dispositif de compactage sans fil à chaleu intégée Copyight 2010 DiaDent Goup Intenational www.diadent.com Dispositif de compactage sans fil à chaleu intégée w
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
Préface. Le programme d électricité du S2 se compose de deux grandes parties :
Péface. Ce cus d électicité a été édigé à l intentin des étudiants qui pépaent, dans le cade de la éfme L.M.D 1, une licence dans les dmaines des Sciences de la Matièe et des Sciences et Technlgies. Il
Roulements à billes et à rouleaux
Fo New Technology Netwok R copoation Roulements à billes et à ouleaux CAT. NO. 222-VIII/F Manuel technique A- Roulements à billes à goges pofondes B- Roulements miniatues B- 1 Roulements à billes à contact
Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année
Cours d électricité Circuits électriques en courant constant Mathieu Bardoux [email protected] IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre
numéro de téléphone Mobil: +40749928501 E-mail [email protected]; [email protected]
Curriculum vitae Informations personnelles Nom / Prénom Irimiciuc Ştefan-Andrei adresse Strada Colonel Victor Tomoroveanu nr 4, sc C, ap 18, etaj 4, Botoşani, Roumanie numéro de téléphone Mobil: +40749928501
CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM.
Rabat, le 02 juillet 2004 CIRCULIRE N 02/04 RELTIVE UX CONDITIONS D ÉVLUTION DES VLEURS PPORTÉES À UN ORGNISME DE PLCEMENT COLLECTIF EN VLEURS MOBILIÈRES OU DÉTENUES PR LUI La pésente ciculaie vient en
a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov
V. Les réactions r thermonucléaires 1. Principes a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov 2. Taux de réactions r thermonucléaires a. Les sections
Premier principe de la thermodynamique - conservation de l énergie
Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse
L identification par radio fréquence principe et applications
L identification par radio fréquence principe et applications Présentée par Abdelatif Bouchouareb École de technologie supérieure, Montréal Qc Novembre 2007 1 Les différents systèmes d identification 2
ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique
1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
User guide Conference phone Konftel 100
User guide Conference phone Konftel 100 English I Español I Conference phones for every situation Cet emballage contient: 1 x Guide de l utilisateur 1 x Téléphone pour conférences 1 x Transformateur secteur
Évaluation de l'incertitude de mesure par une méthode statistique ("méthode de type A") Voir cours d'instrumentation
G. Pinson - Physique ppliquée Mesues - 16 / 1 16 - Instuments de mesues Eeu et incetitude su la mesue d'une gandeu Ce qui suit découle des pesciptions du IPM (ueau Intenational des Poids et Mesues, Fance),
PHYSIQUE Discipline fondamentale
Examen suisse de maturité Directives 2003-2006 DS.11 Physique DF PHYSIQUE Discipline fondamentale Par l'étude de la physique en discipline fondamentale, le candidat comprend des phénomènes naturels et
Chapitre 1.5a Le champ électrique généré par plusieurs particules
hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel
Notions d asservissements et de Régulations
I. Introduction I. Notions d asservissements et de Régulations Le professeur de Génie Electrique doit faire passer des notions de régulation à travers ses enseignements. Les notions principales qu'il a
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Mesures calorimétriques
TP N 11 Mesures calorimétriques - page 51 - - T.P. N 11 - Ce document rassemble plusieurs mesures qui vont faire l'objet de quatre séances de travaux pratiques. La quasi totalité de ces manipulations utilisent
Etude numérique et expérimentale du processus de recompression le long d un éjecteur supersonique
Etude numérique et expérimentale du processus de recompression le long d un éjecteur supersonique A. BOUHANGUEL, P. DESEVAUX, E. GAVIGNET Institut FEMTO-ST, Département ENISYS, Parc Technologique, 2 Avenue
Techniques de Lyapunov en contrôle quantique pour le couplage dipolaire et polarisabilité
Techniques de Lyapunov en contrôle quantique pour le couplage dipolaire et polarisabilité Andreea Grigoriu avec Jean-Michel Coron, Cătălin Lefter and Gabriel Turinici CEREMADE-Université Paris Dauphine
Moments partiels crédibilistes et application à l évaluation de la performance de fonds spéculatifs
Moments patiels cédibilistes et application à l évaluation de la pefomance de fonds spéculatifs Alfed MBAIRADJIM M. 1 & Jules SADEFO K. 2 & Michel TERRAZA 3 1 LAMETA- Univesité Montpellie 1 et moussa [email protected]
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
statique J. Bertrand To cite this version: HAL Id: jpa-00237017 https://hal.archives-ouvertes.fr/jpa-00237017
Quelques théorèmes généraux relatifs à l électricité statique J. Bertrand To cite this version: J. Bertrand. Quelques théorèmes généraux relatifs à l électricité statique. J. Phys. Theor. Appl., 1874,
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
GELE5222 Chapitre 9 : Antennes microruban
GELE5222 Chapitre 9 : Antennes microruban Gabriel Cormier, Ph.D., ing. Université de Moncton Hiver 2012 Gabriel Cormier (UdeM) GELE5222 Chapitre 9 Hiver 2012 1 / 51 Introduction Gabriel Cormier (UdeM)
Principes généraux de la modélisation de la dispersion atmosphérique
Principes généraux de la modélisation de la dispersion atmosphérique Rémy BOUET- DRA/PHDS/EDIS [email protected] //--12-05-2009 1 La modélisation : Les principes Modélisation en trois étapes : Caractériser
Cette Leçon va remplir ces attentes spécifiques du curriculum :
Dev4Plan1 Le Plan De Leçon 1. Information : Course : Français Cadre Niveau : Septième Année Unité : Mes Relations Interpersonnelles Thème du Leçon : Les Adjectifs Descriptifs Date : Temps : 55 minutes
M1107 : Initiation à la mesure du signal. T_MesSig
1/81 M1107 : Initiation à la mesure du signal T_MesSig Frédéric PAYAN IUT Nice Côte d Azur - Département R&T Université de Nice Sophia Antipolis [email protected] 15 octobre 2014 2/81 Curriculum
ANALYSE STATIQUE D UNE POUTRE SOUMISE A UNE CHARGE VARIABLE
ANALYSE STATIQUE D UNE POUTRE SOUMISE A UNE CHARGE VARIABLE Description du problème L écoulement sur une plaque plane fait partie des problèmes classiques de la mécanique des fluides les plus étudiés.
APPENDIX 6 BONUS RING FORMAT
#4 EN FRANÇAIS CI-DESSOUS Preamble and Justification This motion is being presented to the membership as an alternative format for clubs to use to encourage increased entries, both in areas where the exhibitor
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Analyse de la dynamique d un lit fluidisé gaz-solide en interaction acoustique avec son système de ventilation : comparaison théorie/expérience.
Analyse de la dynamique d un lit fluidisé gaz-solide en interaction acoustique avec son système de ventilation : comparaison théorie/expérience. F.BONNIOL, C. SIERRA, R. OCCELLI AND L. TADRIST Laboratoire
Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques.
Cée un obsevatoie de la concuence poblématique I Quelle est l'étendue d'un maché? Quelle pat du maché, une entepise peut-elle espée pende? Quels sont les atouts des entepises pésentes su le maché? ntéêt
