Christoph Brtult Mthémtiqus n MPSI CALCULS DE PRIMITIVES ET D INTÉGRALES C chpitr vis à rnforcr votr prtiqu du clcul intégrl u moyn d révisions ciblés t grâc à du nouvutés, l intégrtion pr prtis t l chngmnt d vribl. L point d vu dopté n st ps théoriqu. Nous définirons proprmnt l notion d intégrl t nous démontrrons l théorèm fondmntl d l nlys sur lqul c chpitr rpos u chpitr «Intégrtion sur un sgmnt» n fin d nné. Dns tout c chpitr,st l un ds nsmblsout I t J sont ds intrvlls. CALCULS SIMPLES DE PRIMITIVES Définition (Primitiv) Soit f : I un fonction. On dit qu un fonction F : I st UNE primitiv d f sur I si F st dérivbl sur I d dérivé f. L fonction st UNE primitiv d surt Arctn st UNE primitiv d + sur. Théorèm («Unicité» ds primitivs à constnt dditiv près) Soit f : I un fonction. On suppos qu f possèd un primitiv F : I. Ls primitivs d f sur I à vlurs dnssont lors touts ls fonctions F+λ,λ décrivnt. ATTENTION! Il n ist jmis un sul primitiv, on n dit jmis «l» primitiv mis UNE primitiv. Il put n ps n istr, mis s il n ist, il n ist un infinité t lls sont touts égls à constnt dditiv près. Démonstrtion Pour toutf (I,) :F st un primitiv d f F f F F F F F F st constnt λ /F F+λ. ATTENTION! Ls fonctions qu l on mnipul courmmnt sont un mpilmnt d fonctions usulls liés ntr lls pr ds dditions, ds multiplictions, ds pssgs à l invrs t ds compositions. Vous svz touts ls dérivr cr vous svz dérivr ls fonctions usulls t disposz ds formuls d dérivtion d un somm, d un produit, d un invrs t d un composé. L primitivtion ds fonctions st utrmnt plus difficil : vous svz primitivr l fonction, mis pour primitivr son invrs, il fllu qu on vous introduis un nouvll fonction usull, l fonction logrithm, vous svz primitivr l fonction +, mis pour primitivr son invrs, il fllu qu on vous + introduis un nouvll fonction usull, l fonction rctngnt. On n put ps dir pourtnt qu ls fonctions t soint compliqués! L problèm d l primitivtion, + c st qu on n put ps primitivr plicitmnt touts ls fonctions qu on utilis courmmnt. On put montrr mis c st difficil qu ls primitivs d un fonction simpl comm n puvnt n ucun mnièr êtr écrits plicitmnt comm un mpilmnt d fonctions usulls à moins bin sûr d considérr un tll primitiv comm nouvll fonction usull! On rtindr notmmnt d cs rmrqus l mis n grd suivnt : En générl, mêm qund on sit primitivr du fonctions, on NE sit PAS primitivr lur PRODUIT, lur QUOTIENT, lur COMPOSÉE.
Christoph Brtult Mthémtiqus n MPSI En prtiqu L mis n grd précédnt n signifi hurusmnt ps qu on n sit rin fir. En prticulir, tout fonction d l form f g f dmt g f pour primitiv t on ttnd d vous qu vous schiz rpérr un tll form. Mntionnons rpidmnt qulqus cs très cournts : u u u s primitiv n u, n ln u, u u u α (α ) n uα+ α+, u cos u n sinu, n Arctn u, tc. +u Si F st un primitiv d f, lors pour tout t b, F(+b) st un primitiv d f(+b). u L fonction sin 5 3cos dmt 3 ln 5 3cos pour primitiv sur, l fonction dmt pour primitiv sur + t l fonction 4 + dmt Arctn() pour primitiv sur. En prtiqu L progrmm ig qu vous schiz primitivr ls fonctions d l form + b+ c vc, b, c, t b 4c< discriminnt négtif, l dénomintur n s nnul ps sur. C st très simpl, on écrit «+ b+ c» sous FORME CANONIQUE, on fit pprîtr l dérivé d rctngnt t nfin on primitiv. Il st ici ssz util d svoir qu : Pour tout >, Arctn st un primitiv d +. L fonction En fft Pour tout : donc dmt Arctn 6 pour primitiv sur. 3 + 3 + 3 3 + 3 + 3 6 36 3 + dmt pour primitiv 3 6 6 Arctn 6 3 6 +, 6 Arctn 6. En prtiqu On souvnt bsoin d primitivr ls fonctions d l form cos(b) t sin(b) vc, b. C st très simpl. Pour tout : cos(b)r (+ib). Or (+ib) dmt (+ib) + ib pour primitiv, donc cos(b) dmt pour primitiv : (+ib) R + ib + b R cos(b)+isin(b) ( ib) cos(b)+ b sin(b). + b En prtiqu Autr tchniqu bin util, l LINÉARISATION. Grâc à ll, nous svons clculr touts ls primitivs d fonctions tlls qu sin cos 3 (4) produits d sinus t d cosinus. En prtiqu Pour finir, on primitiv ls frctions rtionnlls n primitivnt lur DÉCOMPOSITION EN ÉLÉMENTS SIMPLES. Nous nous contntrons d clculs simpls à c std, conforms à l sprit du ptit chpitr «Introduction à l décomposition n élémnts simpls». L fonction dmt ln + + pour primitiv sur. En fft Form d l décomposition n élémnts simpls : L frction X un prti ntièr null, X + donc pour crtins, b, c : X X + X + bx+ c X +. Clcul d : On multipli pr X puis on évlu n :. Clcul d b : On multipli pr X, puis on évlu n un rél qu on fit tndr vrs+ : donc b. b+c Clcul d c : On évlu n : +, donc c. +b,
Christoph Brtult Mthémtiqus n MPSI Primitivtion : Nous vnons d étblir qu : X X + X X X +. L fonction + dmt insi comm voulu ln ln + ln + pour primitiv sur. LIEN ENTRE LES NOTIONS DE PRIMITIVE ET D INTÉGRALE Définition (Fonction compl continu) Soit f : I un fonction. On dit qu f st continu sur I si R(f) t Im(f) l sont. L nsmbl ds fonctions compls continus sur I st noté(i,). L intégrl d un fonction continu vous été défini n Trminl comm un ir ALGÉBRIQUE sous l courb c qui vut dir qu ls portions d l courb situés SOUS l ds bscisss contribunt négtivmnt u clcul d l ir. Ctt définition st totlmnt bncl cr nous somms u fond bin incpbls d définir l notion d ir, mis nous nous contntrons d ctt pproch pour l momnt. L intégrl sr défini proprmnt plus trd u chpitr «Intégrtion sur un sgmnt». Définition (Intégrl sur un sgmnt d un fonction compl continu) Soint f (I,) t, b I. On ppll intégrl d f d à b l nombr compl f(t) dt R(f)(t) dt+ i Im(f)(t) dt. ATTENTION! Un intégrl d fonction compl n put ps êtr intrprété comm un ir lgébriqu, c st un nombr compl! Théorèm (Propriétés d l intégrl d un fonction continu) Soint f, g (I,) t, b, c I. Linérité : Pour tousλ,µ : b λf(t)+µg(t) dtλ f(t) dt+µ c c Rltion d Chsls : f(t) dt f(t) dt+ f(t) dt. Inéglité tringulir : Si b : f(t) dt b f(t) dt. g(t) dt. Ls trois propriétés qui suivnt, prc qu lls cchnt l utilistion d inéglités, n ont d sns qu pour ds fonctions RÉELLES. Théorèm (Propriétés d l intégrl d un fonction réll continu) Soint f, g (I,) t, b I. Positivité : Si f t si b, lors f(t) dt. Positivité strict : Si f st strictmnt positiv suf évntullmnt n un nombr fini d points t si < b, lors f(t) dt>. Croissnc : Si f g t b, lors f(t) dt g(t) dt. 3
Christoph Brtult Mthémtiqus n MPSI Théorèm (Théorèm fondmntl d l nlys) Soint f (I,) t, b I. (i) L fonction f(t) dt st un primitiv d f sur I. Pour tout A, il ist un t un sul primitiv d f sur I d vlur A n, l fonction A+ (ii) Pour tout primitiv F d f : f(t) dtf(b) F(). f(t) dt. On not[f] b ou F() b ctt quntité F(b) F(). Démonstrtion L ssrtion (ii) découl d l ssrtion (i). L fonction F st un primitiv d f qui vut F() n t c st l sul, donc d près (i), F() F()+ f pour tout I. Il rst à évlur n b. Epliction L ssrtion (i) st un théorèm d EXISTENCE d primitivs pour ls fonctions CONTINUES. Fondmntl, c théorèm l st prc qu il étblit un lin ntr ds notions pprmmnt totlmnt étrngèrs l notion d ir/intégrl t l notion d primitiv, lié à l dérivtion. Qull intuition cl prim-t-il? Supposons f réll t notons F l fonction f(t) dt. Sur l figur cicontr, l ir lgébriqu hchuré à guch vut +h f(t) dt F(+h) F(). y f() Or si h st tout ptit, schnt qu f st CONTINUE n, on put considérr qu + h f st pproimtivmnt égl à f() sur tout l sgmnt[, + h], t donc on put pproimr l ir coloré à guch pr l ir coloré à droit, qui vut h h hf() slon l princip «bs hutur». F(+ h) F() Conclusion : F(+h) F() hf() pour h tout ptit, ou ncor lim f(). Pr définition du h h nombr dérivé, on comprnd miu insi pourquoi F st dérivbl d dérivé f. f() π sin t dt cos π t π sin t dt π sin t dt π π sin t dt cos π cos π π 4. Pour toutα + : α α+ α+. Intégrl très cournt, à connîtr PAR CŒUR! α+ ATTENTION! On rncontr prfois dns ls livrs d mystériuss intégrls sns borns pr mpl : t + t dt t3 3 + t, ln, sinθ cosθ ou ucos u dusin u. Ctt nottion sns borns st utilisé pour son fficcité clcultoir comm nous llons l voir, mis ll n AUCUN SENS À PROPREMENT PARLER puisqu on primitiv toujours à constnt dditiv près. J répèt t j insist, ctt nottion st bin commod mis NE DÉSIGNE AUCUN OBJET MATHÉMATIQUE. L fonction sin dmt sin + cos pour primitiv sur. En fft sin Im ( +i) Im ( +i) ( +i) Im +i Im (+i) i sin + cos. 4
Christoph Brtult Mthémtiqus n MPSI L fonction ϕ t dt st dérivbl surd dérivé 4. En fft L fonction t t st continu surdonc F t dt n st un primitiv. Or pour tout : ϕ() F F(), doncϕ st dérivbl d dérivé F F () 4. 3 INTÉGRATION PAR PARTIES Définition (Fonction d clss ) Soit f : I un fonction. On dit qu f st d clss sur I si f st dérivbl sur I t si f st continu sur I. L nsmbl ds fonctions d clss sur I à vlurs dnsst noté (I,). ATTENTION! N confondz ps «dérivbl à dérivé continu», i.. «d clss», t «dérivbl ET continu». Comm l dérivbilité impliqu l continuité, «dérivbl ET continu» st un mldrss qu vous m frz l plisir d évitr! Tout primitiv d un fonction continu st d clss puisqu s dérivé, justmnt, st continu. Théorèm (Intégrtion pr prtis) Soint u, v (I,) t, b I. u (t)v(t) dt uv b u(t)v (t) dt. Démonstrtion Comm u t v sont d clss, ls fonctions(uv), u v t uv sont continus, donc d près l théorèm fondmntl d l nlys t pr linérité d l intégrl : b b uv (uv) (t) dt b u (t)v(t)+u(t)v (t) dt u (t)v(t) dt+ u(t)v (t) dt. π t cos t dt π u (t) v(t) {}}{ {}}{ cos t t dt IPP t sin t tπ π sin t dt t π sin t dt cos t tπ t. t 3 t dt u (t) v(t) {}}{ {}}{ t t t dt IPP t t t t t dt t t t t. En prtiqu On put ussi prtiqur ds intégrtions pr prtis sur ds intégrls sns borns pour clculr ds primitivs. L formul prnd ici l form suivnt : u (t)v(t) dt u(t)v(t) u(t)v (t) dt. L fonction logrithm dmt ln pour primitiv sur +. En fft ln u () {}}{ v() {}}{ ln IPP ln ln ln. 5
Christoph Brtult Mthémtiqus n MPSI L fonction Arctn En fft Arctn dmt ln u () {}}{ + Arctn v() {}}{ Arctn IPP Arctn + + Un mpl précédnt Arctn pour primitiv sur. + ln + Arctn. 4 CHANGEMENT DE VARIABLE Théorèm (Chngmnt d vribl) Sointϕ (I,), f (J,) t, b I. On supposϕàvlurs dns J. f ϕ(t) ϕ (t) dt ϕ(b) ϕ() f(). Démonstrtion Continu, f possèd un primitiv F d clss, t commϕ st d clss, l fonction (F ϕ) f ϕ ϕ st continu. Du coup, d près l théorèm fondmntl d l nlys : f ϕ(t) ϕ (t) dt F ϕ b F ϕ(b) F ϕ() F ϕ(b) ϕ(b) f(). ϕ() ϕ() En prtiqu Pour rtrouvr vit l formul, mis sns riguur : on prt d ϕ(t), nsuit on «dériv» : dt ϕ (t), t donc ϕ (t) dt, nsuit on multipli pr f() f ϕ(t) : f() f ϕ(t) ϕ (t) dt, nfin on intègr pndnt qu t vri d à b, ϕ(t) vri dϕ() àϕ(b). t Afin d comprndr l tchniqu du chngmnt d vribl, nous llons ffctur succssivmnt trois chngmnts d vribls dns l intégrl dt. Cs chngmnts d vribls n nous idront ps à clculr ldit + t intégrl, mis nous n rrivrons ps à l clculr d tout fçon. En fft Chngmnt d vribl t ln u : On «dériv» : Ensuit : t + t dt lnu +ln u du u du +ln u. Enfin, u qund t t u qund t, donc : Chngmnt d vribl u du : On «dériv» : du Ensuit : +ln u du ln(u) ln. Enfin, qund u t qund u, donc : Chngmnt d vribl s : On «dériv» : Ensuit : ln s ds ln s ds s ln s. Enfin, s qund t s qund, donc : 6 dt du u,, du donc dt u. t + t dt du +ln u. ds s, donc du. du +ln u ln. donc s ds. ln s ds ln s.
Christoph Brtult Mthémtiqus n MPSI 3 + 3 π 6. En fft Aucun formul d primitivtion simpl n sut ici u yu t ucun intégrtion pr prtis nturll n prît simplifir l intégrl étudié. L chngmnt d vribl u prît nturl à cus du numértur. On choisir pr mpl u positif. On prt d u puis on «dériv» : du u, donc u du. u Ensuit : + u u u du u du u u + u + u + du. Enfin, u qund t u 3 3 3 qund 3, donc : + u u + du. Ctt nouvll intégrl, pr chnc, st fcil à clculr, c st un intégrl d frction rtionnll. 3 + 3 u 3 3 π du u Arctn u π 3 π u + u 3 4 6. π. En fft On v iciffctur l chngmnt d vribl sinθ. On choisir pr mplθ dns π,π intrvll sur lqul décrit tout[,]. On «dériv» : cosθ, donc cosθ. Ensuit : y Dmi-disqu sin θ cosθ cos θ cosθ cosθ cosθ θ π,π cos θ. d ir π Enfin,θ π qund tθπ qund, donc : π π cos θ π π +cos(θ) π sin(θ) θ π + π 4 θ π. En prtiqu On put ussi prtiqur ds chngmnts d vribls sur ds intégrls sns borns pour clculr ds primitivs. N OUBLIEZ PAS DANS CE CAS DE REVENIR À LA VARIABLE DE DÉPART! L fonctionθ sinθ dmtθ ln tnθ pour primitiv sur\π. En fft On v ici ffctur l chngmnt d vribl cosθ dns l intégrl sns born sinθ. Ctt intégrl dmtθ pour vribl mis j vous consill d privilégir l rltion «cosθ» à l rltion «θ Arccos», ls clculs s n trouvront fcilités. On prt d cosθ puis on «dériv» : Ensuit : sinθ sinθ sin θ sinθ, sinθ cos θ Or près décomposition n élémnts simpls : donc sinθ., d où l églité : cosθ X X X+, donc :. cosθ + sin θ ln ln ln tn θ ln tn θ ln +. cosθ donc [,] ln + Rtour àθ ln cosθ +cosθ cos θ 7
Christoph Brtult Mthémtiqus n MPSI L fonction cos(ln ) dmt 5 En fft sin(ln )+cos(ln ) pour primitiv sur +. On v ici ffctur l chngmnt d vribl t dns l intégrl sns born cosln. On «dériv» : dt t, donc t dt. Finlmnt : cos(ln ) t cos(t) dt R (+i)t dt R (+i)t (+i)t dt R +i t 5 R it ( i) t Rtour sin(t)+cos(t) sin(ln )+cos(ln ). 5 à 5 5 TABLEAU RÉCAPITULATIF DES PRIMITIVES USUELLES Fonction Primitiv Fonction Primitiv Fonction Primitiv Fonction Primitiv ln ln sin cos cos sin sh ch ch sh + Arctn Arcsin ln tn ln cos th lnch α (α ) α+ α+ 8