Chapitre VI Contraintes holonomiques



Documents pareils
Théorème de Poincaré - Formule de Green-Riemann

Synthèse de cours (Terminale S) Calcul intégral

Chapitre 2 Le problème de l unicité des solutions

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Tout ce qu il faut savoir en math

Chapitre 11 : L inductance

semestre 3 des Licences MISM annnée universitaire

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles

Licence M.A.S.S. Cours d Analyse S4

ANALYSE NUMERIQUE NON-LINEAIRE

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

Cours d Analyse IV Suites et Séries de fonctions

Séquence 8. Probabilité : lois à densité. Sommaire

LANGAGES - GRAMMAIRES - AUTOMATES

Chapitre 1 : Fonctions analytiques - introduction

6 Equations du première ordre

STI2D Logique binaire SIN. L' Algèbre de BOOLE

Les deux points les plus proches

CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2

Influence du milieu d étude sur l activité (suite) Inhibition et activation

3- Les taux d'intérêt

Module 2 : Déterminant d une matrice

Notes de révision : Automates et langages

/HVV\VWqPHVFRPELQDWRLUHV

Techniques d analyse de circuits

Le canal étroit du crédit : une analyse critique des fondements théoriques

La plateforme Next Generation Mini guide

Dérivées et intégrales non entières

et les Trois Marches d'assurance

Partie 4 : La monnaie et l'inflation

Théorie des graphes et optimisation dans les graphes

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel

Magister en : Génie Mécanique

VIBRATIONS COUPLEES AVEC LE VENT

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*)

SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP

Modification simultanée de plusieurs caractéristiques d un bien hédonique : une nouvelle méthode de calcul de la variation de bien-être des ménages

Toyota Assurances Toujours la meilleure solution

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances

Statuts ASF Association Suisse Feldenkrais

Limites finies en un point

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique

Intégrale et primitives


Conseils et astuces pour les structures de base de la Ligne D30

Compte rendu de la validation d'un observateur cascade pour la MAS sans capteurs mécaniques sur la plate-forme d'essai de l'irccyn

Thèse Présentée Pour obtenir le diplôme de doctorat en sciences En génie civil Option : structure

- Phénoméne aérospatial non identifié ( 0.V.N.I )

INF601 : Algorithme et Structure de données

Guide des bonnes pratiques

Guide d'utilisation Easy Interactive Tools Ver. 2

Régression multiple : principes et exemples d application. Dominique Laffly UMR CNRS Université de Pau et des Pays de l Adour Octobre 2006

Algorithmes sur les mots (séquences)

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Continuité et dérivabilité d une fonction

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL

INSTALLATION DE DETECTION INCENDIE

Avant d utiliser l appareil, lisez ce Guide de référence rapide pour connaître la procédure de configuration et d installation.

La pratique institutionnelle «à plusieurs»

Image d un intervalle par une fonction continue

Recherche par similarité dans les bases de données multimédia : application à la recherche par le contenu d images

Intégration et probabilités TD1 Espaces mesurés Corrigé


RadioCommunications CDMA

Chapitre 6. Fonction réelle d une variable réelle

CH.6 Propriétés des langages non contextuels

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

NEWS PRO ACTIV. [Juillet 2015] Ce mois-ci on vous parle de. L arrêté est applicable à compter du 1er Juillet 2015.

Dérivation : cours. Dérivation dans R

La fonction exponentielle

Système d Information

Intégrales généralisées

McAfee Firewall Enterprise Control Center

Carl-Louis-Ferdinand von Lindemann ( )

Wieland-Werke AG, Ulm, Allemagne Février 2012

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

CONTROLE D UN SIMULATEUR A BASE MOBILE À 3 DDL

Hydrodynamique des lits fluidisés en régime de bullage

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Transfert. Logistique. Stockage. Archivage

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

3 Approximation de solutions d équations

INTENTION LES PROCESSUS MATHÉMATIQUES

Introduction à la modélisation et à la vérication p. 1/8

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Modélisation d une section de poutre fissurée en flexion

Réalisation de sites Internet PME & Grandes entreprises Offre Premium. Etude du projet. Webdesign. Intégration HTML. Développement.

Commencer DCP-7055W / DCP-7057W /

SOCIÉTÉ LINNÉENNE DE LYO N FONDEE EN 182 2

ManSafe. pour les Utilitiés. La Protection antichute pour les Industries de l'energie. Français. TowerLatch LadderLatch

Transcription:

55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce chpitre, nous voyons utres conitions sur cet espce. On se plce ici sur l espce e fonctions C 1 n[,t 1 ] = { q : [,t 1 ] R n k,q k C 1 [,t 1 ] } Les contrintes holonomiques sont es contrintes e l forme gt,qt, t [,t 1 ] où g est une fonction lisse en n+1 vribles. Remrque VI.0.2. Lorsque n = 1, une contrinte holonomique g, y onne irectement une éqution implicite pour l fonction y. Dns le cs générique, l ensemble es fonctions y est onc réuit à un point. Donc ns toute l suite, on supposer n 2. VI.1. Multiplicteur e Lgrnge. Soit J une fonctionnelle e l forme : J[q] = Lt,q, qt Et une contrinte e l forme gt,q. On fie églement les conitions u bor q = Q 0 et qt 1 = Q 1. De fçon informelle, l éqution gt, q permet eprimer e fçon implicite une es fonction q k en fonction es n 1 utres fonctions. Cel nous permettrit e nous rmener à un problème vec vec n 1 fonctions et ucune contrinte. En prtique, on utilise encore l méthoe qui consiste à jouter une inconnue ici, ce ser une fonction et e résoure un système équtions ynt le même nombre e vribles et inconnues. Eplicitement, on le résultt suivnt : Théorème VI.1.1. Supposons que q est une etrémle e J sous l contrinte gt,q. Supposons utre prt que pour tout t [,t 1 ] on it gt,q 0. Alors il eiste une fonction λt telle que les fonctions q 1,...,q n stisfont les équtions pour tout 1 k n. L q k t L q k +λt g q k

56 Remrque VI.1.2. Si on pose Et,q, q = Lt,q, q + λtgt,q, lors les équtions s écrivent pout tout 1 k n : E E q k t q k On ppelle encore ces équtions eqution Euler-Lgrnge Proof. On ne prouve entièrement que le cs n = 2. L générlistion u cs n > 2 est fcile mis les nottions sont un peu loure. Soit y = y 1,y 2 une etrémle u problème vec g t,yt, g t,yt 0,0, t [,t 1 ] q 1 Supposons sns perte e générlité que g t,yt 0 pour tout t. Il est clir qu on peut lors éfinir une fonction λt pr VI.1 λt = 1 g t,yt L t L L fonction λt qui pprit ns le théorème est onc forcément celle éfinie ci-essus. L seule chose qui reste à vérifier est que l même fonction λt correspon églement à l euième éqution. Cel nécessite quelques résultts interméiires. Soit η 1 une fonction C 1 [,b] telle que η 1 = η 1 b. Soit T [,t 1 ]. On consière l fonction e eu vribles q 2 ω T u,v = gt,y 1 T+u η 1 T,y 2 +v Il est clir que ω T 0,0 = gt,yt. D utre prt ω T v = g T,yT 0 0,0 Donc près le théorème es fonctions implicites, il eiste une fonction v T u éfinie pour u < ε telle que ω T u,v T u, et v T 0. On sit églement que l érivée e v T en 0 est onnée pr g v T0 q = 1 T,yT g T,yT η 1T On peut onc écrire v T u = u η 2 u,t où η 2 est l unique fonction e eu vribles éfinie pr cette formule. Il est clir que l fonction η 2 u,t épen continuement e u et t. On rrive onc à l propriété suivnte : pour tout u < ε, l fonction y+h u t = y 1 t+u η 1 t,y 2 +u η 2 u,t

stisfit bien l éqution gt,y+h u. Autrement it h u est une vrition missible. Clculons mintennt pour un t fié u ω t u,v t u = u gt,y 1 t+uη 1 t,y 2 t+uη 2 u,t = g t,ytη 1 t+ g q 1 u uη 2 u,t = g t,ytη 1 t+ g η 2 0,t+ g 0 q 1 u η 2 u,t = g t,ytη 1 t+ g η 2 0,t q 1 Or on sit que ω t u,v t u pour tout u < ε. On en éuit onc l ientité suivnte VI.2 η 2 0,t = g/ q 1 g/ η 1 t 57 Posons mintennt l fonction suivnte éfinie pour tout u < ε. fu = J[y+h u ] L fonction y étnt un etrémum et h u étnt une vrition missible pour tout u, on en éuit que f met un etrémum u point u. On en éuit onc que f 0. Clculons f 0 à prtir e J. u J[y+h u ] = = = u Lt,y+h u,ẏ+ h u t L η 1 t+ L η q 1 q 1t+ L η 1 2 0,t+ L t η 20,t t L L L η 1 t+ + L η 2 0,t t q 1 t t En utilisnt les ientifictions VI.1 et VI.2 on en éuit irectement L f 0 = L +λt g η 1 tt q 1 t q 1 q 1 q 1 Le risonnement s pplique à n importe quelle fonction η 1. On utilise onc le lemme fonmentl u clcul es vritions IV.2.1 pour en éuire le résultt voulu : L L +λt g q 1 t q 1 q 1 q 2

58 Remrque VI.1.3. On peut fire une nlogie entre un problème vec une contrinte holonomique et un problème vec une infinité e contrintes isopérimétriques. Imginons le problème suivnt. On fie un T [,t 1 ] et on regre les etremles e l fonctionnelle J soumis à l contrinte gt,qt On peut lors consiérer l fonctionnelle K T [q] = gt,qt, et fire une nlogie vec un problème isopérimétrique. En effet, L contrinte evient K T [q] ce qui ressemble à une contrinte isopérimétrique. Alors il eiste un multiplicteur e Lgrnge λ T tel que q est une etrémle e l fonctionnelle J +λ T K T. Imginons mintennt que l conition oit être stisfite en n points istincts T 1,...,T n. On peut lors construire n fonctionnelles éfinies pr K i [q] = gt i,qt i. Le problème posé evient un problème isopérimétrique vec n contrintes. Alors pour toute etrémle q il eiste n multiplicteurs e Lgrnge λ 1,...,λ n tels que q est une etrémle e l fonctionnelle J +λ 1 K 1 + +λ n K n. Mintennt, si l contrinte oit être stisfite pour tout t [,t 1 ] lors on peut fire une nlogie vec un problème isopérimétrique vec une infinité e contrintes. Dns ce cs, on une infinité e multiplicteurs e Lgrnge, un pour chque réel e l intervlle [,t 1 ], ce qui revient à éterminer une fonction λt pour t [,t 1 ]. VI.2. Eemples et Applctions. VI.2.1. Géoésiques sur un cylinre. Le problème posé est e éterminer l forme es géoésiques sur un cylinre en utilisnt les contrintes holonomiques. Ici une fonction ser un chemin ns R 3 onné pr une fonction qt = t,yt,zt éfinie sur l intervlle [0,1]. On les conitions initiles q0 = Q 0 et q1 = Q 1. L longueur une courbe est onnée pr l fonctionnelle J[q] = 1 0 +y +z t L contrinte est ici que l courbe oit rester sur le cylinre ont l éqution est : gt,q = 2 +y 2 1 Cel nous onne une contrinte holonomique. 1 On emne éviemment que Q 0 et Q 1 soient es points u cylinre Il est clir que si pour tout point e l surfce gt,q le grient g ne s nnule ps. On peut onc ppliquer le théorème. Soit λt : [0,1] R. Alors tout etrémum q e J sous l contrinte holonomique g stisfit les équtions Euler-Lgrnge suivnte 1 Remrquons qu ici l contrinte ne épen ps u temps. Ce type e contrintes est prfois ppelée scléronomique.

59 0 t 0 t 0 t +y +z +2λt y +y +z +2λty z +y +z L ernière éqution nous permet ffirmer qu il eiste une constnte k R telle que z = k +y L fonction t +y correspon à l istnce prcourue pr l projection e l trjectoire sur le pln z. On en éuit que l huteur e l courbe vrie e fçon linéire pr rpport à l istnce prcourue sur le cercle corresponnt à l section u cylinre. Autrement it, les trjectoire sont es hélices. VI.2.2. Géoésiques sur les surfces. Plus générlement, les contrintes holonomiques sont bien ptées u problèmes concernnt l recherche e géoésiques sur une surfce éfinie e fçon implicite. En effet une éqution u type g,y,z éfinit une surfce Σ. Une géoésique sur l surfce Σ ser un minimum e l fonctionnelle J éfinie ns l eercice précéent, soumis à l contrinte holonomique g corresponnt àlsurfce. LesgéoésiquessurΣsontonclescourbesqt = t,yt,ztstisfisnt : t t t +λt g +y +z y +λt g +y +z y z +λt g +y +z z VI.3. Hors-Progrmme : Contrintes non-holonomiques. Les contrintes nonholonomiques sont es contrintes e l forme gt,q, q L résolution e ces problèmes ressemble beucoup à celle es problèmes vec contrintes holonomiques. Cepennt les complictions techniques sont nombreuses et nous onnons

60 simplement ici un théorème sns l émonstrtion pour montrer que les méthoes sont les mêmes. Théorème VI.3.1. Supposons que q est une etrémle e J sous l contrinte gt,q, q = 0. Supposons utre prt que pour un certin j, on g 0 pour tout t [,t 1 ]. Alors il eiste une fonction λt et une constnte λ 0 non toutes les eu nulles telle que les fonctions q 1,...,q n stisfont les équtions pour tout 1 k n : E E q k t vec l fonction E onnée pr : q k q i Et,q, q = λ 0 Lt,q, q λtgt,q, q Notons que contrirement u contrintes holonomiques, les équtions ci-essus font ppritre le terme λ t. Ainsi l résolution es problèmes vec contrintes holonomiques revient à résoure un système e n + 1 équtions ifférentielles. Une es risons pour lesquelles nous prlons es contrintes holonomiques ici, est que presque tous les problèmes vritionnels rencontrés ns les chpitres précéents peuvent s interpréter comme es problèmes vec contrintes non-holonomiques. VI.3.1. Fonctionnelles vec es érivées orre supérieur. Prenons un problème vritionnel simple vec une fonctionnelle e l forme J[y] = F,y,y,y L iée est introuire eu fonctions q 1 et q 2 qui vont corresponre à y = q 1 et y = q 2. Dns ce cs, l érivée secone y = q 2. L nouvelle fonctionnelle est L fonction L éfinissnt l fonctionnelle I[q] est onnée pr I[q] = Ft,q 1,q 2,q 2t L contrinte non-holonomique correspon à l reltion voulue entre q 1 et q 2 c est à ire : gt,q, q = q 2 q 1 On voit que les solution u problème initil sont en corresponnce vec les solutions u problème vec contrintes non-holonomiques.

VI.3.2. Problèmes isopérimétriques. On consière un problème isopérimétrique vec les eu fonctionnelles J[y] = F,y,y, K[y] = G,y,y = L et les conitions u bor y et yb. L iée est ici introuire eu fonctions q 1 et q 2 qui vont corresponre à L fonctionnelle à minimiser est q 1 = y, q 2 = Gt,y,y I[q] = et l contrinte non-holonomique onnée pr Ft,q 1,q 1t gt,q, q = q 2 Gt,y,y On voit que l contrinte isopérimétrique u problème initil se truit pr q 2 t = L = qb q C est à ire que l contrinte isopérimétrique est evenue une conition u bor u problème vec contrinte non-holonomique. VI.3.3. Eemples. Soit l fonctionnelle J onnée pr J[q] = et l contrinte holonomique onnée pr q 2 1 +q 2 2t gt,q, q = q 1 +q 1 +q 2 Soit une etrémle q u problème. Soit une fonction λt. Posons Alors les équtions Euler-Lgrnge sont E = q 2 1 +q 2 2 +λtq 1 +q 1 +q 2 2q 1 +λ λ 2q 2 +λ On en éuit irectement que λ = 2q 2 onc on 2q 1 + 2q 2 +2q 2 D utreprtlcontrintenon-holonomiqueonneq 2 = q 1 q 1 onconrriveàl éqution que l on peut résoure fcilement. q 1 2q 1 61