CALCUL INTEGRAL Ph DEPRESLE 9 juin 5 Tble des mtières Intégrle d une fonction continue et positive sur un segment Primitives d une fonction sur un intervlle. Primitives, définition................................... Clculs de primitives :................................. 3 3 Primitives et intégrle 3 4 Propriétés générles d une intégrle 4 4. Reltion de Chsles................................... 4 4. Linérité......................................... 5 4.3 Positivité........................................ 5 4.4 Vleur moyenne..................................... 6 5 QCM 7 6 EXERCICES : Les exercices de bse 8 7 EXERCICES : Les exercices de bse ( corrigés)
Chpitre : Clcul integrl Terminle S Intégrle d une fonction continue et positive sur un segment Définition. On se plce dns le repère orthogonl (O; #» i, #» j) du pln. Soit f une une fonction continue et positive sur [,b] ( b). On ppelle intégrle de f sur [,b] et on note f(x)dx l ire, exprimée en unités d ire, de l surfce délimitée pr l courbe représenttive de f, l xe des bscisses et les deux droites d équtions x = et x = b. C f f(x)dx b Remrques : f(x)dx = Exemple : 3 xdx = 3+ = 4 Rppel : l ire d un trpèze de bses y = x b et B et de huteur h est A = b+b h. 3 dx = Primitives d une fonction sur un intervlle. Primitives, définition Définition. On ppelle primitive de l fonction f sur l intervlle I toute fonction F dérivble sur I de dérivée f. Propriétés. Soit F une primitive de l fonction f sur I.. Pour tout réel k, G = F +k est ussi une primitive de f sur I.. Si G est une primitive de f sur I, lors il existe un réel k tel que : G = F +k. Propriétés.. Si F est une primitive de f sur I, lors pour tout réel k, kf est une primitive de kf sur le même intervlle.. Si F et H sont des primitives, respectivement des fonctions f et h sur I, lors F + H est une primitive de f +h sur I. Ph Depresle : Notes de cours Pge sur 4
Chpitre : Clcul integrl Terminle S. Clculs de primitives : On se sert de l connissnce des formules des dérivées pour obtenir celles des primitives. Soit u une fonction dérivble sur l intervlle I. Propriétés 3.. Si f peut s écrire sous l forme u u n vec n entier non nul : Si n, lors les primitives F de f sur I s écrivent sous l forme : F = n+ un+ +C si n <, il fut s ssurer que u ne s nnule ps sur I. Si n = et si u > sur I, c est-à-dire si f est de l forme u vec u >, lors les u primitives de f sur I s écrivent sous l forme F = lnu+c.. Si f peut s écrire sous l forme u e u, lors les primitives de f sur I s écrivent sous l forme F = e u +C. Exemple : Déterminer les primitives de f(x) = x x + surr. Si on pose u(x) = x +, on u(x) > et u (x) = x. f est de l forme u u F(x) = ln(x +)+C x R., donc F est de l forme lnu, soit : 3 Primitives et intégrle Théorème. Soit f une fonction continue sur l intervlle I contennt, lors l fonction F : x f(t)dt est dérivble sur I et s dérivée est f : x I, F (x) = f(x). Démonstrtion On fer l démonstrtion pour une fonction f strictement croissnte et positive sur [;b]. Soit α un réel de [;b] et h tel que α+h [;b]. On :F(α) = α f(t)dt et F(α+h) = L ire de l surfce coloriée est : α+h α α α+h α+h f(t)dt = F(α+h) F(α) si h > et f(t)dt = F(α) F(α+h) si h <. f(t)dt. Ph Depresle : Notes de cours Pge 3 sur 4
Chpitre : Clcul integrl Terminle S f(α+h) C f(α) C f(α) f(α+h) h > α α+h b h < α+h Si h > On h f(α) F(α+h) F(α) h f(α+h), puisque f est croissnte sur I. f(α) F(α+h) F(α) f(α+h). Or, f est continue sur I donc lim f(α+h) = f(α). h h D près le théorème d encdrement, il en résulte que lim h h> F(α+h) F(α) = f(α). h α b Si h < On ( h) f(α+h) F(α) F(α+h) ( h) f(α), puisque f est croissnte sur I. f(α+h) F(α+h) F(α) h f(α). Or, f est continue sur I donc lim f(α+h) = f(α). h F(α+h) F(α) = f(α). h D près le théorème d encdrement, il en résulte que lim h h< Donc F est dérivble en α et F (α) = f(α) pour tout α de I. Corollire : Si f est continue sur I, lors f dmet des primitives sur I. F : x f(t)dt est l unique primitive de f sur I qui s nnule en. Propriétés 4. Si G est une primitive quelconque de f sur l intervlle I, et b étnt des réels quelconques de I, lors Remrque : lnx = f(t)dt = G(b) G(), ce qui s écrit ussi [G(t)] b dt sur ];+ [. t 4 Propriétés générles d une intégrle 4. Reltion de Chsles Théorème. Soit f une fonction continue sur un intervlle I contennt,b,c lors : c f(t)dt = f(t)dt+ c b f(t)dt Exemple : 3 t dt = ( t)dt+ 3 (t )dt = 5. Ph Depresle : Notes de cours Pge 4 sur 4
Chpitre : Clcul integrl Terminle S 4. Linérité Théorème 3. Soit f et g deux fonctions continues sur un intervlle I contennt et b, et λ et µ deux réels, lors : [λf(t)+µg(t)]dt = λ Remrques :.. f(t)dt = (f(t).g(t))dt Contre exemple : 4.3 Positivité f(t)dt (t. t )dt = [t] = [ t tdt t dt = f(t)dt+µ f(t)dt ] g(t)dt g(t)dt en générl [lnt] = 3 ln. Théorème 4. Soit f une fonction continue sur [,b] vec b telle que t [,b],f(t), lors Remrques : f(t)dt.. L réciproque est fusse! En effet [ ] n est ps positive sur ; 3π 4. Si f est négtive et b lors. 3π 4 costdt = [sint] 3π 4 = f(t)dt. > mis l fonction cosinus Théorème 5. Soient f et g deux fonctions continues sur [,b] vec b telles que t [,b],f(t) g(t) lors f(t)dt Exemple : I = g(t)dt. +t dt. On +t +t soit dt +t +tdt donc ln I. dt Ph Depresle : Notes de cours Pge 5 sur 4
Chpitre : Clcul integrl Terminle S 4.4 Vleur moyenne Définition 3. Pour toute fonction continue sur [,b] vec b, l vleur moyenne de f sur [,b] est le réel m tel que : m = f(x)dx b Si f(x) >, on s intéresse u rectngle de lrgeur b dont l ire est égle à l ire de l surfce sous l courbe : c est l longueur m de ce rectngle que l on ppelle "vleur moyenne de f sur [;b]". Si f est une fonction constnte sur [;b], s vleur moyenne sur[;b] est égle à cette constnte. m C b Ph Depresle : Notes de cours Pge 6 sur 4
Chpitre : Clcul integrl Terminle S 5 QCM. L intégrle x dx est égle à :. 3 4 b. 4 3 c. 6 3 d.. L intégrle x dx est égle à : 3. 3 b. c. 4 3. Une primitive de x sin(x) est : d.. x cos(x) b. x cos(x)+3 c. x cos(x) 4. Une primitive de x xe x est :. f(x) = x ex b. g(x) = (x )e x c. h(x) = e x Solutions. x dx = [ x 3 3 ] = 3 3 ( )3 = 8 3 3 = 6 3. L bonne réponse est c. x. 3 dx = [ ] x = ( 3 6 ) ( ) = L bonne réponse est d. 3. Une primitive de cette fonction est de l forme x cos(x) + k où k est un réel quelconque. L bonne réponse est b. 4. g (x) = e x +(x )e x = xe x. L bonne réponse est b. Ph Depresle : Notes de cours Pge 7 sur 4
Chpitre : Clcul integrl Terminle S 6 EXERCICES : Les exercices de bse Exercice Trouver les primitives de l fonction f définie sur R pr f(x) = ex e x +. Exercice f est l fonction définie sur R pr f(x) = (x+)e x. Montrer que f dmet une primitive de l forme F(x) = (x+b)e x. Exercice 3 Soit f une fonction dérivble sur R dont le tbleu de vritions est donné ci-dessous où et b désignent deux réels. x + f(x). Déterminer le signe de f (x) selon les vleurs de x.. Dns le pln muni d un repère orthonormé (O; #» ı, #» j), on trcé deux courbes C et C. b Elles coupent l xe des ordonnées ux points A et B d ordonnées et respectivement. L une de ces courbes est l courbe représenttive de l fonction dérivée f de f et l utre l courbe représenttive d une primitive F de l fonction f sur R. C j O B i C A () Indiquer lquelle de ces deux courbes est l courbe représenttive de l fonction f. Justifier l réponse. (b) À l ide des courbes C et C, prouver que < < et b >. 3. Dns cette question, on dmet que l fonction f est pour tout réel x, () Déterminer le réel k. f(x) = ke x +x+ (b) En utilisnt les coordonnées des points A et B, déterminer les fonctions f et F insi que les réels et b. Ph Depresle : Notes de cours Pge 8 sur 4
Chpitre : Clcul integrl Terminle S (c) Soit C l courbe représenttive de f. Déterminer en unités d ire, l ire de l prtie du pln limité pr l courbe C, l xe des bscisses, l xe des ordonnées et l droite d éqution x =. Exercice 4 On considère l fonction f définie sur R pr f(x) = (x+)e x. On note C l courbe représenttive de l fonction f dns un repère orthogonl.. Étude de l fonction f. () Étudier les limites de l fonction f en et en +. En déduire les éventuelles symptotes de l courbe C. (b) Étudier les vritions de f sur R.. Clcul d une vleur pprochée de l ire sous une courbe. On note Dle domine compris entre l xe des bscisses, l courbe C et les droites d éqution x = et x =. On pproche l ire du domine D en clculnt une somme d ires de rectngles. () Dns cette question, on découpe l intervlle [ ; ] en qutre intervlles de même longueur : [ ] Sur l intervlle ;, on construit un rectngle de huteur f() [ 4 ] ( ) Sur l intervlle 4 ;, on construit un rectngle de huteur f [ ] ( 4) Sur l intervlle ; 3, on construit un rectngle de huteur f [ 4] ( ) 3 3 Sur l intervlle 4 ;, on construit un rectngle de huteur f 4 Cette construction est illustrée ci-dessous. C O L lgorithme ci-dessous permet d obtenir une vleur pprochée de l ire du domine D en joutnt les ires des qutre rectngles précédents : Vribles : k est un nombre entier S est un nombre réel Initilistion : Affecter à S l vleur Tritement : Pour k vrint de à 3 Affecter à S l vleur S + ( ) k 4 f 4 Fin Pour Sortie : Afficher S Ph Depresle : Notes de cours Pge 9 sur 4
Chpitre : Clcul integrl Terminle S Donner une vleur pprochée à 3 près du résultt ffiché pr cet lgorithme. (b) Dns cette question, N est un nombre entier strictement supérieur à. On découpe l intervlle [ ; ] en N intervlles de même longueur. Sur chcun de ces intervlles, on construit un rectngle en procédnt de l même mnière qu à l question.. Modifier l lgorithme précédent fin qu il ffiche en sortie l somme des ires des N rectngles insi construits. 3. Soit g l fonction définie sur R pr g(x) = ( x 3)e x. () Vérifier que g est une primitive de l fonction f sur R. (b) Clculer l ire A du domine D, exprimée en unités d ire. (c) Donner une vleur pprochée à 3 près de l erreur commise en remplçnt A pr l vleur pprochée trouvée u moyen de l lgorithme de l question., c est-à-dire l écrt entre ces deux vleurs. Exercice 5 On considère l fonction f définie sur [ ; + [ pr f(x) = 5e x 3e x +x 3. On note C f l représenttion grphique de l fonction f et D l droite d éqution y = x 3 dns un repère orthogonl du pln. Prtie A : Positions reltives de C f et D Soit g l fonction définie sur l intervlle [ ; + [ pr g(x) = f(x) (x 3).. Justifier que, pour tout réel x de l intervlle [ ; + [, g(x) >.. L courbe C f et l droite D ont-elles un point commun? Justifier. Prtie B : Étude de l fonction g On note M le point d bscisse x de l courbe C f, N le point d bscisse x de l droite D et on s intéresse à l évolution de l distnce MN.. Justifier que, pour tout x de l intervlle [ ; + [, l distnce MN est égle à g(x).. On note g l fonction dérivée de l fonction g sur l intervlle [ ; + [. Pour tout x de l intervlle [ ; + [, clculer g (x). 3. Montrer que l fonction g possède un mximum sur l intervlle [ ; + [ que l on déterminer. En donner une interpréttion grphique. Prtie C : Étude d une ire On considère l fonction A définie sur l intervlle [ ; + [ pr A(x) = [f(t) (t 3)] dt.. Justifier que l fonction A est croissnte sur l intervlle [ ; + [.. Pour tout réel x strictement positif, clculer A(x). 3. Existe-t-il une vleur de x telle que A(x) =? Ph Depresle : Notes de cours Pge sur 4
Chpitre : Clcul integrl Terminle S 7 EXERCICES : Les exercices de bse ( corrigés) Exercice : L fonction définie pr u(x) = e x + est une fonction dérivble sur R, strictement positive et f(x) = u (x) u(x). On reconnît l dérivée de l fonction lnu. L ensemble des primitives de f sur R est l ensemble des fonctions qui s écrivent : ln(e x +)+c où c est une constnte réelle. Exercice : F (x) = e x (x+b)e x = ( x+ b)e x. On veut voir F { (x) = (x+)e x {. Il suffit de prendre : = = Ce qui équivut à b = b = 3 Une primitive de f est F définie pr F(x) = ( x 3)e x. Exercice 3. Sur ] ;[ f est croissnte, donc f est positive. Sur ];+ [ f est décroissnte, donc f est négtive. f présente un mximum en, donc f () =.. () L fonction représentée pr C s nnule u moins deux fois. C ne peut ps représenter f, qui ne s nnule qu en. C est C qui représente f. (b) Comme f () =, est l bscisse du point de C qui une ordonnée nulle. On en déduit que < <. F est représentée pr C, elle n est ps monotone. S dérivée f n ps un signe constnt. On en déduit que b >. 3. () Pour tout réel x, f (x) = k ex +, donc f () = k +. Or C psse pr le point B, donc f () =. Donc k =. (b) Pour tout réel x, f(x) = e x +x+. F est une primitive de f, il existe donc c R, F(x) = e x + x +x+c. F() = +c et comme C psse pr le point A, F() = et c =. Pour tout réel x, F(x) = e x + x +x. f (x) = ex + = e x = x = ln Donc = ln. b = f() = e ln +ln+ = ln. Ph Depresle : Notes de cours Pge sur 4
Chpitre : Clcul integrl Terminle S (c) f() =, donc f est positive sur [; ]. L ire de l prtie du pln limité pr l courbe C, l xe des bscisses, l xe des ordonnées et l droite d éqution x = est donc : A = f(t)dt = F() F() = e ln + (ln) +ln+ A = +(ln) +ln. Exercice 4. () lim (x+) = et lim x x e x = +. Donc lim f(x) =. x On utilise le théorème de croissnce comprée : lim x + xe x = et lim x + e x =. Donc lim f(x) =. x + L droite d éqution y = est symptote horizontle à C en +. (b) Pour tout réel x, f (x) = e x (x+)e x = (x+)e x. x + f (x) + e f. () Cet lgorithme clcule S = ( ( ) ( ) ( )) 3 f()+f +f +f. 4 4 4 4 L clcultrice donne S, 64. (b) On doit remplcer 4 pr N et 3 pr N. Vribles : k est un nombre entier S est un nombre réel Initilistion : Affecter à S l vleur Tritement : Pour k vrint de à N- Affecter à S l vleur S + ( k N f N Fin Pour Sortie : Afficher S 3. () Pour tout réel x, g (x) = e x ( x 3)e x = (x+)e x = f(x). g est bien une primitive de l fonction f. (b) f est une fonction continue et positive sur [;], donc l ire A du domine D, exprimée en unités d ire est égle à : A = f(t)dt = g() g() = 4e +3,58. (c) L erreur commise est à peu près égle à,4. ) Exercice 5 Prtie A : Positions reltives de C f et D g(x) = f(x) (x 3). Ph Depresle : Notes de cours Pge sur 4
Chpitre : Clcul integrl Terminle S. x [ ; + [, g(x) = 5e x 3e x = e x (5e x 3). Comme e x >, g(x) est du signe de 5e x 3. ) 5e x 3 > e x > 3 ( 3 5 x > ln. 5 Or > 3 ( ) 3 5, donc > ln et 5e x 3 >. 5 On démontré que : x [ ; + [, g(x) >.. Si x est l bscisse d un point commun à l courbe C f et l droite D, son ordonnée devrit être égle à l fois à f(x) et à x 3, donc x devrit vérifier g(x) =. Ceci est impossible cr on vient de démontrer que g(x) >. L courbe C f et l droite D n ont donc ps de point commun. Prtie B : Étude de l fonction g. Comme M et N ont l même bscisse, pour tout x de l intervlle [ ; + [, MN = f(x) (x 3) = g(x) = g(x) cr g(x) > d près l prtie A.. x ];+ [, g (x) = 5e x + 3e x = 6e x 5e x = e x (6 5e x ). 3. Comme e x est toujours positif, g (x) ser du signe de 6e x x ln( 5. 6 5 ) + ex 6 5e x 6 ( ) 5 6 Soit ln x. cr l fonction ln est strictement 5 croissnte. présente un mximum en ln Prtie C : Étude d une ire. x [;+ [, A(x) = g 5 ( ) 6, l distnce de M à N est mximle pour x = ln 5 ( ) 6 5 g(t) dt. g étnt continue, l fonction A est dérivble sur [;+ [ et A (x) = g(x). Comme g(x) > sur [;+ [, l fonction A est croissnte sur l intervlle [ ; + [.. Pour tout réel x strictement positif, A(x) = g(t) dt = 5 e t dt 3 e t dt pr linérité de l intégrle = 5 [ [ e t] x 3 ] x e t ( = 5( e x +) 3 e x + ) g = 5 5e x + 3 e x 3 A(x) = 3 e x 5e x + 7 3. A(x) = 3 e x 5e x + 7 = 3 e x 5e x + 3 = En posnt X = e x, l éqution devient 3 X 5X + 3 =. Cette éqution du second degré dmet deux solutions : 3,3. Ph Depresle : Notes de cours Pge 3 sur 4
Chpitre : Clcul integrl Terminle S Donc e x = 3 ou e x = 3 ce qui équivut à e x = 3 ou e x = 3 Donc x = ln3 ou x = ln3. Comme x ] ; + [ l seule solution est x = ln3. ln3 est l unique solution de l éqution A(x) =. Ph Depresle : Notes de cours Pge 4 sur 4