;2 est-il situé sur la courbe Cf? Justifier par un calcul. Exercice 1 (8 points) Les étapes intermédiaires des calculs sont exigées.

Dimension: px
Commencer à balayer dès la page:

Download ";2 est-il situé sur la courbe Cf? Justifier par un calcul. Exercice 1 (8 points) Les étapes intermédiaires des calculs sont exigées."

Transcription

1 3 èmes 1 à 9 Lundi 18 novembre 2013 DS de mathématiques n 2 1h50 calculatrice autorisée Consignes : - Coller l énoncé, plié en 4, sur la 1 ère page de la copie. - Souligner les résultats à la règle ; séparer les exercices d un grand trait. - Soigner l orthographe, la rédaction, les notations. Exercice 1 (8 points) Les étapes intermédiaires des calculs sont exigées. A B C (),(). 1) Ecrire A sous la forme 3 où n est un entier relatif. 2) Donner l écriture décimale de B et l écriture scientifique de C. 3) Résoudre l équation + x. Exercice 2 (5 points) Coller le graphique sur la copie et y faire apparaître les traits nécessaires aux lectures graphiques. En annexe, dans un repère orthogonal, on a tracé la représentation graphique Cf de la fonction f dont l expression algébrique est f (x) x 2 2x 3. 1) a. Déterminer graphiquement l image de ( 2) par la fonction f. b. Retrouver l image de ( 2) par le calcul. 2) Déterminer graphiquement le (ou les) antécédent(s) de ( 3) par f. 3) Le point M 3 2 ;2 est-il situé sur la courbe Cf? Justifier par un calcul. Exercice 3 (6 points) Les questions 1, 2 et 3 sont indépendantes. 1) La vitesse de la lumière est km/s. La lumière met environ 8 min 30 s pour nous parvenir du Soleil. Calculer la distance nous séparant du Soleil : donner le résultat en écriture scientifique. 2) a. La vitesse du son est 340 m/s. Convertir la vitesse du son en km/h. b. Un violent orage provoque simultanément un éclair et un coup de tonnerre à 5 km d un promeneur. Après combien de secondes le promeneur entend-il le tonnerre? Arrondir le résultat à 1 s. 3) Une ampoule d une puissance de 60 W reste allumée pendant 3 h 15. Calculer, en kwh, l énergie électrique consommée par cette ampoule.

2 Exercice 4 (6 points) Première partie : Le maçon qui travaille dans la maison de M. Dubéton utilise de très nombreuses briques. Chacune des briques utilisées a la forme d un parallélépipède rectangle dont les dimensions sont les suivantes : Longueur L 25 cm ; largeur l 12 cm ; hauteur h 5 cm. 1) Calculer le volume d une brique en cm 3. 2) Sachant que chaque brique a une masse de 1,2 kg, calculer la masse volumique d une brique en g/cm 3. Deuxième partie : Sur le chantier de sa future maison, M. Dubéton croise un maçon qui semble avoir des difficultés à porter une tige d acier pleine, de forme cylindrique. Cette tige mesure 1,5 m de long et a un rayon de base de 4 cm. 1) Calculer le volume exact de cette tige en cm 3 puis son arrondi à l unité. 2) L acier a une masse volumique de 7,85 g/cm 3. Calculer la masse de cette tige : donner la valeur exacte puis la valeur arrondie au kg. Exercice 5 (12 points) B appartient au segment [DE] et A [CE]. On donne : DE 9 cm ; BE 5,4 cm ; CE 12 cm ; AE 7,2 cm et CD 15 cm. 1) Démontrer que (AB) // (CD). 2) Calculer la longueur du segment [AB]. 3) Démontrer que (CE) et (DE) sont perpendiculaires. 4) a. Calculer la mesure, arrondie au degré près, de l angle ECD %. b. En déduire, sans faire de calculs, la mesure de EAB ( au degré près. Justifier. Exercice 6 (3 points) Une société étudie un modèle de table pliante (photo en annexe). Avec les dimensions imaginées pour les pieds, la table sera-t-elle horizontale lorsqu elle sera posée sur un sol plat et horizontal? Expliquer clairement la démarche : les noms des points créés apparaîtront sur le schéma qui sera alors collé dans la copie. Toute trace de recherche, même incomplète, ou d initiative, même infructueuse, sera prise en compte dans l évaluation.

3 ANNEXES Exercice 2 Représentation graphique de la fonction f. A coller sur la copie, y faire apparaître les traits nécessaires. Exercice 6 projet de table pliante :

4 Exercice 1 (8 points) 1) A A (²) A (²) A * A 3 () A +, C (),() Correction du DS de Mathématiques n 2 C () ()10 C 10 C 3, ) B B * - B B 0,7510 B 750 3) + x La solution de l équation est 2 : Exercice 2 (5 points) 1) a. L image de ( 2) par la fonction f est 5. b. ;( 2) ( 2) 2 ( 2) 3 ;( 2) ;( 2) 5 L image de ( 2) est bien 5 2) Les antécédents de ( 3) par f sont 0 et 2. 3) ;( ) 3 2 ;( 3 2 ) ;( 3 2 ) Donc le point M n appartient pas à Cf. Exercice 3 (6 points) 1) On sait que v km/s et t 8 min 30 s s Or d où A > B Donc d d km 1, km La distance entre le soleil et la terre est de 1, km 2) a. > 340 C D 340C 0,34 EC 1D h v 0, km/h km/h b. On sait que v 340 m/s et d 5 km m Or > A B d où B A > Donc t 15 s Le promeneur perçoit l éclair au bout de 15 s environ. 3) E p t avec t 3 h 15 min 3,25 h et p 60 W 0,06 kw E 0,06 3,25 0,195 kwh. L énergie consommée par l ampoule est de 0,195 kwh.

5 Exercice 4 (6 points) Première partie : 1) Les briques sont des pavés droits Or vpavé L l h Donc vbrique cm 3 2) Le volume d une brique est m 3 et la masse d une brique est 1,2 kg Or CJDDK >LMNCOPNK QRSST, YZ Z UVWXQT [Q [Q g/cm3 CJDDK >LMNCOPNK g/cm3 0,8 g/cm 3 La masse volumique d une brique est de 0,8 g/cm 3 Deuxième partie : 1) On a un cylindre de rayon 4 cm et de hauteur 1,5 m soit 150 cm Or > [\W]?^T _`²h Donc _4² _ 2400_ ac b cdef 4,33g hi + j:,3 hi + 2) La tige a un volume de 2400 _ cm 3 et la masse volumique de l acier est 7,85 g/cm 3 Or CJDDK >LMNCOPNK QRSST d où CJDDK CJDDK >LMNCOPNK >LMNCK UVWXQT Donc m 7, _ _ g 18,840 _ kg 59 kg au kg près La masse de cette tige est de 18,84π soit environ 59 kg. Exercice 5 (12 points) 1) (AC) et (BD) sont sécantes en E kl, km 0,6 et kn,, ko 0,6 donc kl kn km ko De plus E, B, D d une part et E, A, C d autre part sont alignés dans le même ordre D après la réciproque du théorème de Thalès, On conclut que (AB) et (CD) sont parallèles. 2) (AC) et (BD) sont sécantes en E et (AB) et (CD) sont parallèles D après le théorème de Thalès, on a kl kn nl km ko om En particulier kl nl km om d où AB klom, 0, cm km Donc [AB] mesure 9 cm. 3) Dans le triangle CDE, CD² 15² 225 et CE² + DE² 12² + 9² Donc CD² CE² + DE² D après le théorème de Pythagore, On conclut que CDE est un triangle rectangle en E D où (CE) et (DE) sont perpendiculaires. 4) a. Dans le triangle CDE rectangle en E cos ECD % EC DC Donc rst (+j au degré près b. Les angles EAB ( et ECD % sont des angles correspondants formés par les droites parallèles (AB) et (CD) et par la sécante (AC) Or, si deux angles correspondants sont formés par deux droites parallèles alors ils sont de même mesure. Donc rvw ( rst (+j au degré près. Exercice 6 (3 points) On modélise la table par le schéma cicontre. On a alors AB 45 cm ; AC 36 cm ; AD 39 cm et AE 32 cm. (BC) et (ED) sont sécantes en A nl no Donc nl nm no nk et nm nk D où les droites (BD) et (EC) ne sont pas parallèles. La table ne sera donc pas horizontale avec des pieds de ces dimensions.

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Brevet des collèges Amérique du Nord 7 juin 2011

Brevet des collèges Amérique du Nord 7 juin 2011 Durée : 2 heures Brevet des collèges Amérique du Nord 7 juin 2011 Correction ACTIVITÉS NUMÉRIQUES Exercice 1 12 points Le professeur choisit trois nombres entiers relatifs consécutifs rangés dans l ordre

Plus en détail

Brevet Blanc nº2 avril 2015

Brevet Blanc nº2 avril 2015 durée : 2 heures Brevet Blanc nº2 avril 2015 L utilisation d une calculatrice est autorisée. Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si une indication

Plus en détail

ACTIVITES NUMERIQUES ( 18 points )

ACTIVITES NUMERIQUES ( 18 points ) Copie numéro :.. 4 points sont attribués pour l orthographe, le soin, les notations et la rédaction. L utilisation de la calculatrice est autorisée. NE PAS OUBLIER DE RENDRE L ANNEXE AVEC LA COPIE! ACTIVITES

Plus en détail

BREVET BLANC 2 - MATHEMATIQUES

BREVET BLANC 2 - MATHEMATIQUES BREVET BLANC 2 - MATHEMATIQUES I- PRESENTATION DE L'EPREUVE DE MATHEMATIQUES AU BREVET 1. Durée de l'épreuve : 2 heures 2. Nature de l'épreuve : écrite 3. Objectifs de l'épreuve : Les acquis à évaluer

Plus en détail

I-ACTIVITÉS NUMÉRIQUES (12 points)

I-ACTIVITÉS NUMÉRIQUES (12 points) BREVET BLANC 1_DECEMBRE 2011 I-ACTIVITÉS NUMÉRIQUES (12 points) Exercice 1 : (4 pts) Soit les expressions 1) Calculer A et B en détaillant les étapes du calcul et écrire le résultat sous la forme d'une

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible.

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible. L orthographe, le soin, la qualité et la précision de la rédaction seront pris en compte à hauteur de 4 points sur 40 dans l évaluation de la copie. L utilisation de la calculatrice est autorisée. Les

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION JUIN 2008 ÉPREUVE DE MATHÉMATIQUES SÉRIE COLLÈGE Durée de l épreuve: 2h00 Métropole - La Réunion- Mayotte L emploi des calculatrices est autorisé Barème: - Activités

Plus en détail

Mathématiques (10 points)

Mathématiques (10 points) Mathématiques (10 points) Exercice 1 (3 points) Philippe achète 3 planches pour fabriquer une étagère. Le prix de chaque planche est de 5,40. 1. Calculer le prix total des 3 planches. 2. Il obtient une

Plus en détail

Devoir-maison, à rendre le lundi 4 novembre 2013

Devoir-maison, à rendre le lundi 4 novembre 2013 Devoir-maison, à rendre le lundi 4 novembre 2013 Ce devoir-maison donnera lieu à une note sur 20 qui sera intégrée dans la moyenne du premier trimestre. Soin et orthographe : 1 point. Exercice 1. Brevet

Plus en détail

TRIGONOMETRIE ET CALCUL NUMERIQUE

TRIGONOMETRIE ET CALCUL NUMERIQUE TRIGONOMETRIE ET CALCUL NUMERIQUE Questions 2010-2013 Exercice 1 2 2 sin(4 x)cos( x) 2sin( x)cos (2 x) 1 2sin ( x) (valeurs numériques) x 45 k 90 ;10 k 120 ;50 k 120 k Exercice 2 tg x 3tg x 4 4 (valeurs

Plus en détail

BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES

BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES Durée de l épreuve : 2 heures. Ce sujet comporte 6 pages numérotées de 1 à 6. Dès qu il vous est remis, assurez-vous qu il est complet. L usage de la calculatrice

Plus en détail

Calcul de longueurs :

Calcul de longueurs : Calcul de longueurs : Exercice : (Japon 96) C est un triangle rectangle en A. On donne 5 cm et A B ˆC 5. 1) Construire la figure en vraie grandeur. 2) Déterminer la longueur, arrondie au dixième de centimètre.

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc février 2011 Exercice n 1 (2 points) 8 + 1 A = 5 6 1 = 8 Partie I : Activités numériques (12 points) Calculer A en détaillant les étapes. Donner le résultat sous forme d une

Plus en détail

Correction du Brevet Blanc Shanghai mars 2013

Correction du Brevet Blanc Shanghai mars 2013 Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer

Plus en détail

BREVET BLANC *** MATHEMATIQUES *** Année 2015

BREVET BLANC *** MATHEMATIQUES *** Année 2015 BREVET BLANC *** MATHEMATIQUES *** Année 2015 L orthographe, le soin, la qualité, la clarté et la précision des raisonnements seront pris en compte à hauteur de 4 points sur 40 dans l appréciation de la

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

Brevet des Collèges Centre étranger juin 2014 Correction

Brevet des Collèges Centre étranger juin 2014 Correction Brevet des Collèges Centre étranger juin 2014 Correction EXERCICE 1 6 points Voici une feuille de calcul obtenue à l aide d un tableur. Dans cet exercice, on cherche à comprendre comment cette feuille

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2010 ÉPREUVE DE MATHÉMATIQUES classe de 3 e Durée : 2 heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014 COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2014 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

BREVET BLANC CORRIGE

BREVET BLANC CORRIGE ACTIVITES NUMERIQUES (12 POINTS) Exercice 1 (2 points) On a relevé le nombre de médailles gagnées par les sportifs calédoniens lors des Jeux du Pacifique. Voici les résultats regroupés à l aide d un tableur

Plus en détail

4B Devoir Surveillé n 2 Les calculatrices sont autorisées.

4B Devoir Surveillé n 2 Les calculatrices sont autorisées. 4B Devoir Surveillé n 2 Les calculatrices sont autorisées. Exercice n 1 :(7,5 points) Tracer un triangle ABC rectangle en B tel que AB = 6 cm et BC = 8 cm. Placer I le milieu de [AB] et placer J le milieu

Plus en détail

Brevet Blanc n 1. Mathématiques

Brevet Blanc n 1. Mathématiques Brevet Blanc n 1 Novembre 2010 Mathématiques Durée de l'épreuve : 2h00 Le candidat répondra sur une copie L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Activités

Plus en détail

Diplôme National du Brevet. Brevet Blanc JUIN 2015. Mathématiques RENDRE LA FEUILLE ANNEXE AVEC LA COPIE EXAMEN : DNB

Diplôme National du Brevet. Brevet Blanc JUIN 2015. Mathématiques RENDRE LA FEUILLE ANNEXE AVEC LA COPIE EXAMEN : DNB Diplôme National du Brevet Brevet Blanc JUIN 2015 Mathématiques La clarté, la précision, le soin dans la rédaction et la présentation rentrent pour une large part dans l appréciation de la copie : pourront

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

ACTIVITES NUMERIQUES 12 points

ACTIVITES NUMERIQUES 12 points BREVET BLANC Mai 2012 Mathématiques Le corrigé La rédaction et la présentation sont prises en compte pour 4 points. Les calculatrices sont autorisées. Durée de l'épreuve : 2 heures. EXERCICE 1 On donne

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Brevet des collèges Polynésie septembre 2014

Brevet des collèges Polynésie septembre 2014 Brevet des collèges Polynésie septembre 2014 Durée : 2 heures Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

MathADoc Diplôme National du Brevet : Groupe Nord 2003

MathADoc Diplôme National du Brevet : Groupe Nord 2003 MathADoc Diplôme National du Brevet : Groupe Nord 2003 Activités numériques : 12 points (Amiens, Lille, Paris, Créteil, Versailles, Rouen) 1. Soit A = 8 3 5 3 20 21 Calculer A en détaillant les étapes

Plus en détail

MATHEMATIQUES 1 partie. Activités numériques

MATHEMATIQUES 1 partie. Activités numériques NOM : Classe : Prénom : MATHEMATIQUES partie Les réponses seront justifiées. Le détail des calculs figurera sur la copie. Activités numériques Quel est le PGCD des nombres 185 et 444? 2 Un chef d orchestre

Plus en détail

Secteur 3 : Métiers de l'électricité - Électronique - Audiovisuel - Industries graphiques

Secteur 3 : Métiers de l'électricité - Électronique - Audiovisuel - Industries graphiques Examen : CAP Épreuve : Mathématiques-Sciences durée : 2 heures Secteur 3 : Métiers de l'électricité - Électronique - Audiovisuel - Industries graphiques Sont concernées les spécialités suivantes : Accessoiriste

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

Académies et années. Type de fonction Type de problème Résolution conjointe

Académies et années. Type de fonction Type de problème Résolution conjointe Académies et années Type de fonction Type de problème Résolution conjointe Affine Linéaire Autre Tarifs Géom. Plane Espace équation Inéquat. Système Grenoble 00 x x Nancy 00 x x Orléans 00 x x Caen 00

Plus en détail

4 ème _DEVOIR COMMUN 2 de MATHÉMATIQUES_Avril 2014

4 ème _DEVOIR COMMUN 2 de MATHÉMATIQUES_Avril 2014 4 ème _DEVOIR COMMUN 2 de MATHÉMATIQUES_Avril 2014 CORRECTIONS CALCULATRICE AUTORISÉE mais indiquer toutes les étapes des calculs!!! Les questions sont à traiter sur une grande copie double, la figure

Plus en détail

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D Trigonométrie I) Déterminer une longueur... C 4 cm D I 3) Déterminer GI au millième près A 5 cm 25 E 30 2) Déterminer DF au millimètre près F 8 1) Déterminer C au centième près P 4) Déterminer QR au centimètre

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES

EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES GYMNASE DU BUGNON - LAUSANNE Mai 2008 EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES Date : mai 2008 Durée : 3h Matériel mis à disposition par le gymnase : - Matériel apporté par les

Plus en détail

Diplôme national du brevet. Devoir commun Janvier 2014 MATHEMATIQUES CORRECTION

Diplôme national du brevet. Devoir commun Janvier 2014 MATHEMATIQUES CORRECTION Diplôme national du brevet Devoir commun Janvier 204 MATHEMATIQUES CORRECTION L'usage de la calculatrice est autorisé. L'énoncé du sujet sera rendu avec la copie Durée de l'épreuve : 2 heures. Notation

Plus en détail

Brevet blanc ÉPREUVE DE MATHÉMATIQUES février 2015 page 1/9

Brevet blanc ÉPREUVE DE MATHÉMATIQUES février 2015 page 1/9 Brevet blanc ÉPREUVE DE MATHÉMATIQUES février 2015 page 1/9 C o r r e c t i o n Soigner la rédaction des explications et des réponses : la qualité de cette rédaction et la maîtrise de la langue sont notées

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S BACCALAURÉAT GÉNÉRAL Session 2015 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 22 JUIN 2015 Enseignement Obligatoire Coefficient : 7 Durée de l épreuve : 4 heures Ce sujet comporte 7 pages numérotées de 1 à

Plus en détail

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer.

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer. I Aire d une surface A cause du remembrement, la commune de Thérouanne propose à M. Ducheval et à M. Leboeuf d échanger leurs parcelles de terrain qui ont les formes ci-dessous. L échange est-il équitable?

Plus en détail

1. Calculer le PGCD de 1 755 et 1 053. Justifier votre réponse. 2. Ecrire la fraction 1 053

1. Calculer le PGCD de 1 755 et 1 053. Justifier votre réponse. 2. Ecrire la fraction 1 053 Exercice 1 : CTIVITÉS NUMÉRIQUES Nouvelle-Calédonie Mars 2011 Porcelaine 1. Calculer le PGCD de 1 755 et 1 053. Justifier votre réponse. 2. Ecrire la fraction 1 053 Cône sous la forme irréductible. 1 755

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. 3 ème COLLÈGE NAZARETH BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. EXERCICE 1 : ( /3) 1. Soit : A = 8 3 5 3 : 20 21. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin.

Plus en détail

DIPLÔME NATIONAL DU BREVET SESSION 2009

DIPLÔME NATIONAL DU BREVET SESSION 2009 DIPLÔME NATIONAL DU BREVET SESSION 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 6 pages numérotées de 1/6 à 6/6. Dès que ce sujet

Plus en détail

TD d exercices de Géométrie dans l espace.

TD d exercices de Géométrie dans l espace. TD d exercices de Géométrie dans l espace. Exercice 1. (Brevet 2006) Pour la pyramide SABCD ci-contre : La base est le rectangle ABCD de centre O. AB = 3 cm et BD = 5cm. La hauteur [SO] mesure 6 cm. 1)

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Secteur 3 : Métiers de l'électricité - Électronique - Audiovisuel - Industries graphiques

Secteur 3 : Métiers de l'électricité - Électronique - Audiovisuel - Industries graphiques Examen : CAP Épreuve : Mathématiques-Sciences durée : 2 heures Secteur 3 : Métiers de l'électricité - Électronique - Audiovisuel - Industries graphiques Sont concernées les spécialités suivantes : Accessoiriste

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

PARTIE NUMERIQUE (18 points)

PARTIE NUMERIQUE (18 points) 4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème

Plus en détail

Diplôme National du Brevet Brevet Blanc n 2

Diplôme National du Brevet Brevet Blanc n 2 Session 2011 Diplôme National du Brevet Brevet Blanc n 2 MATHÉMATIQUES Série Collège L usage de la calculatrice est autorisé Le candidat remettra sa copie au surveillant à la fin de l épreuve Nature de

Plus en détail

Brevet des collèges Polynésie juin 2011

Brevet des collèges Polynésie juin 2011 Brevet des collèges Polynésie juin 0 Durée : heures ACTIVITÉS NUMÉRIQUES points Exercice Cet exercice est un questionnaire à choix multiples. Pour chaque question, quatre réponses sont proposées mais une

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

CORRECTION BREVET MATHS PONDICHERY 2014. Emma et Arthur ont acheté pour leur mariage 3 003 dragées au chocolat et 3 731 dragées aux amandes.

CORRECTION BREVET MATHS PONDICHERY 2014. Emma et Arthur ont acheté pour leur mariage 3 003 dragées au chocolat et 3 731 dragées aux amandes. CORRECTION BREVET MATHS PONDICHERY 2014 Exercice 1 Emma et Arthur ont acheté pour leur mariage 00 dragées au chocolat et 71 dragées aux amandes. 1 ) Arthur propose de répartir ces dragées de façon identique

Plus en détail

Triangle rectangle : Cercle circonscrit et médiane

Triangle rectangle : Cercle circonscrit et médiane Triangle rectangle : Cercle circonscrit et médiane I) Vocabulaire 1) Hypoténuse Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse. 2) Hauteurs, médianes, médiatrices

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET REPÈRE 13DNBPROMATMEAG3 DIPLÔME NATIONAL DU BREVET SESSION 2013 Épreuve de : MATHÉMATIQUES SÉRIE PROFESSIONNELLE Durée de l épreuve : 2 h 00 Coefficient : 2 Le candidat répond sur une copie modèle Éducation

Plus en détail

C.A.P. Groupement B : Hygiène Santé Chimie et procédés. Session 2014. Épreuve : Mathématiques - Sciences Physiques. Durée : 2 heures Coefficient : 2

C.A.P. Groupement B : Hygiène Santé Chimie et procédés. Session 2014. Épreuve : Mathématiques - Sciences Physiques. Durée : 2 heures Coefficient : 2 C.A.P. Groupement B : Hygiène Santé Chimie et procédés Session 2014 Épreuve : Mathématiques - Sciences Physiques Durée : 2 heures Coefficient : 2 Spécialités concernées : Agent d assainissement et de collecte

Plus en détail

Le sujet est à rendre avec la copie.

Le sujet est à rendre avec la copie. NOM : Prénom : Classe : ACADEMIE DE BORDEAUX Collège Jean Moulin, COULOUNIEIX-CHAMIERS Durée : h DIPLOME NATIONAL DU BREET Série Collège Brevet BLANC Du janvier 01 Epreuve : MATHEMATIQUES Les calculatrices

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y DM Devoir maison 4 lire une abscisse placer un point d'abscisse connu convertir un nombre dans une unité donnée le triangle isocèle construction à partir d'un dessin milieu d'un segment le cercle,construction

Plus en détail

Evaluation bilan de 4 ème 2 ème trimestre

Evaluation bilan de 4 ème 2 ème trimestre Evaluation bilan de 4 ème 2 ème trimestre Durée : 1 heure Toutes les réponses devront être justifiées et tous les calculs doivent apparaitre, sauf indication contraire. Exercice I (4 points) Clara veut

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

BREVET BLANC 2 SESSION DU 5 MAI 2009

BREVET BLANC 2 SESSION DU 5 MAI 2009 BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Calcul numérique et activités

Calcul numérique et activités Classe de Seconde Calcul numérique et activités. Mettre de l ordre. Interro (c). Interro 4. Interro (c). Interro 4 (c) 6. Interro (c) 7. Interro 6 8. Interro 7 9. Interro 8 0. Comparer a, a², a et /a.

Plus en détail

Brevet des collèges Métropole, Antilles-Guyane, Réunion. Durée : 2 heures

Brevet des collèges Métropole, Antilles-Guyane, Réunion. Durée : 2 heures Métropole, Antilles-Guyane, Réunion Durée : 2 heures Toutes les réponses doiventêtre justifiées, sauf si une indication contraire est donnée. ACTIVITÉS NUMÉRIQUES 12 points Exercice 1 Un dé cubique a 6

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

DNB, Mathématiques, correction

DNB, Mathématiques, correction 50 80 50 40 0 DNB, Mathématiques, correction juin 204 2 heures Exercice 5 points. Représentation d un agrandissement de cet octogone en l inscrivant dans un cercle de rayon 3 cm. B A 30 20 0 60 30 40 50

Plus en détail

Tournez la page S.V.P.

Tournez la page S.V.P. 17 Tourne la page S.V.P. Le problème est constitué de quatre parties indépendantes La mesure de l intensité d un courant électrique peut nécessiter des méthodes très éloignées de celle utilisée dans un

Plus en détail

2 1,5 1 0,5 0 0,5 1 1,5 2 2,5 3 3,5 4. Exercice 3 : les faces d un dé équilibré à six faces porte chacune les lettres du mot : N O T O U S.

2 1,5 1 0,5 0 0,5 1 1,5 2 2,5 3 3,5 4. Exercice 3 : les faces d un dé équilibré à six faces porte chacune les lettres du mot : N O T O U S. Corrigé Nouvelle-Calédonie. Mars 2011. ctivités numériques. Exercice 1 : 1. Calcul du PGCD de 1 755 et 1 053 par l algorithme d Euclide : 1 755 = 1 053 1 + 702 1 053 = 702 1 + 351 702 = 351 2 + 0 Le PGCD

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4.

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4. 196 Séquence 7 SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES Ce que tu devais faire Les commentaires du professeur Séance 1 JE RÉVISE LES ACQUIS DE LA 4 e 5 4 0 9 L image de 0 par la fonction f est le nombre

Plus en détail

Ungroup, then double click to edit text. 8.2 Les propriétés des cordes dans un cercle. OBJECTIF de 8.2

Ungroup, then double click to edit text. 8.2 Les propriétés des cordes dans un cercle. OBJECTIF de 8.2 OBJECTIF de 8.2 Établir la relation entre une corde, sa médiatrice et le centre du cercle Résoudre des problèmes. Ces photographies montrent un coucher de soleil. Imagine le Soleil tandis qu il touche

Plus en détail

Problèmes de mise en système d équations linéaires

Problèmes de mise en système d équations linéaires Problèmes de mise en système d équations linéaires Exercice 1 : Pêcheurs Trois amis pêcheurs achètent des poches d hameçons et des bouchons. Les poches sont toutes au même prix, les bouchons aussi. Le

Plus en détail

GÉOMÉTRIE DANS L'ESPACE ET GeoGebra

GÉOMÉTRIE DANS L'ESPACE ET GeoGebra GÉOMÉTRIE DANS L'ESPACE ET GeoGebra INTRODUCTION ET CRÉATION DE SOLIDES La prochaine version de GeoGebra (5.0) intégrera la géométrie dans l'espace. Une version béta est téléchargeable à partir du forum

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Envoi no. 6 : géométrie

Envoi no. 6 : géométrie Envoi no. 6 : géométrie Exercice 1. Soit un triangle rectangle isocèle en. Soit un point de l arc du cercle de centre passant par et, H son projeté orthogonal sur (). On note I le centre du cercle inscrit

Plus en détail