Exercice 1: (3 points) 1. On considère le système suivant :
|
|
|
- Armand Damours
- il y a 9 ans
- Total affichages :
Transcription
1 Type BREVET Epreuve : MATHEMATIQUES Session : 8 Avril 0 Durée : h pages : ACADEMIE DE MARRAKECH La qualité, la clarté et la précision des raisonnements seront prises en compte dans l appréciation des copies. L emploi de la calculatrice est autorisé. Exercice : ( points) 45x + 0 y = 50. On considère le système suivant : x + 0 y = 6 a. Les nombres x = 0 et y = sont-ils solutions de ce système? Justifier. b. Les nombres x = 8 et y = 5 sont-ils solutions de ce système? Justifier.. Pour les fêtes de fin d année, un groupe d amis souhaite emmener leurs enfants assistés à un spectacle. Les tarifs sont les suivants : 45 par adulte et 0 par enfant s ils réservent en catégorie. par adulte et 0 par enfant s ils réservent en catégorie. Le coût total pour ce groupe d amis est de 50 s ils réservent en catégorie et 6 s ils réservent en catégorie. Déterminer le nombre d adultes et d enfants de ce groupe? Exercice : (.5 points) Cet exercice est un questionnaire à choix multiples (QCM.) Aucune justification n est demandée. Pour chacune des questions suivantes, trois réponses sont proposées, une seule réponse est exacte. Pour chaque question, indiquer sur la copie la réponse exacte. Soit f la fonction définie par f (x) = x + Votre réponse : f a pour coefficient directeur : L image de par f est : 0 f passe par le point A ( ; ) B ( ; 5) C ( ; 8) L antécédent de 4 par la fonction f est : 5 f coupe l axe des ordonnées en D (,5 ; 0) E (0 ; ) F (0 ; ) Exercice n : (4 points) L eau en gelant augmente de volume. Le segment de droite ci-contre représente le volume de glace (en litres) obtenu à partir d un volume d eau liquide (en litres).. En utilisant le graphique, répondre aux questions suivantes. a) Quel est le volume de glace obtenu à partir de 6 litres de liquide? b) Quel volume d eau liquide faut-il mettre à geler pour obtenir 0 litres de glace?. Le volume de glace est-il proportionnel au volume d eau liquide? Justifier.. On admet que 0 litres d eau donnent 0,8 litres de glace. De quel pourcentage ce volume d eau augmente-t-il en gelant?
2 Problème (9 points) Les deux parties sont indépendantes. Partie : M. Dubois réfléchit à son déménagement. Il a fait réaliser deux devis :. L entreprise A lui a communiqué le graphique présenté ci-contre. Celui-ci représente le coût du déménagement en fonction du volume à transporter. a) Quel serait le coût pour un volume de 0 m? Vous laisserez vos tracés apparents. b) Le coût est-il proportionnel au volume transporté? Justifier. c) Soit g la fonction qui à x, volume à déménager en m, associe le coût du déménagement avec cette entreprise. Exprimer g (x) en fonction de x.. L entreprise B lui a communiqué une formule : f (x) = 0x +800 où x est le volume (en m ) à transporter et f (x) le prix à payer (en ). a. Calculer f (80). Que signifie le résultat obtenu? b. Déterminer par le calcul l antécédent de 500 par la fonction f. c. Représenter graphiquement la fonction f sur le graphique présenté ci-contre.. M. Dubois estime à 60 m le volume de son déménagement. Quelle société a t-il intérêt à choisir? Vous justifierez graphiquement votre réponse en laissant vos tracés apparents. Partie. Pour aller visiter le chantier de sa future maison, situé à 44 km de son actuel domicile, M. Dubois part de chez lui à 0 h 00 du matin. Il roule h 0 min, fait une pause de 80 minutes, puis roule à nouveau h 45 min avant d arriver au chantier. À quelle heure arrive-t-il au chantier? Justifier la réponse.. Le camion des déménageurs a mis 6 h 0 pour réaliser ce trajet. A quelle vitesse, en moyenne, a-t-il roulé? Exercice 4 : (.5 points) Aucune justification n'est demandée. Pour chacune des questions, trois réponses sont proposées, une seule est exacte. (0,5 point par réponse exacte et 0,5 point par réponse incorrecte) Questions Réponses Développer ( x 5)( x 5) Un article coûte x euros. Son prix diminue de % ; il coûte alors A B C Réponse +. x 5 9 x 5 9 x 0 x 5 =,0 0,0,000 x x 0,9 x = ,4 Soit l équation : 6 x + 5 x = 0. Une solution est :
3 Problème (6 points). Une séance de cinéma coûte,50 euros. Compléter le tableau. 0 Prix en euros 0 5. On propose aux étudiants une carte d abonnement de 0 euros qui permet de payer chaque séance 5 euros. Compléter le tableau. 0 Prix en euros On note : x le nombre de, P(x) le prix payé pour x au tarif normal, A(x) le prix payé pour x au tarif abonné.. Exprimer P(x) en fonction de x. 4. Exprimer A(x) en fonction de x. 5. Représenter sur le graphique la fonction P et la fonction A. 6. Résoudre l inéquation :,5x > 0 + 5x.. En déduire le nombre de au-delà duquel il est intéressant de prendre une carte d abonnement. Expliquer comment on retrouve ce résultat sur le graphique. Exercice 5 : ( points) On considère les points A( ; 5), B( ; ), C( ; ) et D(9 ; 8) a) Déterminer une équation de la droite (AB). b) Déterminer une équation de la droite (CD). x + y = 9 c) Résoudre le système suivant :, puis en donner une interprétation géométrique. 5x 4y = Merwan : «Trop facile ce contrôle» Adam : «Dans h, c est la récré»
4 Exercice : ( points) 45x + 0 y = 50. On considère le système suivant :. x + 0 y = 6 Correction : a. Si x = 0 et y = alors 45x + 0 y = = 50 donc le couple (0 ; ) vérifie la ére équation. Si x = 0 et y = alors x + 0y = = 0 6 donc le couple (0 ; ) ne vérifie pas la éme équation. Donc le couple (0 ; ) n est pas solution de ce système. b. Les nombres x = 8 et y = 5 sont-ils solutions de ce système? Justifier. Si x = 8 et y = 5 alors 45x + 0 y = = 50 donc le couple (8 ; 5) vérifie la ére équation. Si x = 8 et y = 5 alors x + 0y = = 6 donc le couple (8 ; 5) vérifie la éme équation. Donc le couple (8 ; 5) est solution de ce système.. Soit x le nombre d adultes et y le nombre d enfants de ce groupe. D après l énoncé, on peut établir le 45x + 0 y = 50 système suivant :. Donc d après la question précédente il y a 8 adultes et 5 enfants. x + 0 y = 6 Exercice : (.5 points) Soit f la fonction définie par f (x) = x + Votre réponse : f a pour coefficient directeur : L image de par f est : 0 f passe par le point A ( ; ) B ( ; 5) C ( ; 8) B ( ; 5) L antécédent de 4 par la fonction f est : 5 f coupe l axe des ordonnées en D (,5 ; 0) E (0 ; ) F (0 ; ) E (0 ; ) Exercice n : (4 points). En utilisant le graphique, répondre aux questions suivantes. a) Le volume de glace obtenu à partir de 6 litres de liquide est de 6.5 litres. b) Il faut mettre 9. litres d eau à geler pour obtenir 0 litres de glace.. La fonction qui représente le volume de glace en fonction du volume d eau est une fonction linaire donc le volume de glace est proportionnel au volume d eau liquide.. On a : 0.8 =.08 donc le volume d eau augmente de 8 % en gelant. 0 Problème (9 points) Les deux parties sont indépendantes. 4
5 Partie :. a) Pour 0 m, le coût est de 600 euros. b) Le coût est proportionnel au volume transporté car la représentation graphique est une droite passant par l origine. c) On a : g (x) = 0x.. a. On a : f (80) = = 600 donc pour 80 m à transporter, le prix est de 600 euros. b. On a : 0x = 500 donc 0x = 00 donc x = 0. L antécédent de 500 par la fonction f est de 0. c. Cf graphique ci-contre.. M. Dubois a intérêt de prendre la société B car il payera moins cher. Partie. On a : h 0 min + 80 minutes + h 45 min = h 55 min = 5 h 5 min. Il arrivera à 5 h 5 min. 44. On a : 6 h 0 min = 6,5 h. 68 6,5 = donc le camion a fait le trajet à la vitesse moyenne de 68 Km.h -. Exercice 4 : (.5 points) Questions Réponses Développer ( x 5)( x 5) Un article coûte x euros. Son prix diminue de % ; il coûte alors +. x 5 A B C Réponse 9 x 5 9 x 0 x 5 B =,0 0,0,000 C x x 0,9 x C = ,4 A Soit l équation : 6 x + 5 x = 0. Une solution est : Problème (6 points) B 5
6 . Une séance de cinéma coûte,50 euros. Compléter le tableau Prix en euros On propose aux étudiants une carte d abonnement de 0 euros qui permet de payer chaque séance 5 euros. Compléter le tableau Prix en euros On a : P(x) =,5x. 4. On a : A(x) = 5x Représenter sur le graphique la fonction P et la fonction A On a :,5x > 0 + 5x, 5x 5x > 0,5x > 0 x > x > 8.,5. En déduire le nombre de au-delà duquel il est intéressant de prendre une carte d abonnement. Expliquer comment on retrouve ce résultat sur le graphique. Exercice 5 : ( points) On considère les points A( ; 5), B( ; ), C( ; ) et D(9 ; 8) yb ya 5 a) Une équation de la droite (AB) est de la forme y = ax + b or a = = = d où xb xa 4 9 y = x + b or A appartient à (AB) donc 5 = + b donc b = 5 + = donc une équation de 9 (AB) est y = x +. yd yc b) Une équation de la droite (CD) est de la forme y = ax + b or a = = = = d où xd xc y = x + b or D appartient à (CD) donc 8 = 9 + b donc b = 8 = donc une équation de (AB) est y = x x + y = 9 0 x + 5y = 95 y = 69 y = = c) On a : donc donc donc 5x 4y = 0 x 8y = 6 x + y = 9 x + = 9 y = y = donc. Le couple (5 ; ) est solution du système. x = 0 x = 5 9 y = x + y = x + 9 On a : donc donc le point de coordonnées (5 ; ) est le point 4y = 5x + 5 y = x 4 4 d intersection des droites (AB) et (CD). 6
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Séquence 2. Repérage dans le plan Équations de droites. Sommaire
Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis
Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.
Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL
BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par
Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse
N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12
1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P
BONUS MALUS Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances. Pour un véhicule donné, le propriétaire versera annuellement une «prime» à sa compagnie.
Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS
Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
Les fonction affines
Les fonction affines EXERCICE 1 : Voir le cours EXERCICE 2 : Optimisation 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus
SPECIALITE : RESTAURATION À LIRE ATTENTIVEMENT AVANT DE TRAITER LE SUJET
AGENT DE MAÎTRISE TERRITORIAL Concours interne et de 3 ème voie Centre Interdépartemental de Gestion de la Grande Couronne de la Région d Île-de-France SESSION 2015 Epreuve écrite d admissibilité Vérification
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
Brevet Professionnel
Brevet Professionnel ASSURANCES E32 Communication professionnelle orale Durée : 20 +20 Coefficient : 2 Session 2014 Ce sujet se compose de 8 pages, numérotées de 1/8 à 8/8. Dès que le sujet vous est remis,
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Corrigés Exercices Page 1
Corrigés Exercices Page 1 Premiers algorithmes Questions rapides 1 1) V ; ) F ; 3) V ; 4) F. 1) a ; ) b ; 3) a et b ; 4) b. 3 L'algorithme répond à la question : "le nombre entré estil positif?". 4 a (remarque
Correction du baccalauréat STMG Polynésie 17 juin 2014
Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution
Q.C.M. Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution Exercice 1 On considère les trois nombres A, B et C : 2 x (60 5 x 4 ²) (8 15) Calculer
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
VISEZ LES ÉTOILES. INFORMATIONS CONCERNANT LES PNEUS ET ROUES COMPLÈTES D ORIGINE BMW/MINI MARQUÉS D UNE ÉTOILE.
VISEZ LES ÉTOILES. INFORMATIONS CONCERNANT LES PNEUS ET ROUES COMPLÈTES D ORIGINE BMW/MINI MARQUÉS D UNE ÉTOILE. Switzerland DES PNEUS SUR MESURE. La conception d un pneu d origine BMW/MINI débute dès
Exemples d utilisation de G2D à l oral de Centrale
Exemples d utilisation de G2D à l oral de Centrale 1 Table des matières Page 1 : Binaire liquide-vapeur isotherme et isobare Page 2 : Page 3 : Page 4 : Page 5 : Page 6 : intéressant facile facile sauf
Grandeurs et mesures. Grandeurs et mesures. - Mathématiques - Niveau 3 ème
- Mathématiques - Niveau 3 ème Grandeurs et mesures Remerciements à Mesdames Fatima Estevens et Blandine Bourlet, professeures de mathématiques de collège et de lycée ont participé à la conception et la
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013
Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane
MATHEMATIQUES GRANDEURS ET MESURES
FICHE GM.01 Objectif : Choisir la bonne unité de mesure Pour chaque objet, choisis entre les trois propositions celle qui te paraît la plus juste : ta règle ton cahier une coccinelle ta trousse la Tour
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
Identifier et comprendre vos clients
Identifier et comprendre vos clients Questionnaire Allain Lagadic, Stratège marketing senior Juillet 2013 Identifier et comprendre vos clients Le but de ce questionnaire est de vous permettre de créer
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
Situations d apprentissage. Mat-2101-3
Situations d apprentissage Mat-2101-3 Un vendredi au chalet (Activités 1, 2 et 3) Le taxi (Activités 1 et 2) Un entrepôt «sans dessus dessous» (Activités 1, 2, 3 et 4) France Dugal Diane Garneau Commission
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)
LETTRE CIRCULAIRE N 2003-103
PARIS, le 09/07/2003 DIRECTION DE LA REGLEMENTATION ET DES ORIENTATIONS DU RECOUVREMENT DIROR LETTRE CIRCULAIRE N 2003-103 OBJET : Mise en oeuvre de la nouvelle réglementation relative à l'évaluation des
TEST PRATIQUE DU TEST DE LOGIQUE MATHEMATIQUE ET VERBAL
TEST PRATIQUE DU TEST DE LOGIQUE MATHEMATIQUE ET VERBAL COPYRIGHT 2008 PROCTER & GAMBLE CINCINNATI, OH 45202 U.S.A. AVERTISSEMENT : Tous droits réservés. Aucune section du présent livret ne doit être reproduite
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Propulsions alternatives
Propulsions alternatives Huit formes de propulsion alternative existent aujourd hui à côté des moteurs à essence et au diesel classiques. Nous les passons en revue ici avec à chaque fois une définition,
Collecter des informations statistiques
Collecter des informations statistiques FICHE MÉTHODE A I Les caractéristiques essentielles d un tableau statistique La statistique a un vocabulaire spécifique. L objet du tableau (la variable) s appelle
Barème des quotes-parts pour les contributions des États Membres au budget ordinaire en 2015
L atome pour la paix Conférence générale GC(58)/7 15 août 2014 Distribution générale Français Original : anglais Cinquante-huitième session ordinaire Point 12 de l ordre du jour provisoire (GC(58)/1, Add.1
CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27
Problèmes du premier degré à une ou deux inconnues Rappel Méthodologique Problèmes qui se ramènent à une équation à une inconnue Soit l énoncé suivant : Monsieur Duval a 4 fois l âge de son garçon et sa
Résultats d Etude. L étude de marché. Résultats d Etude N 1889 : Conciergerie privée. Testez la fiabilité de votre projet.
Résultats d Etude L étude de marché Testez la fiabilité de votre projet 1 Sommaire : Introduction... 4 Synthèse... 6 PAGE 1 :... 7 Question 1/13... 7 Vous vivez :... 7 PAGE 2 :...10 Question 2/13...10
Demande de financement
Demande de financement Nom de la société : Nom de l entrepreneur : I. PRESENTATION DE L ENTREPRISE I.1 Présentez votre société : Nom de la société, statut juridique Capital social Nom et fonction du représentant
Questionnaire Assurances Multirisques. Assurances des collectivités locales
La meilleure couverture de vos risques, le pilotage et la prévention en plus Assurances Flotte automobile, Dommages aux biens, Responsabilité Civile et Protection juridique Questionnaire Assurances Multirisques
Enquête Modes doux de déplacement. et Economie de Proximité
Enquête Modes doux de déplacement et Economie de Proximité Le Conseil Local de Développement (CLD), instance représentant les citoyens et les acteurs socioprofessionnels, travaille en lien avec les élus
Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7
Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Séquence 10. Géométrie dans l espace. Sommaire
Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Exercices sur les équations du premier degré
1 Exercices sur les équations du premier degré Application des règles 1 et Résoudre dans R les équations suivantes en essayant d appliquer une méthode systématique : 1 x + = x + 9 x + = x x 1 = x + x +
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Le Test d évaluation de français De la Chambre de commerce et d industrie de Paris
Le Test d évaluation de français De la Chambre de commerce et d industrie de Paris PRÉSENTATION DU TEF Le test d évaluation de français est le premier test standardisé de français langue étrangère diffusé
INITIATIVE FORMATION Volet : Création et Reprise d Entreprise
INITIATIVE FORMATION Volet : Création et Reprise d Entreprise Foire aux questions (FAQ) Dispositif mis en œuvre à compter du 25 juin 2013 (délibération du 24 juin 2013) Le dispositif Initiative Formation
Modalités d inscription, de progression et de validation en licence et master : de l UFR ALLSH
Modalités d inscription, de progression et de validation en licence et master : de l UFR ALLSH I) Cadrage général applicable à toute formation de Licence ou de Master de l Université d Aix-Marseille 1.
Ressources pour le lycée général et technologique
éduscol Ressources pour le lycée général et technologique Ressources pour la classe de terminale générale et technologique Exercices de mathématiques Classes de terminale S, ES, STI2D, STMG Ces documents
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
PREFECTURE DE LA SARTHE EXAMEN PROFESSIONNEL DE CONDUCTEUR DE TAXI SESSION 2014
PREFECTURE DE LA SARTHE EXAMEN PROFESSIONNEL DE CONDUCTEUR DE TAXI SESSION 2014 Jeudi 9 octobre 2014 EPREUVE DE GESTION UNITE DE VALEUR 2 N du CANDIDAT : Note : Durée : 40 minutes Notation sur 20 points
CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES
CHAPITRE Le mouvement en une dimension CORRIGÉ DES EXERCICES Exercices. Le mouvement rectiligne uniforme SECTION. 5. Le graphique suivant représente la vitesse d une cycliste en fonction du temps. Quelle
QUESTIONNAIRE D INTÉGRATION
QUESTIONNAIRE D INTÉGRATION 2015-2016 0 Section à être complétée par les parents Nom de l élève : Degré : Date de naissance : En guise d introduction, nous aimerions avoir un bref historique de la situation
Protection individuelle
Protection individuelle Franchise annuelle Ce plan n'est plus offert 200 $ 900 $ depuis le 1er mars 2015 1 006 $ / / 18-24 87,88 $ 71,71 $ - 39,35 $ 37,08 $ 63,91 $ 25-29 91,38 $ 74,47 $ - 41,04 $ 38,86
Titre Présentation du 3 Mai 2012
Titre Présentation du 3 Mai 2012 Présentation du 4 Juillet 2013 Titre -Présentation de la Société Présentation de la société Liste des Sociétés Un ensemble de 9 Sociétés (11 sites) et 1 holding Pour un
Bâtiments Non Sprinklés Commercial-Industriel-Stockage- Incendie-Dommages. Le souscripteur
Bâtiments Non Sprinklés Commercial-Industriel-Stockage- Incendie-Dommages Référence de votre cabinet Code ORIAS N : Cachet de votre cabinet : Le souscripteur Société Forme juridique Code Siret Adresse
Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel.
Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,
Temps forts départementaux. Le calcul au cycle 2 Technique opératoire La soustraction
Temps forts départementaux Le calcul au cycle 2 Technique opératoire La soustraction Calcul au cycle 2 La soustraction fait partie du champ opératoire additif D un point de vue strictement mathématique,
QUESTIONNAIRE DE PRE-AUDIT. Rubrique n 1 : Présentation de l entreprise
QUESTIONNAIRE DE PRE-AUDIT MISE A NIVEAU DE L ENTREPRISE PAR LE GENIE INDUSTRIEL Pré-audit réalisé le... Rédacteur(s). Rubrique n 1 : Présentation de l entreprise Renseignements généraux - Identité de
CAS VENDEUR. Vous avez pris rendez vous avec Monsieur ou Madame Martin, gérant de la société «TOUT PROPRE» dont l objet social est le nettoyage.
17 ème Challenge de Négociation Commerciale LES NEGOCIALES CAS VENDEUR Vous avez pris rendez vous avec Monsieur ou Madame Martin, gérant de la société «TOUT PROPRE» dont l objet social est le nettoyage.
Social. Précisions ministérielles. Avantages en nature et frais professionnels
Avantages en nature et frais professionnels Précisions ministérielles L administration vient de diffuser une troisième série de questions/réponses. S agissant des avantages en nature, elle revient notamment
Lecture graphique. Table des matières
Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................
Thème 17: Optimisation
OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir
4. Exercices et corrigés
4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au
Un projet électrisant de Communauto Éléments clés pour s approprier la Nissan LEAF
Un projet électrisant de Communauto Éléments clés pour s approprier la Nissan LEAF alimenté par SOMMAIRE 1. Le projet 2. La Nissan LEAF 3. Les bornes de recharge 4. Conduire la LEAF 5. Recharger la LEAF
Si la source se rapproche alors v<0 Donc λ- λo <0. La longueur d onde perçue est donc plus petite que si la source était immobile
Red shift or blue shift, that is the question. a) Quand une source d onde se rapproche d un observateur immobile, la longueur d onde λ perçue par l observateur est-elle plus grande ou plus petite que λo
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
T2- COMMENT PASSER DE LA VITESSE DES ROUES A CELLE DE LA VOITURE? L E T U N I N G
T2- COMMENT PASSER DE LA VITESSE DES ROUES A CELLE DE LA VOITURE? D É M A R C H E D I N V E S T I G A T I O N : L E T U N I N G Programme de seconde professionnelle Situation introductive problématique
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
BREVET DE TECHNICIEN SUPÉRIEUR AGRICOLE SUJET
SESSION 2010 France métropolitaine BREVET DE TECHNICIEN SUPÉRIEUR AGRICOLE ÉPREUVE N 2 DU PREMIER GROUPE ÉPREUVE SCIENTIFIQUE ET TECHNIQUE Option : Génie des équipements agricoles Durée : 3 heures 30 Matériel
Title Text. Outil intégré de collecte, d'analyse et de visualisation de données de mobilité
Title Text Outil intégré de collecte, d'analyse et de visualisation de données de mobilité Contenu de la présentation Schéma général et avancement Suivi et administration Validation des entrevues Enrichissement
LA MESURE DE PRESSION PRINCIPE DE BASE
Page 1 / 6 LA MESURE DE PRESSION PRINCIPE DE BASE 1) Qu est-ce qu un sensor de pression? Tout type de sensor est composé de 2 éléments distincts : Un corps d épreuve soumit au Paramètre Physique φ à mesurer
Dossier de. Année universitaire
Dossier de candidature ISTC MASTER 1ère année Année universitaire 2015-2016 L ISTC c est Une école reconnue par l Etat Une licence classée 3 ème par le cabinet SMBG* Un master classé 12 ème par le cabinet
Outil de formation à la conduite économique et écologique.
L EC MOBIL Outil de formation à la conduite économique et écologique. H.D.M S O L U T IONS T E C H N O L O G IQUES Tel 04 78 32 07 20 Fax 04 78 32 07 30 Mail [email protected] Site www.reactiometre.com
EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)
EXAMEN : CAP ADAL SESSION 20 N du sujet : 02. FOLIO : /6 Rédiger les réponses sur ce document qui sera intégralement remis à la fin de l épreuve. L usage de la calculatrice est autorisé. Exercice : (7
