Économétrie. Francesco Quatraro M1 EFM 2010/2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Économétrie. Francesco Quatraro M1 EFM 2010/2011"

Transcription

1 Francesco Quatraro M1 EFM 2010/2011 1

2 La violation des hypothèses Le modèle des MCO considère que les hypothèses suivantes sont toutes respectées: H1: le modèle est linéaire en x i,t H2: les valeurs x i,t sont observés sans erreur H3: E( )=0, l espérance mathématique de l erreur est nulle H4: E( ²)= ², la variance de l erreur est constante (homoscédasticité) H5: E( t t+1 ), les erreurs sont non corrélées (ou indépendants) H6: Cov(x i,t t ), l erreur est indépendante de la variable explicative 2

3 La violation de l hypothèse H5 concerne des sériés temporelles où les éléments hors diagonale de la matrice de covariance de l erreur est différente de 0 Dans ce cas les estimateurs obtenus par la méthode des MCP sont sans biais mais ne sont plus à variance minimale Il faut donc identifier des nouveaux estimateurs et des techniques pour détecter une éventuelle autocorrélation des erreurs 3

4 Considérons le modèle linéaire général: Y = X a + (n,1) (n,k+1) (k+1,1) (n,1) Dans lequel E( ) ² I Nous désirons déterminer un estimateur de a qui ait le mêmes propriétés que l estimateur MCO: sans biais et à variance minimale 4

5 Il est démontré que cet estimateur est donné par: Cet estimateur est appelé estimateur des Moindres Carrés Généralisés (MCG) Lorsque les hypothèses classiques sont satisfaites, nous retrouvons l estimateur MCO 5

6 On a une autocorrélation des erreurs lorsque les erreurs sont liées par un processus de reproduction. On peut distinguer l autocorrélation positive de l autocorrélation négative. 6

7 L autocorrélation des erreurs peut être observée pour plusieurs raisons: Absence d une variable explicative importante dont l explication résiduelle permettrait de blanchir les erreurs Mauvaise spécification du modèle: les relations entre les variables explicatives et la variable à expliquer ne sont pas linéaires Un lissage par moyenne mobile ou une interpolation crée un autocorrélation artificielle 7

8 L autocorrélation des erreurs se rencontre essentiellement dans les modèles en série temporelle où l influence d une erreur d une période sur l autre est plausible Dans le cas de modèle spécifié en coupe instantanée, on ne peut pas concevoir un autocorrélation des erreurs que si les observations ont été préalablement triées en fonction de la variable à expliquer 8

9 La détection d une éventuelle dépendance des erreurs ne peut s effectuer qu à partir de l analyse des résidus. L analyse graphique des résidus permet le plus souvent de détecter un processus de reproduction des erreurs lorsque: Les résidus sont pendant plusieurs périodes consécutives soit positifs, soit négatifs (autocorrélation positive) Les résidus sont alternés (autocorrélation négative) 9

10 Le test de Durbin et Watson permet de détecter une autocorrélation des erreurs d ordre 1 selon la forme: Le test d hypothèse est le suivant: H0: =0 H1: 0 10

11 Pour tester l hypothèse nulle H0, nous calculons la statistique de Durbin et Watson: Ou e t sont les résidus de l estimation du modèle Par sa construction, cette statistique varie entre 0 et 4, et nous avons DW=2 lorsque Afin de tester l hypothèse H0, ils ont tabulé les valeurs critiques de DW au seuil de 5% en fonction de la taille de l échantillon et du nombre de variables explicatives (n, k) 11

12 La lecture de la table permet de déterminer deux valeurs d1 et d2 comprises entre 0 et 2 qui délimitent l espace entre 0 et 4 Selon la position du DW empirique dans cet espace, nous pouvons coclure: d 2 <DW<4-d 2 on accepte H0 0<DW<d 1 on rejette H0; >0 4-d 1 <DW<4 on rejette H0; <0 d 1 <DW<d 2 ; 4-d 2 <DW<4-d 1 : indeterminé 12

13 Pour utiliser ce test, le modèle doit comporter impérativement un terme constant La variable à expliquer ne doit pas figurer parmi les variables explicatives Pour les modèles en coupe instantanée, les observation doivent être ordonnées en fonction de la variable à expliquer Toutefois, le test de Durbin et Watson est un test présomptif d indépendance des erreurs de fait qu il utilise les résidus 13

14 Le test de Breusch-Godfrey est fondé sur un test de Fisher de nullité de coefficient ou de Multiplicateur de Lagrange Il permet de tester une autocorrélation d un ordre supérieur à 1, et il reste valide en presence de la variable à expliquer retardée parmi les variables explicatives L idée générale de ce test réside dans la recherche d une relation significative entre le résidu et ce même résidu décalé 14

15 Le test est mené en trois étapes Estimation par les MCO du modèle et calcul du résidu Estimation par les MCO de l équation intermédiaire: Test d hypothèse sur l équation intermédiaire, dont l hypothèse H0: 1= 2 = = p =0 15

16 Si nous retenons l hypothèse d une autocorrélation d ordre 1, le modèle s écrit: Processus autorégressif d ordre 1 : AR(1) En procédant par substitution successive du modèle autorégressif, on obtient: 16

17 Nous avons E( t )=0 En général: 17

18 On a déjà vu que l estimateur des MCG est égal à: Cependant, nous ne connaissons ni le terme ni la variance ² ; Nous allons donc chercher une transformation matricielle M telle que le modèle MY=MXa+M ait ses erreurs indépendantes et homoscédastiques 18

19 Soit: Dans ce cas on peut déterminer l estimateur BLUE de a par la méthode des MCO: En comparant les deux spécifications de l estimateur de a, M M= -1 L égalité est vérifiée pour chaque transformation de la matrice de covariance 19

20 Donc on peut écrire: La matrice M que remplit cette condition est la suivante: Ainsi, nous pouvons substituer à la méthode des MCG la méthode MCO appliquée au modèle linéaire MY = MXa + M 20

21 Puisque nous n observons pas, il convient de trouver des procédures pour l estimer Il y a différentes procédures. Considérons le cas où a) estimation directe de à partir des résidus de la regression: Estimation de ou Transformation des variables et MCO 21

22 (b) Estimation itérative du vecteur a et (Cochrane-Orcutt) Valeur initiale: Régression sur le quasi-différences Réestimation de en utilisant les résidus obtenus en appliquant les coefficients estimés dans l étape précédent Régression sur les quasi-différences Et ainsi de suite jusqu à la stabilisation des coefficients 22

23 c) méthode du balayage (Hildreth-Lu) Determination du type de autocorrélation au travers du test de Durbin-Watson Régression pour l intervalle des valeurs possibles de d) Maximum de vraisemblance Consiste à estimer conjointement le vecteur a e la valeur par maximisation d une fonction de vraisemblance 23

24 Hétéroscédasticité On dit que le modèle est hétéroscédastique quand le variances des erreurs ne sont constantes le longue de la diagonale de la matrice de covariance Ce problème se rencontre plus fréquemment pour les modèles spécifiés en coupe instantanée, ou bien que les observations sont représentatives de moyennes La variance de l erreur est alors liée aux valeurs de la variable explicative 24

25 Hétéroscédasticité 25

26 Hétéroscédasticité Les conséquences de l hétéroscédasticité sont identiques à celles de l autocorrélation des erreurs, c.à.d.: Estimateur sans biais Estimateur n est plus à variance minimale Les causes de l hétéroscédasticité sont multiples: Les observations représentent des moyennes calculés sur des échantillons différentes Répétition du même valeur de la variable à expliquer pour différentes valeurs de la variable explicative Les erreurs sont liées aux valeurs prises pare une variable explicative 26

27 Hétéroscédasticité L estimateur BLUE du modèle hétéroscédastique est alors celui des MCG Il n existe pas une méthodologie unique de correction La règle générale consiste à déterminer une transformation concernant les données afin de se ramener à un modèle à variances constantes 27

28 Erreurs sur les variables La méthode des MCO porte sur l hypothèse que la variable endogène et les variables exogènes sont mesurés sans erreur Toutefois, dans certains modèles, les variables économiques peuvent être entachées d une erreur relative importante C est le cas pour exemple des données collectés par d enquêtes Dans ce cas il convient de distinguer les valeurs vrais (y*,x*) des valeurs observés (y,x) 28

29 Erreurs sur les variables Soit le modèle Y* = X*a + Posons: X = X* + ; Y = Y* + En substituant dans le modèle initial: Y - = (X - )a + Y = Xa - a + + Y = Xa + ; = - a + 29

30 Erreurs sur les variables Les propriétés stochastiques de suivantes: E( ) = 0 E(X* ) = 0 E (X ) = -E( )a 0 sont les Donc, l hypothèse H6 du modèle général n est pas vérifiée L estimateur est biaisé 30

31 Erreurs sur les variables Lorsqu on se trouve en présence d un modèle à erreurs sur les variables Y = Xa +, l estimateur ne converge pas vers la valeur vraie a. Le but de la technique des variables instrumentales est de déterminer k variables z 1, z 2,,z k telles que E(Z ) = 0 où Z=(z 1, z 2,,z k ) Cov(Z X) 0 31

32 Erreurs sur les variables Nous avons alors: E(Z Y)=E{Z (Xa+ )}=E(Z X)a+E(Z )=E(Z X)a La difficulté de mise en ouvre de cette méthode réside dans la sélection des variables instrumentales Z qui doivent être non corrélées avec et fortement corrélées avec X. 32

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 TABLE DES MATIÈRES Sommaire... 5 Avant- propos... 9 Remerciements... 19 À propos de l auteur... 23 CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 1.1 Qu est- ce que

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

Chapitre 4 : RÉGRESSION

Chapitre 4 : RÉGRESSION Chapitre 4 : RÉGRESSION 4.3 Régression linéaire multiple 4.3.1 Equation et Estimation 4.3.2 Inférence 4.3.3 Coefficients de détermination 4.3.4 Spécifications Régression linéaire multiple 1 / 50 Chapitre

Plus en détail

1. Qu est-ce que l économétrie? 1. 2. Le modèle de régression simple 15

1. Qu est-ce que l économétrie? 1. 2. Le modèle de régression simple 15 9782100567355-Bourbo-tdm.qxd 14/06/11 10:28 Page V Table des matières Avant-propos XI 1. Qu est-ce que l économétrie? 1 I. La notion de modèle 1 A. Définition 1 B. La construction des modèles en économétrie

Plus en détail

Bases du Modèle Linéaire

Bases du Modèle Linéaire AgroParisTech Bases du Modèle Linéaire J.J. Daudin, E. Lebarbier, C. Vuillet Table des matières 1 Introduction 3 2 Estimation des paramètres 5 2.1 Estimation des paramètres de l espérance......................

Plus en détail

Analyse de spectres d absorbance pour la prédiction des taux de moisissure, de matières grasses et de protéines d échantillons de viande

Analyse de spectres d absorbance pour la prédiction des taux de moisissure, de matières grasses et de protéines d échantillons de viande Université de Nantes M2 Ingénierie Mathématiques Rapport de chimiométrie Analyse de spectres d absorbance pour la prédiction des taux de moisissure, de matières grasses et de protéines d échantillons de

Plus en détail

Exercices de travaux dirigés Cours d économétrie Maîtrise d économétrie

Exercices de travaux dirigés Cours d économétrie Maîtrise d économétrie Exercices de travaux dirigés Cours d économétrie Maîtrise d économétrie September 21, 2004 1 Le modèle linéaire - Rendements d une fonction de production Cobb-Douglas Présentation du problème: On considère

Plus en détail

Modélisation des codes de calcul dans. le cadre des processus gaussiens

Modélisation des codes de calcul dans. le cadre des processus gaussiens Modélisation des codes de calcul dans le cadre des processus gaussiens Amandine Marrel Laboratoire de Modélisation des Transferts dans l Environnement CEA Cadarache Introduction (1) Fiabilité et calcul

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (1) Statistique descriptive «Uni & Bi-variée» R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7. Statistique Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.fr Cours Statistique, 2010 p. 1/52 Plan du cours Chapitre 1 : Estimation

Plus en détail

Statistiques Appliquées Rôle des femmes dans la société

Statistiques Appliquées Rôle des femmes dans la société Statistiques Appliquées Rôle des femmes dans la société Denis Schelling Semestre d automne 2012 Résumé A partir de données concernant le rôle des femmes dans la société, nous avons effectué une analyse

Plus en détail

Fiches de Cours. CQLS : Jean-François Coeurjolly & Rémy Drouilhet Jean-Francois.Coeurjolly@upmf-grenoble.fr, Remy.Drouilhet@upmf-grenoble.

Fiches de Cours. CQLS : Jean-François Coeurjolly & Rémy Drouilhet Jean-Francois.Coeurjolly@upmf-grenoble.fr, Remy.Drouilhet@upmf-grenoble. Fiches de Cours CQLS : Jean-François Coeurjolly & Rémy Drouilhet Jean-Francois.Coeurjolly@upmf-grenoble.fr, Remy.Drouilhet@upmf-grenoble.fr 2 Table des matières 1 Phénomène de colinéarité 5 1.1 Appréhension

Plus en détail

Analyse économétrique des prix d électricité

Analyse économétrique des prix d électricité Analyse économétrique des prix d électricité Modélisation de la moyenne des log-rendements Rapport de recherche Août 2006 Nom de l étudiant : Qingzhou YANG Directeur de recherche : Nour MEDDAHI Sommaire

Plus en détail

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Julien JACQUES Polytech Lille - Université Lille 1 Julien JACQUES (Polytech Lille) Statistiques de base 1 / 48 Plan 1 Tests

Plus en détail

Approche empirique du test χ 2 d ajustement

Approche empirique du test χ 2 d ajustement Approche empirique du test χ 2 d ajustement Alain Stucki, Lycée cantonal de Porrentruy Introduction En lisant des rapports, on rencontre souvent des raisonnements du style : «le premier groupe est meilleur

Plus en détail

Statistiques appliquées (L3 d'économie) - Cours de Patrick Sevestre - TD 2 - Corrigé

Statistiques appliquées (L3 d'économie) - Cours de Patrick Sevestre - TD 2 - Corrigé Statistiques appliquées (L3 d'économie) - Cours de Patrick Sevestre - TD 2 - Corrigé Marc Sangnier - marc.sangnier@ens-cachan.fr 29 octobre 2007 Exercice 1 - Lien entre salaire et formation Remarques préliminaires

Plus en détail

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008)

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008) Rapport de Recherche (D. Blanke - Mars 2008) L essentiel de mes activités de recherche porte sur l estimation fonctionnelle ou paramétrique pour des processus. L ensemble de ces travaux peut se diviser

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE Pierre-Louis Gonzalez 1 I INTRODUCTION 1 variable qualitative. Tri à plat. Représentations graphiques. Modélisation : loi binomiale loi multinomiale

Plus en détail

ECGE 1224 - Statistiques en économie et gestion : TP 1

ECGE 1224 - Statistiques en économie et gestion : TP 1 ECGE 14 - Statistiques en économie et gestion : TP 1 Exercice 1 Un dé parfaitement équilibré est lancé. Soit X la variable aléatoire (v.a.) correspondant au résultat obtenu avec le dé. a) Justifer pourquoi

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

Série n 5 : Optimisation non linéaire

Série n 5 : Optimisation non linéaire Université Claude Bernard, Lyon I Licence Sciences & Technologies 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France Option: M2AO 2007-2008 Série n 5 : Optimisation

Plus en détail

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme Distance et classification Cours 4: Traitement du signal et reconnaissance de forme Plan Introduction Pré-traitement Segmentation d images Morphologie mathématique Extraction de caractéristiques Classification

Plus en détail

Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie. A. Arfaoui

Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie. A. Arfaoui Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie A. Arfaoui PLA Définitions Paramètres marginaux Covariance Coefficient de Corrélation Coefficient

Plus en détail

CHAPITRE 5. Michel LUBRANO. Octobre 2007. 1 Introduction 2

CHAPITRE 5. Michel LUBRANO. Octobre 2007. 1 Introduction 2 CHAPITRE 5 Inférence et Tests dans les Modèles Cointégrés Michel LUBRANO Octobre 2007 Contents 1 Introduction 2 2 La Methode de Engle et Granger 3 2.1 Estimation en deux étapes..........................

Plus en détail

Exercice n HF 0201 - Corrigé

Exercice n HF 0201 - Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Fréquentielle / Thématique : Construction des courbes IDF Exercice n HF 0201 - Corrigé Logo optimisé par J.-D.Bonjour,

Plus en détail

LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE

LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE Nous abordons dans cette leçon la partie analyse de sensibilité de la résolution d'un problème de programmation linéaire. Il s'agit d'étudier les conséquences

Plus en détail

1 FAITES CONNAISSANCE AVEC LA MÉTHODE DES PLANS D EXPÉRIENCES

1 FAITES CONNAISSANCE AVEC LA MÉTHODE DES PLANS D EXPÉRIENCES 1 FAITES CONNAISSANCE AVEC LA MÉTHODE DES PLANS D EXPÉRIENCES Si vous lisez ce livre c est que, probablement, vous faites des expériences et que vous cherchez à mieux les organiser. Vous cherchez surtout

Plus en détail

«L efficacité des EHPAD en France» auteurs: Brigitte DORMONT et Cécile MARTIN

«L efficacité des EHPAD en France» auteurs: Brigitte DORMONT et Cécile MARTIN «L efficacité des EHPAD en France» auteurs: Brigitte DORMONT et Cécile MARTIN JESF 2011 1 er et 2 décembre à Clermont-Ferrand Discutant: Charline Mourgues (CERDI- PhD Student). Introduction 1. Présentation

Plus en détail

4.1 Planification d une expérience complètement randomisée

4.1 Planification d une expérience complètement randomisée Chapitre 4 La validation des hypothèses d ANOVA à un facteur Dans le modèle standard d ANOVA, on a fait quelques hypothèses. Pour que les résultats de l analyse effectuée soient fiables, il est nécessaire

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

Bibliothèque de Traitement d Images en Niveaux de Gris

Bibliothèque de Traitement d Images en Niveaux de Gris TP Bibliothèque de Traitement d Images en Niveaux de Gris Étudiants : Besnier Alexandre Taforeau Julien Version 1.2 Janvier 2008 2008 Rapport TP - Version 1.2 i Table des matières Introduction 1 1 Objectif

Plus en détail

Statistiques de groupe

Statistiques de groupe Système Méthodologique d Aide à la Réalisation de Tests Statistiques de groupe et analyse des questions de votre épreuve Une unité de soutien de l IFRES Université de Liège L analyse des statistiques de

Plus en détail

PCA appliqué à la 2D et 3D Dernière mise à jour : avril 2011

PCA appliqué à la 2D et 3D Dernière mise à jour : avril 2011 Projet 2009 2010 Biométrie 3D PCA appliqué à la 2D et 3D Dernière mise à jour : avril 2011 Département : TIC Mots clés : Biométrie, Analyse d images, Vision, Caméra thermique, Caméra temps de vol, Détection

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Université du Québec à Montréal Introduction à l optimisation Donnée dans le cadre du cours Microéconomie II ECO2012 Baccalauréat en économique Par Dominique Duchesneau 21 janvier septembre 2008 Ce document

Plus en détail

1 Droite de régression de y en x

1 Droite de régression de y en x CHU Amiens IFTLM 2ème année, UPJV IUP Santé 2012-2013 Statistique Cours 2 Statistique descriptive à deux variables - Régression Le cours précédent traitait de la statistique descriptive univariée, c est-à-dire

Plus en détail

TP 3 : STATISTIQUE PARAMÉTRIQUE

TP 3 : STATISTIQUE PARAMÉTRIQUE Statistique Numérique et Analyse de Données Ecole des Ponts ParisTech, 2 ème année TP 3 : STATISTIQUE PARAMÉTRIQUE La séance de TP se fait sous environnement Windows, sauf si vous avez une nette préférence

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Régression linéaire et corrélation

Régression linéaire et corrélation CHAPITRE 10 Régression linéaire et corrélation 1. Introduction Dans ce chapitre, nous regarderons comment vérifier si une variable à un influence sur une autre variable afin de prédire une des variables

Plus en détail

Économétrie - Une Étude de la Création d Entreprise entre 1994 et 2007

Économétrie - Une Étude de la Création d Entreprise entre 1994 et 2007 LESAUX Loïc MAROT Gildas TANGUY Brewal Économétrie - Une Étude de la Création d Entreprise entre 1994 et 007 Charpentier Arthur Semestre 008 Master 1 Cadoret Isabelle 1 Plan Introduction... 3 Présentation

Plus en détail

SY09 Rapport TP4 : Analyse discriminante, régression logistique

SY09 Rapport TP4 : Analyse discriminante, régression logistique UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE SY09 Rapport TP4 : Analyse discriminante, régression logistique CUNI Frédéric 15 juin 2015 Objectifs du TP : Le but de ce TP est l application de l analyse discriminante

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2013-2014 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

Processus de Poisson. 3-602-84 Modèles probabilistes et stochastiques de la gestion. Geneviève Gauthier. Automne 2007. HEC Montréal.

Processus de Poisson. 3-602-84 Modèles probabilistes et stochastiques de la gestion. Geneviève Gauthier. Automne 2007. HEC Montréal. Processus de Poisson 3-602-84 Modèles probabilistes et stochastiques de la gestion Geneviève Gauthier HEC Montréal Automne 2007 1 Références Ce texte a été librement inspiré de notes prises au cours de

Plus en détail

geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap

geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap Université de Strasbourg Ségolen Geffray M2 - Statistique geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap Ces exercices seront effectués au moyen du logiciel

Plus en détail

Filtre de Wiener. Analyse en Composantes Principales

Filtre de Wiener. Analyse en Composantes Principales Filtre de Wiener Analyse en Composantes Principales Guillaume Obozinski LIGM/Ecole des Ponts - ParisTech Traitement de l information et vision artificielle Ecole des Ponts Filtre de Wiener Norbert Wiener

Plus en détail

Incertitudes expérimentales Étude de cas : logiciel Chute

Incertitudes expérimentales Étude de cas : logiciel Chute Nº 755 BULLETIN DE L UNION DES PHYSICIENS 883 Incertitudes expérimentales Étude de cas : logiciel Chute par Daniel BEAUFILS Institut National de Recherche Pédagogique, 910 Montrouge Juan-Carlos IMBROGNO

Plus en détail

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction Baccalauréat STL Biotechnologies juin 014 Polynésie Correction EXERCICE 1 Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire,

Plus en détail

Définitions Covariance Corrélation Meilleur prédicteur linéaire. Chapitre 5 Couple de variables aléatoires

Définitions Covariance Corrélation Meilleur prédicteur linéaire. Chapitre 5 Couple de variables aléatoires Chapitre 5 Couple de variables aléatoires Définitions 1 On appelle couple de variables aléatoires (discrètes) l application: Ω R ω (X (ω), Y (ω)) 2 La distribution d un couple de v.a. est définie par les

Plus en détail

Université d Orléans - Licence Economie et Gestion Statistique Mathématique

Université d Orléans - Licence Economie et Gestion Statistique Mathématique Université d Orléans - Licence Economie et Gestion tatistique Mathématique C. Hurlin. Correction du Contrôle de Décembre 9 Exercice Barème : 6 points. Ratio de harpe et tests paramétriques Question préliminaire

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

Erik PERNOD Calcul Scientifique 3 ème Année RESEAUX DE NEURONES

Erik PERNOD Calcul Scientifique 3 ème Année RESEAUX DE NEURONES Erik PERNOD Calcul Scientifique 3 ème Année RESEAUX DE NEURONES 1 TABLE DES MATIERES TABLE DES MATIERES... 2 I PERCEPTRON SIMPLE... 3 I.1 Introduction... 3 I.2 Algorithme... 3 I.3 Résultats... 4 1er exemple

Plus en détail

Modélisation AR et prédiction

Modélisation AR et prédiction T.P. 7 Modélisation AR et prédiction 1 Introduction au traitement de la parole 1.1 Généralités Un premier point concerne le choix de la fréquence d échantillonnage. Dans le domaine de la téléphonie cela

Plus en détail

Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex

Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Agrégation externe Année 2003-2004 Corrigé de l exercice sur le test

Plus en détail

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Zaher Mohdeb Université Mentouri Département de Mathématiques, Constantine, Algérie E-mail: zaher.mohdeb@umc.edu.dz

Plus en détail

Chapitre 7 Tests d hypothèse (partie 1)

Chapitre 7 Tests d hypothèse (partie 1) Chapitre 7 Tests d hypothèse (partie 1) I Qu est ce qu un test statistique? La philosophie est toujours la même : déterminer des informations sur une population à partir d informations sur un échantillon

Plus en détail

Chapitre 4. Estimation, Tests de Validation et Prévisions des Processus ARMA

Chapitre 4. Estimation, Tests de Validation et Prévisions des Processus ARMA Chapitre 4 Estimation, Tests de Validation et Prévisions des Processus ARMA Chapitre 4. Estimation, Tests de Validation, Prevision des Processus ARMA 49 a procédure de modélisation de Box et Jenkins (1976)

Plus en détail

ECONOMETRIE (*) Hélène Hamisultane

ECONOMETRIE (*) Hélène Hamisultane ECONOMERIE (*) Hélène Hamisultane I/ QU ES CE QUE L ECONOMERIE? II/ LE MODELE DE REGRESSION SIMPLE II/ Méthode d estimation des Moindres Carrés Ordinaires (MCO) II/ Hypothèses et propriétés des estimateurs

Plus en détail

Exercice II. l offre de transport (en tonnes.kilomètres) l effectif le poids de la flotte (en tonnes) le caractère public ou privée de la compagnie

Exercice II. l offre de transport (en tonnes.kilomètres) l effectif le poids de la flotte (en tonnes) le caractère public ou privée de la compagnie 1 Exercice II II. On dispose de données (fichier «aviation87.xls», section Exemples pour Excel) concernant le transport aérien en 1987, et indiquant pour 50 compagnies occidentales : Q L K PP l offre de

Plus en détail

Choix de Portefeuille

Choix de Portefeuille Année 2007-2008 Choix de orteeuille Christophe Boucher Chapitre. héorie de la décision en avenir incertain Critère d espérance d utilité L attitude vis-à-vis du risque Chapitre 2. Rendements et critères

Plus en détail

Analyse en composantes principales

Analyse en composantes principales Analyse en composantes principales Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Analyse en composantes principales p. 1/18 Introduction Objectifs Soit {x i } i=1,,l

Plus en détail

CODES CORRECTEURS D'ERREURS

CODES CORRECTEURS D'ERREURS CODES CORRECTEURS D'ERREURS Marc URO TABLE DES MATIÈRES DÉTECTION ET CORRECTION D'ERREURS... 6 CAS D'UN CANAL SANS SYMBOLE D'EFFACEMENT...6 CAS D'UN CANAL AVEC SYMBOLE D'EFFACEMENT...7 GÉNÉRATION ET DÉTECTION

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

Fiche PanaMaths Introduction au tracé de courbes avec Scilab

Fiche PanaMaths Introduction au tracé de courbes avec Scilab Fiche PanaMaths Introduction au tracé de courbes avec Scilab Introduction Ce document présuppose un certain niveau de connaissance du logiciel Scilab de la part du lecteur (de la lectrice) : calcul matriciel,

Plus en détail

Régression logistique

Régression logistique Régression logistique Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Régression logistique p. 1 Introduction Objectifs Le classifieur de Bayes est basé sur la comparaison des probabilités

Plus en détail

Statistiques I: Séance informatique - Corrections

Statistiques I: Séance informatique - Corrections Haute Ecole de Gestion Automne 2010 Geneva School of Business Administration Mercredi 8h15-10h00 A. Caboussat, STAT I Statistiques I: Séance informatique - Corrections Part I Exercices sur Excel Problème

Plus en détail

Fiabilité et pertinence des données Floating Car Data. dans le cas d études de trafic routier

Fiabilité et pertinence des données Floating Car Data. dans le cas d études de trafic routier Fiabilité et pertinence des données Floating Car Data dans le cas d études de trafic routier Introduction Les études de trafic nécessitent des données d entrées, et notamment : - Des données de comptage

Plus en détail

Chapitre 15 Variables Dépendantes Limitées et Qualitatives

Chapitre 15 Variables Dépendantes Limitées et Qualitatives Chapitre 15 Variables Dépendantes Limitées et Qualitatives 15.1 Introduction Les modèles de régression supposent de manière implicite que la variable dépendante, peut-être après une transformation logarithmique

Plus en détail

Analyse des données - Logiciel R

Analyse des données - Logiciel R Université de Strasbourg Analyse des données Master de Sciences, Spécialité Statistique 2012/13 Master Actuariat Emmanuel Périnel Analyse des données - Logiciel R TP n 2. L Analyse en Composantes Principales

Plus en détail

...x t. X t. = ( x t. ...x t+m 1 ) [ ( ) < r] (IV.1) ( r) Pr d X t +i

...x t. X t. = ( x t. ...x t+m 1 ) [ ( ) < r] (IV.1) ( r) Pr d X t +i IV. LE TEST BDS Nous désirons bâtir un test formel pour le chaos. Nous disposons pour ce faire d un outil puissant, l intégrale de corrélation, dont nous savons que l estimateur appartient à la famille

Plus en détail

Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL

Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL LINF 2275 Stat. explor. multidim. 1 A.C.P.: Analyse en Composantes Principales Analyse de la structure de la matrice

Plus en détail

Estimation et calibration des paramètres

Estimation et calibration des paramètres et calibration des paramètres 6-601-09 Simulation Monte Carlo Geneviève Gauthier HEC Montréal 1 1. Nous allons discuter des diverses façons de déterminer les paramètres des modèles que nous employons lors

Plus en détail

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Introduction aux modèles graphiques 2010/2011 Cours 2 6 octobre Enseignant: Francis Bach Scribe: Nicolas Cheifetz, Issam El Alaoui 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Soit

Plus en détail

Le MEDAF Modèle d'évaluation des actifs financiers

Le MEDAF Modèle d'évaluation des actifs financiers Le MEDAF Modèle d'évaluation des actifs financiers Comment le risque affecte-t-il la rentabilité espérée d'un investissement? Le MEDAF (CAPM = Capital Asset Pricing Model) donne une réponse cohérente.

Plus en détail

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION CHAPITRE 2 FONCTIONS I. INTRODUCTION Une fonction est «une machine à transformer des nombres». Par eemple, la fonction «carré» désigne la «machine» qui transforme les nombres en leurs carrés. Ainsi elle

Plus en détail

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 La calculatrice (conforme à la circulaire n o 99-186 du 16 novembre 1999) est autorisée. Le candidat est invité à faire figurer sur la copie

Plus en détail

Méthodes d estimation

Méthodes d estimation CHAPIRE 5 Méthodes d estimation On a vu que (B,C,Σ) ne peut être (en général) estimé par les MCO, du fait de la présence de variables endogènes explicatives dans chaque équation. Dans tous les cas, l estimation

Plus en détail

Statistique (MATH-F-315, Cours #3)

Statistique (MATH-F-315, Cours #3) Statistique (MATH-F-315, Cours #3) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES

HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES 105 HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES 1. Introduction En statistiques il arrive fréquemment que les individus soient décrits par un grand nombre de caractères. : voitures décrites par leur

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

Microéconométrie II. Exploiter des données à plusieurs dimensions Modèles basiques de panel

Microéconométrie II. Exploiter des données à plusieurs dimensions Modèles basiques de panel Claudio Araujo 9/09/03 Microéconométrie II. Eploer des données à plusieurs dimensions Modèles basiques de panel Claudio Araujo CERDI, Universé d Auvergne Clermont-Ferrand, France www.cerdi.org http://www.cerdi.org/claudio-araujo/perso/.

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire NICOD JEAN-MARC Master 2 Informatique Université de Franche-Comté UFR des Sciences et Techniques septembre 2008 NICOD JEAN-MARC Rappels sur les graphes 1 / 47 Sommaire 1 Exemple

Plus en détail

Éléments de correction du TD

Éléments de correction du TD Septembre 011 Éléments de correction du TD Stéphane Blin Introduction Je donne ici les éléments de correction de la question - de la marche de potentiel, ainsi que les éléments de corrections pour les

Plus en détail

Vision Par Ordinateur. Techniques Statistiques de la Reconnaissance de Forme. Segmentation...2. Variables Aléatoires...7

Vision Par Ordinateur. Techniques Statistiques de la Reconnaissance de Forme. Segmentation...2. Variables Aléatoires...7 Vision Par Ordinateur James L. Crowley DEA IVR Premier Bimestre 1999/00 Séance 4 26 octobre 1999 Plan de la séance : Techniques Statistiques de la Reconnaissance de Forme Segmentation...2 La Distribution

Plus en détail

Chapitre 2 : Les systèmes d équations récurrentes linéaires. dans

Chapitre 2 : Les systèmes d équations récurrentes linéaires. dans Chapitre 2 : Les systèmes d équations récurrentes linéaires dans Sommaire Sandrine CHARLES 1 Introduction... 3 2 Rappels sur les formes de Jordan réelles dans... 4 2.1 Deux valeurs propres réelles distinctes

Plus en détail

Feuille de Travaux Dirigés n o 10 Régression linéaire simple avec R

Feuille de Travaux Dirigés n o 10 Régression linéaire simple avec R Feuille de Travaux Dirigés n o 10 Régression linéaire simple avec R Exercice X.1. Étude de la pollution de l air. Cet exercice est issu du livre «Statistiques avec R», Pierre-André Cornillon et autres,

Plus en détail

TESTS DE NORMALITE. qu elle est symétrique ) son moment centré d ordre 3 est nul 3 = 0. 3 estimé par c 3 =

TESTS DE NORMALITE. qu elle est symétrique ) son moment centré d ordre 3 est nul 3 = 0. 3 estimé par c 3 = TESTS DE NORMALITE Dans le chapitre précédent on a vu les propriétés nécessaires sur les erreurs pour que les coe cients des MCO soient les meilleurs. Dans la pratique bien sur ce ne sera pas toujours

Plus en détail

Deuxième partie II. Cours 4 à 6 : Construction d estimateurs, Modèle linéaire, Tests et intervalles de confiance

Deuxième partie II. Cours 4 à 6 : Construction d estimateurs, Modèle linéaire, Tests et intervalles de confiance Deuxième partie II Cours 4 à 6 : Construction d estimateurs, Modèle linéaire, Tests et intervalles de confiance (version corrigée, 4 avril 27) Construction d estimateurs 4 Construction d estimateurs Estimateur

Plus en détail

Les théorèmes de Gerschgorin et de Hadamard

Les théorèmes de Gerschgorin et de Hadamard Localisation des valeurs propres : Quelques propriétés sur les disques de Gerschgorin. Jean-Baptiste Campesato 22 septembre 29 Gerschgorin est parfois retranscrit en Gershgorin, Geršgorin, Hershhornou

Plus en détail

1 Programmation linéaire

1 Programmation linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2012 2013 Master d économie Cours de M. Desgraupes Méthodes Numériques Document 4 : Corrigé des exercices d optimisation linéaire

Plus en détail

2- La relation risque rentabilité attendue

2- La relation risque rentabilité attendue 2- La relation risque rentabilité attendue L'incertitude est au cœur de la logique financière. Par la composition de leur portefeuille, les investisseurs choisissent un profil de risque. Si on suppose

Plus en détail

RESOLUTION D UNE INEQUATION. Les symboles utilisés ( symbole d inégalité ) : Appellation 1 Appellation 2 Appellation 3 Vocabulaire à utiliser

RESOLUTION D UNE INEQUATION. Les symboles utilisés ( symbole d inégalité ) : Appellation 1 Appellation 2 Appellation 3 Vocabulaire à utiliser THEME : Les symboles utilisés ( symbole d inégalité ) : Appellation 1 Appellation Appellation Vocabulaire à utiliser < plus petit inférieur strictement inférieur strictement inférieur plus petit ou égal

Plus en détail

Processus stochastiques et traitement statistique de signaux aléatoires

Processus stochastiques et traitement statistique de signaux aléatoires GEI 756 Processus stochastiques et traitement statistique de signau aléatoires Bloc : Notions de base Semaine 3: Introduction au processus stochastiques Denis Gingras Janvier 03 Plan du cours Définition

Plus en détail

Statistiques - Notes de cours - M1. Elisabeth Gassiat

Statistiques - Notes de cours - M1. Elisabeth Gassiat Statistiques - Notes de cours - M1 Elisabeth Gassiat Table des matières 1 Introduction 5 1.1 Estimation et régions de confiance...................... 5 1.2 Tests.......................................

Plus en détail