ENSPS 3A ISAV Master ISTI AR. J. Gangloff

Dimension: px
Commencer à balayer dès la page:

Download "ENSPS 3A ISAV Master ISTI AR. J. Gangloff"

Transcription

1 Commande prédictive ENSPS 3A ISAV Master ISTI AR J. Gangloff

2 Plan 1.Introduction / Historique 2.Modélisation du système 3.Fonction de coût 4.Équations de prédiction 5.Commande optimale 6.Exemples 7.Réglage du GPC 8.Bibliographie

3 1. Introduction 1.1. Définition du «MPC» Model Predictive Control (MPC) : Utilisation explicite d'un modèle pour prédire le comportement futur du système Calcul d'une séquence d'échantillons futurs de commande minimisant une fonction de coût sur un horizon fuyant Seul le premier échantillon de commande est réellement appliqué au système. Toute la séquence est recalculée à chaque pas.

4 1. Introduction 1.2. Principe du «MPC» [ r t 1 ] r t N Optimisation [ u t N u 1 ] u t u t Système [ y t 1 ] y t N 2 Prédicteur y t N 2 mesures futures N 1 commandes futures N 2 consignes futures

5 1. Introduction 1.2. Principe du «MPC» r y Horizon fuyant t N 1 t N 2 t Objectif de l'optimisation : minimiser la surface

6 1. Introduction 1.3. Déclinaisons du «MPC» DMC (Dynamic Matrix Control) Utilise la réponse indicielle du système Processus stable et sans intégrateur MAC (Model Algorithmic Control) Utilise la réponse impulsionnelle PFC (Predictive Functional Control) Utilise un modèle d'état du système Peut s'appliquer aux systèmes non linéaires GPC (Generalized Predictive Control) Utilise un modèle CARMA Le plus répandu

7 1. Introduction 1.4. Avantages/inconvénient du «MPC» Avantages : Concept simple, réglage intuitif et aisé S'applique à tout type de systèmes, des plus simples aux plus complexes (systèmes instables, avec retards, non minimum de phase, très peu amortis, multivariables, non linéaires, variants) Si la consigne est connue à l'avance, son caractère prédictif permet de l'anticiper et donc d'améliorer le suivi. Numériquement stable Inconvénient : modélisation précise

8 2. Modélisation 2.1. Cas du MAC Modèle impulsionnel La sortie est reliée à l'entrée par l'équation suivante : y t = h i u t i i=1 On tronque aux N premiers échantillons : N y t k t = h i u t k i t i=1 Inconvénient : représentation non minimale

9 2. Modélisation 2.2. Cas du GPC Modélisation CARMA (Controller Auto- Regressive Moving-Average) : Avec : A q -1 y t =q -d B q -1 u t 1 C q-1 D q -1 e t On fait souvent : A q =1 a 1q a 2q a na q -na B q =b 0 b 1q b 2q b nb q -nb C q =1 c 1q c 2q c nc q -nc D q -1 = q -1 =1 q -1

10 3. Fonction de coût N 2 J= j=n 1 [ y t j t r t j ] 2 N u [ u t j 1 ] 2 j=1 Erreur quadratique Énergie de la commande Paramètres de réglage : N 2, N u,

11 4. Équations de prédiction Cas du GPC : Première équation diophantienne : Avec C=1 : C=E j A q -j F j On a : 1=E j A q -j F j deg E j = j 1 deg F j =na [ Ay t =Bq -d u t 1 e t ] E j q j A E j y t j =E j B u t j d 1 E j e t j

12 4. Équations de prédiction On utilise l'équation diophantienne : D'où on tire : Meilleure prédiction : 1 q -j F j y t j =E j B u t j d 1 E j e t j y t j =F j y t E j B u t j d 1 E j e t j y t j t =E j B u t j d 1 F j y t

13 4. Équations de prédiction Séparation des commandes : Deuxième équation diophantienne : E j B=G j q -j j Équation de prédiction : y t j t =G j u t j d 1 j u t d 1 F j y t Réponse forcée Réponse libre

14 5. Commande optimale Équation de prédiction : Avec : y=[ y t 1 t y t N 2 t ] T u=[ u t t u t N u 1 t ] T f=[ f t 1 t f t N 2 t ] T y=g u f G=[ g0 u] g N2 1 g N2 2 g 0 g N2 1 g N2 2 g N2 N 0 0 g 1 g 0 0 N 2 Les g 0... g N2-1 sont les échantillons de la réponse indicielle. N u

15 5. Commande optimale Fonction de coût : J= y r T y r u T u On a : u opt qui annule dj d u : u opt= G T G I -1 G T r f Avec : r=[r t 1 r t N 2 ] T consignes futures Seule la première valeur de la commande optimale est appliquée au système.

16 6. Exemples 6.1. Exemple simple Soit le système mis sous la forme CARIMA : -1 A=1 0.7q On a : B= q -1

17 6. Exemples 6.1. Exemple simple Ce qui peut être mis sous la forme : G = G T G I 3-1 G T f

18 6. Exemples 6.2. Résultats de simulation

19 6. Exemples 6.2. Résultats de simulation

20 7. Réglage du GPC Paramètre : Augmentation : ralentissement du système Diminution : commande plus énergique donc accélération du système Paramètre N 2 : Doit être au moins aussi grand que le transitoire du système corrigé Paramètre N 1 : Doit être supérieur au retard du système Paramètre N u : Tend vers une réponse pile quand N u ->0

21 8. Bibliographie R. Bitmead, M. Gevers et V. Wertz, «Adaptive Optimal control The thinking man 's GPC», Prentice Hall International, E. F. Camacho et C. Bordons, «Model Predictive Control», Springer Verlag, J.-M. Dion et D. Popescu, «Commande optimale, conception optimisée des systèmes», Diderot, P. Boucher et D. Dumur, «La commande prédictive», Technip, 1996.

Commande Prédictive. J. P. Corriou. LSGC-ENSIC-CNRS, Nancy. e-mail : corriou@ensic.inpl-nancy.fr

Commande Prédictive. J. P. Corriou. LSGC-ENSIC-CNRS, Nancy. e-mail : corriou@ensic.inpl-nancy.fr Commande Prédictive J P Corriou LSGC-ENSIC-CNRS, Nancy e-mail : corriou@ensicinpl-nancyfr Ý Consigne Trajectoire de référence Ý Ö Réponse Ý Horizon de prédiction À Ô ¹ Ù ¹ Temps Entrée Ù Horizon de commande

Plus en détail

Apports de la commande prédictive pour la régulation thermique des bâtiments

Apports de la commande prédictive pour la régulation thermique des bâtiments Apports de la commande prédictive pour la régulation thermique des bâtiments Petru-Daniel Moroşan, Romain Bourdais et Hervé Guéguen SUPELEC - IETR Avenue de la Boulaie - B.P. 81127 F-35511 Cesson-Sévigné

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

en sciences de l ingénieur

en sciences de l ingénieur Systèmes Automatisés Optimisation en sciences de l ingénieur présente les principales méthodes exactes d optimisation statique et dynamique. Parmi les méthodes décrites figurent : - la programmation linéaire

Plus en détail

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Analyse de la Commande Prédictive Floue : Algorithmes et Méthodologies de Solution

Analyse de la Commande Prédictive Floue : Algorithmes et Méthodologies de Solution République Algérienne Démocratique et Populaire MINISÈTRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE MÉMOIRE DE MAGISTÈRE Présenté à L UNIVERSITÉ MENTOURI CONSTANTINE FACULTÉ DES SCIENCES

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus

Plus en détail

Dimensionnement et contrôle d un véhicule hybride électrique basé sur une pile à combustible

Dimensionnement et contrôle d un véhicule hybride électrique basé sur une pile à combustible Électrotechnique du Futur 14&15 décembre 2011, Belfort Dimensionnement et contrôle d un véhicule hybride électrique basé sur une pile à combustible Alexandre RAVEY, Benjamin BLUNIER, Abdellatif MIRAOUI

Plus en détail

Modèle GARCH Application à la prévision de la volatilité

Modèle GARCH Application à la prévision de la volatilité Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes

Plus en détail

Chapitre 2: Prévisions des ventes

Chapitre 2: Prévisions des ventes Chapitre 2: Prévisions des ventes AVIS IMPORTANT : Ces notes sont basées sur le livre de Steven Nahmias : Production et Operations Analysis, 4 ième édition, McGraw-Hill Irwin 200. Les figures sont issues

Plus en détail

Prévision de la demande

Prévision de la demande But : Pour prendre des décisions relatives à la structure et au fonctionnement opérationnel de tout système logistique; il faut s appuyer sur un système de prévision fiable. Concerne le long, moyen et

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Domaine Sciences et Technologie Filière Génie Electrique Spécialité Automatique

Domaine Sciences et Technologie Filière Génie Electrique Spécialité Automatique Université des Sciences et de la Technologie Houari Boumédiene Faculté d Electronique et d Informatique Domaine Sciences et Technologie Filière Génie Electrique Spécialité Automatique 1 Programme de la

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Commande Prédictive des. Convertisseurs Statiques

Commande Prédictive des. Convertisseurs Statiques Commande Prédictive des Convertisseurs Statiques 1 Classification des méthodes de commande pour les convertisseurs statiques Commande des convertisseurs Hystérésis MLI Cde Linéaire Fuzzy Logic Sliding

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre.

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Isabelle Bombard, Bruno da Silva, Pascal Dufour *, Pierre Laurent, Joseph Lieto. Laboratoire d Automatique

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Notions d asservissements et de Régulations

Notions d asservissements et de Régulations I. Introduction I. Notions d asservissements et de Régulations Le professeur de Génie Electrique doit faire passer des notions de régulation à travers ses enseignements. Les notions principales qu'il a

Plus en détail

Apprentissage automatique

Apprentissage automatique Apprentissage automatique François Denis, Hachem Kadri, Cécile Capponi Laboratoire d Informatique Fondamentale de Marseille LIF - UMR CNRS 7279 Equipe QARMA francois.denis@lif.univ-mrs.fr 2 Chapitre 1

Plus en détail

SAS ENTERPRISE MINER POUR L'ACTUAIRE

SAS ENTERPRISE MINER POUR L'ACTUAIRE SAS ENTERPRISE MINER POUR L'ACTUAIRE Conférence de l Association des Actuaires I.A.R.D. 07 JUIN 2013 Sylvain Tremblay Spécialiste en formation statistique SAS Canada AGENDA Survol d Enterprise Miner de

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4.

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4. codage correcteur d erreurs convolutionnel. éfinition.... représentation en treillis...3 3. écodage : algorithme de Viterbi...3 4. istance libre...5 5. iagramme d état. Fonction de transfert...5 6. écodage

Plus en détail

PJE : Analyse de comportements avec Twitter Classification supervisée

PJE : Analyse de comportements avec Twitter Classification supervisée PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe arnaud.liefooghe@univ-lille1.fr Master 1 Informatique PJE2 2015-16 B. Derbel L. Jourdan A. Liefooghe 1 2 Agenda Partie

Plus en détail

Régulation par PID Mickaël CAMUS Etienne DEGUINE Daniel ROSS

Régulation par PID Mickaël CAMUS Etienne DEGUINE Daniel ROSS Régulation par PID Mickaël CAMUS Etienne DEGUINE Daniel ROSS 26/02/10 Plan Définition 1. Proportionnel 2. Intégral 3. Dérivé Réglages des coefficients 1. Différentes approches 2. Ziegler-Nichols 3. Process

Plus en détail

Modélisation et analyse des structures des réseaux hydrographiques

Modélisation et analyse des structures des réseaux hydrographiques Modélisation et analyse des structures des réseaux hydrographiques Université des Sciences et Techniques du Languedoc Stage de Master Parcours : Fonctionnement des Ecosystèmes Naturels Et Cultivés Réalisé

Plus en détail

Commande Optimale. B. Bayle. Télécom Physique Strasbourg - 3A ISAV, UdS - master IRIV. Commande Optimale 1

Commande Optimale. B. Bayle. Télécom Physique Strasbourg - 3A ISAV, UdS - master IRIV. Commande Optimale 1 Commande Optimale B. Bayle Télécom Physique Strasbourg - 3A ISAV, UdS - master IRIV Commande Optimale 1 Plan du cours Objectifs Problématique de commande optimale Méthodes et limitations Intérêt pratique

Plus en détail

Dimensionnement d'un vérin électrique

Dimensionnement d'un vérin électrique Dimensionnement d'un vérin électrique Problématique Pour restituer les mouvements (et les accélérations) d'un vol par exemple, une solution classique est l'architecture appelée plate-fome Stewart. Celle-ci

Plus en détail

L élaboration des données de comptabilité annuelle et l analyse économique

L élaboration des données de comptabilité annuelle et l analyse économique L élaboration des données de comptabilité annuelle et l analyse économique Stéphane Gregoir (stephane.gregoir@edhec.edu) Juin 2008 Objectifs Illustrer quelques uns des problèmes que l on peut rencontrer

Plus en détail

Méthodes d apprentissage statistique («Machine Learning»)

Méthodes d apprentissage statistique («Machine Learning») Méthodes d apprentissage statistique («Machine Learning») Journées d Etudes IARD Niort, 21 Mars 2014 Fabrice TAILLIEU Sébastien DELUCINGE Rémi BELLINA 2014 Milliman. All rights reserved Sommaire Introduction

Plus en détail

SY09 Rapport TP4 : Analyse discriminante, régression logistique

SY09 Rapport TP4 : Analyse discriminante, régression logistique UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE SY09 Rapport TP4 : Analyse discriminante, régression logistique CUNI Frédéric 15 juin 2015 Objectifs du TP : Le but de ce TP est l application de l analyse discriminante

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Commande H prédictive pour l asservissement par vision d un stabilisateur cardiaque actif

Commande H prédictive pour l asservissement par vision d un stabilisateur cardiaque actif Commande H prédictive pour l asservissement par vision d un stabilisateur cardiaque actif W. Bachta, E. Laroche, P. Renaud, J. Gangloff LSIIT, CNRS, Université de Strasbourg, INSA de Strasbourg, France

Plus en détail

MÉTHODES NUMÉRIQUES ET INCERTITUDES EN TERMINALE SCIENTIFIQUE ARTICULATION ENTRE MATHÉMATIQUES ET PHYSIQUE

MÉTHODES NUMÉRIQUES ET INCERTITUDES EN TERMINALE SCIENTIFIQUE ARTICULATION ENTRE MATHÉMATIQUES ET PHYSIQUE MÉTHODES NUMÉRIQUES ET INCERTITUDES EN TERMINALE SCIENTIFIQUE ARTICULATION ENTRE MATHÉMATIQUES ET PHYSIQUE Adeline DUCATÉ Professeur de physique chimie Lycée Marcel Pagnol, avenue de la Terrasse, 91205

Plus en détail

La régulation. Principe de régulation p. 2. La régulation PID p. 5. La régulation à modèle p. 12. Autres types de régulation p. 15

La régulation. Principe de régulation p. 2. La régulation PID p. 5. La régulation à modèle p. 12. Autres types de régulation p. 15 Le magazine Schneider Electric de l'enseignement technologique et professionnel Juin 2004 La régulation Principe de régulation p. 2 La régulation PID p. 5 La régulation est au cœur de toutes nos actions

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

IUT Toulouse II - Automatique et Systèmes Génie Industriel et Maintenance GIM 2 Promo 14 Année 2007-2008. AUTOMATIQUE et SYSTEMES

IUT Toulouse II - Automatique et Systèmes Génie Industriel et Maintenance GIM 2 Promo 14 Année 2007-2008. AUTOMATIQUE et SYSTEMES IUT Toulouse II - Automatique et Systèmes Génie Industriel et Blagnac Maintenance GIM 2 Promo 14 Année 2007-2008 AUTOMATIQUE et SYSTEMES Les cours, TD et TP seront entièrement programmés en 2 ème année.

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

1. Développer un outil pour l'évaluation de la capacité paysagère pour le développement de l'énergie éolienne en Belgique.

1. Développer un outil pour l'évaluation de la capacité paysagère pour le développement de l'énergie éolienne en Belgique. 0. Résumé 0.1 Objectifs du projet de recherche LACSAWEP L accroissement récent du prix de l énergie et la prise de conscience du réchauffement climatique ont stimulé le développement des parcs éoliens

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite): Paramétrisation. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite): Paramétrisation. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite): Paramétrisation Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale Paramétrisation Distances

Plus en détail

Techniques de DM pour la GRC dans les banques Page 11

Techniques de DM pour la GRC dans les banques Page 11 Techniques de DM pour la GRC dans les banques Page 11 II.1 Introduction Les techniques de data mining sont utilisé de façon augmentaté dans le domaine économique. Tels que la prédiction de certains indicateurs

Plus en détail

Analyse et Commande des systèmes linéaires

Analyse et Commande des systèmes linéaires Analyse et Commande des systèmes linéaires Frédéric Gouaisbaut LAAS-CNRS Tel : 05 61 33 63 07 email : fgouaisb@laas.fr webpage: www.laas.fr/ fgouaisb September 24, 2009 Présentation du Cours Volume Horaire:

Plus en détail

Étapes du développement et de l utilisation d un modèle de simulation

Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Formulation du problème Cueillette et analyse de données Conception

Plus en détail

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Table des matières 1 Graph Kernels for Molecular Structure-Activity Relationship Analysis

Plus en détail

La rugosité arithmétique (Ra), la rugosité quadratique moyenne (Rq) et les normes Lα

La rugosité arithmétique (Ra), la rugosité quadratique moyenne (Rq) et les normes Lα WORKSHOP RUGOSITE Université de Poitiers 11 Octobre 27 La rugosité arithmétique (Ra), la rugosité quadratique moyenne (Rq) et les normes Lα François HENNEBELLE 1,3, Maxence BIGERELLE 2 et Thierry COOREVITS

Plus en détail

Mémoire d Actuariat Tarification de la branche d assurance des accidents du travail Aymeric Souleau aymeric.souleau@axa.com 3 Septembre 2010 Plan 1 Introduction Les accidents du travail L assurance des

Plus en détail

Modélisation stochastique et analyse de données

Modélisation stochastique et analyse de données Modélisation stochastique et analyse de données Formation FIL - Année 1 Régression par la méthode des moindres carrés 2011/2012 Tony Bourdier Modélisation stochastique et analyse de données 1 / 25 Plan

Plus en détail

Expériences de physique et trafic routier (Distance de freinage)

Expériences de physique et trafic routier (Distance de freinage) Expériences de physique et trafic routier (Distance de freinage) Objectif: Bien que la plupart des programmes d'études n'incluent pas la vitesse comme sujet spécifique d'étude pour le degré secondaire,

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Voiture Jouet sur un plan incliné

Voiture Jouet sur un plan incliné Voiture Jouet sur un plan incliné Le but de l'expérience est d'explorer les notions élémentaires pour un corps en mouvement sur un plan incliné. On enregistrera puis on analysera les données relative à

Plus en détail

Modélisation d'un axe asservi d'un robot cueilleur de pommes

Modélisation d'un axe asservi d'un robot cueilleur de pommes Modélisation d'un axe asservi d'un robot cueilleur de pommes Problématique Le bras asservi Maxpid est issu d'un robot cueilleur de pommes. Il permet, après détection d'un fruit par un système optique,

Plus en détail

TP DE DATA MINING 2 : MODELISATION AVEC SPSS CLEMENTINE

TP DE DATA MINING 2 : MODELISATION AVEC SPSS CLEMENTINE TP DE DATA MINING 2 : MODELISATION AVEC SPSS CLEMENTINE EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET TP n 2 de DATA MINING : Modélisation 1 Jeu de données

Plus en détail

eduscol Former et évaluer par compétences dans le cadre des activités expérimentales Physique-chimie Grilles de compétences Mai 2010

eduscol Former et évaluer par compétences dans le cadre des activités expérimentales Physique-chimie Grilles de compétences Mai 2010 eduscol Physique-chimie Former et évaluer par compétences dans le cadre des activités expérimentales Grilles de compétences Mai 2010 MEN/DGESCO eduscol.education.fr/spc Former et Evaluer par s dans le

Plus en détail

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels

Plus en détail

Premier ordre Expression de la fonction de transfert : H(p) = K

Premier ordre Expression de la fonction de transfert : H(p) = K Premier ordre Expression de la fonction de transfert : H(p) = K + τ.p. K.e τ K.e /τ τ 86% 95% 63% 5% τ τ 3τ 4τ 5τ Temps Caractéristiques remarquables de la réponse à un échelon e(t) = e.u(t). La valeur

Plus en détail

Dynamique des vues ego-centrées de la topologie de l internet : analyse et modélisation

Dynamique des vues ego-centrées de la topologie de l internet : analyse et modélisation C. Magnien Dynamique de la topologie de l internet 1/28 Dynamique des vues ego-centrées de la topologie de l internet : analyse et modélisation Clémence Magnien Amélie Medem, Fabien Tarissan, Sergey Kirgizov

Plus en détail

Économétrie - Une Étude de la Création d Entreprise entre 1994 et 2007

Économétrie - Une Étude de la Création d Entreprise entre 1994 et 2007 LESAUX Loïc MAROT Gildas TANGUY Brewal Économétrie - Une Étude de la Création d Entreprise entre 1994 et 007 Charpentier Arthur Semestre 008 Master 1 Cadoret Isabelle 1 Plan Introduction... 3 Présentation

Plus en détail

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE Porteurs du projet Marc Arnaudon, professeur des universités, responsable des relations avec les entreprises.

Plus en détail

LAWSON SOFTWARE CONSULTING Lawson M3 SCM APS. Logiciels de planification. Pour vos appels d offre. 2 e ÉDITION

LAWSON SOFTWARE CONSULTING Lawson M3 SCM APS. Logiciels de planification. Pour vos appels d offre. 2 e ÉDITION Mars 2010 Pour vos appels d offre APS Logiciels de planification 2 e ÉDITION LAWSON SOFTWARE CONSULTING Lawson M3 SCM SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort 1. NOM de l'éditeur

Plus en détail

- Value at Risk paramétrique -

- Value at Risk paramétrique - Hueber Roger Duruz Patrik Prof : Dr Akimou Ossé, Dr Emmanuel Fragnière Assistant : M Giuseppe Catenazzo Application VBA-EXCEL en Finance & Risk Management - Value at Risk paramétrique - EES3 Genève, le

Plus en détail

Sujet 6: Dualité interpretations intuitives

Sujet 6: Dualité interpretations intuitives Sujet 6: Dualité interpretations intuitives MHT 423: Modélisation et optimisation Andrew J. Miller Dernière mise à jour: March 31, 2010 Dans ce sujet... 1 L analyse de sensibilité 2 1 L analyse de sensibilité

Plus en détail

LA GMAO ACCEDER : PRESENTATION et VISUALISATION

LA GMAO ACCEDER : PRESENTATION et VISUALISATION LA GMAO ACCEDER : PRESENTATION et VISUALISATION 1 AVANTAGES DE LA GMAO ACCEDER POUR L EXPLOITATION 2 VISUALISATION : QUELQUES FORMULAIRES DE RECHERCHE 3 VISUALISATION : QUELQUES FORMULAIRES DE SAISIE page.

Plus en détail

TOOLS GROUP OPTIMISATION DES STOCKS. Pour vos appels d offre. 2 e ÉDITION. SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort

TOOLS GROUP OPTIMISATION DES STOCKS. Pour vos appels d offre. 2 e ÉDITION. SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort Mars 2009 Pour vos appels d offre OPTIMISATION DES STOCKS 2 e ÉDITION TOOLS GROUP SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort QUESTIONNAIRE EDITEURS DE LOGICIELS D OPTIMISATION

Plus en détail

Module 4 - Ordonnancement Processus. Lecture: Chapitre 5

Module 4 - Ordonnancement Processus. Lecture: Chapitre 5 Module 4 - Ordonnancement Processus Lecture: Chapitre 5 1 Aperçu du module Concepts de base Critères d ordonnancement Algorithmes d ordonnancement Ordonnancement de multiprocesseurs Évaluation d algorithmes

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Analyse d un système de freinage récupératif d un véhicule électrique

Analyse d un système de freinage récupératif d un véhicule électrique Analyse d un système de freinage récupératif d un véhicule électrique Par Mohamed Amine Bey, Gabriel Georges, Pascal Jacq, Doha Hadouni, Roxane Duroux, Erwan Scornet, Encadré par Alexis Simonnet 1 Compréhension

Plus en détail

Etude d un écran photothermique de grandes dimensions adapté à la caractérisation par thermographie IR de champs électromagnétiques ultra brefs.

Etude d un écran photothermique de grandes dimensions adapté à la caractérisation par thermographie IR de champs électromagnétiques ultra brefs. Etude d un écran photothermique de grandes dimensions adapté à la caractérisation par thermographie IR de champs électromagnétiques ultra brefs. Daniel BALAGEAS *, Patrick LEVESQUE ONERA, Département des

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

AUTOMATIQUE Glossaire

AUTOMATIQUE Glossaire AUTOMATIQUE Glossaire J.J. Orteu 22 septembre 2005 Table des matières 1 Français Anglais 2 2 Anglais Français 5 1 1 Français Anglais Action dérivée Action intégrale Action proportionnelle Actionneur Amorti

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Construction à partir d une régression logistique

Construction à partir d une régression logistique Construction à partir d une régression logistique Ricco RAKOTOMALALA Université Lumière Lyon 2 Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 1 PLAN 1. Position du problème Grille de score?

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Résolution générique à la volée de systèmes d équations booléennes et applications

Résolution générique à la volée de systèmes d équations booléennes et applications Résolution générique à la volée de systèmes d équations booléennes et applications Radu Mateescu INRIA Rhône-Alpes / VASY Plan Introduction Systèmes d équations booléennes d alternance 1 Algorithmes de

Plus en détail

Petit tutoriel pour Régressi

Petit tutoriel pour Régressi Petit tutoriel pour Régressi Récupération de données : Entrer les données au clavier Dans l onglet «fichier», choisir «Nouveau» puis «Clavier». Créer ensuite le nombre de colonnes correspondant aux nombre

Plus en détail

Comparer l intérêt simple et l intérêt composé

Comparer l intérêt simple et l intérêt composé Comparer l intérêt simple et l intérêt composé Niveau 11 Dans la présente leçon, les élèves compareront divers instruments d épargne et de placement en calculant l intérêt simple et l intérêt composé.

Plus en détail

Chapitre 7 Solutions des exercices de révision

Chapitre 7 Solutions des exercices de révision Chapitre 7 Solutions des exercices de révision Section 7.2 La construction du réseau 1. Construction du réseau représentant un projet. La figure de gauche ci-dessous donne un réseau qui représente le projet

Plus en détail

Analyse de données fonctionnelles avec le paquet fda

Analyse de données fonctionnelles avec le paquet fda Analyse de données fonctionnelles avec le paquet fda Christophe Pouzat Jeudi 29 mars 2012 Outline Introduction Des données brutes aux fonctions Analyse de l échantillon de fonctions Sommaire Introduction

Plus en détail

Schneider Electric Vers des process plus économes Francis NICOLAS 1

Schneider Electric Vers des process plus économes Francis NICOLAS 1 Schneider Electric Vers des process plus économes Francis NICOLAS 1 «Le contrôle avancé pour des process plus économes» L expertise contrôle avancé Pour améliorer la performance de vos procédés Respect

Plus en détail

Solutions pour améliorer la performance des procédés cimentiers

Solutions pour améliorer la performance des procédés cimentiers Solutions pour améliorer la performance des procédés cimentiers Extrait de la Revue ABB 2/2007 L industrie cimentière est grosse consommatrice d énergie thermique et électrique dont les coûts au niveau

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Cours Systèmes d exploitation 1

Cours Systèmes d exploitation 1 Cours Systèmes d exploitation 1 Achraf Othman Support du cours : www.achrafothman.net 1 Plan du cours Chapitre 1 : Gestion des processus Chapitre 2 : Ordonnancement des processus Chapitre 3 : La communication

Plus en détail

Valorisation dans le secteur de l assurance

Valorisation dans le secteur de l assurance DRAFT Valorisation dans le secteur de l assurance Philippe TRAINAR Chief Risk Officer, SCOR Group Colloque de l Association de Comptabilité Nationale 2-4 juin 2010, Paris INTRODUCTION La question de la

Plus en détail

Simulation Examen de Statistique Approfondie II **Corrigé **

Simulation Examen de Statistique Approfondie II **Corrigé ** Simulation Examen de Statistique Approfondie II **Corrigé ** Ces quatre exercices sont issus du livre d exercices de François Husson et de Jérôme Pagès intitulé Statistiques générales pour utilisateurs,

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

La régression logistique

La régression logistique La régression logistique Présentation pour le cours SOL6210, Analyse quantitative avancée Claire Durand, 2015 1 Utilisation PQuand la variable dépendante est nominale ou ordinale < Deux types selon la

Plus en détail

Apprentissage supervisé

Apprentissage supervisé Apprentissage supervisé 1 Apprendre aux ordinateurs à apprendre Objectif : appliquer la démarche de l apprentissage par l exemple à l ordinateur. Montrer des exemples à l ordinateur en lui disant de quoi

Plus en détail

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page /5 Terminale STI2D - Bac 203 - Polynésie - Corrigé. TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page 2/5 Exercice QCM. Le carré de

Plus en détail

DYNASYS n.skep APS. Logiciels de planification. Pour vos appels d offre. 2 e ÉDITION

DYNASYS n.skep APS. Logiciels de planification. Pour vos appels d offre. 2 e ÉDITION Mars 2010 Pour vos appels d offre APS Logiciels de planification 2 e ÉDITIN DYNASYS n.skep SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort 1. NM de l'éditeur DynaSys 2. Appartenance

Plus en détail

Commande prédictive à base de modèle pour le trafic urbain bi-modal

Commande prédictive à base de modèle pour le trafic urbain bi-modal Commande prédictive à base de modèle pour le trafic urbain bi-modal Neïla BHOURI, Djilali TOUAZI INRETS / GRETIA Avenue du Général Malleret-Joinville, 9 Arcueil Cedex, France neilabhouri@inretsfr, touazi_djilali@yahoofr

Plus en détail

Identification et réglage assisté par ordinateur d un processus thermique

Identification et réglage assisté par ordinateur d un processus thermique I- But de la manipulation : Identification et réglage assisté par ordinateur d un processus thermique Le but est de procéder à la modélisation et à l identification paramétrique d un procédé considéré

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Calcul garanti des contraintes pour la planification sécurisée de trajectoire

Calcul garanti des contraintes pour la planification sécurisée de trajectoire Calcul garanti des contraintes pour la planification sécurisée de trajectoire Application à la génération de trajectoire articulaire pour un patient paraplégique sous Stimulation Électrique Fonctionnelle

Plus en détail

Co Design Mécanique/ Contrôle d Attitude d un Satellite Flexible avec Commande Robuste Structurée

Co Design Mécanique/ Contrôle d Attitude d un Satellite Flexible avec Commande Robuste Structurée Co Design Mécanique/ Contrôle d Attitude d un Satellite Flexible avec Commande Robuste Structurée Etude supervisé par: Jose Alvaro PEREZ GONZALEZ Doctorant à ONERA DCSD Christelle PITTET Thomas LOQUEN

Plus en détail

Entraînement de la force musculaire

Entraînement de la force musculaire Module S.PH.370.0301.F.08 Evaluation et traitement des fonctions musculo-squelettiques Membre inférieur Entraînement de la force musculaire Les modes de contraction Isométrique Concentrique Excentrique

Plus en détail

Modélisation expérimentale de la dynamique d un mini drone par approche à erreur de sortie

Modélisation expérimentale de la dynamique d un mini drone par approche à erreur de sortie Modélisation expérimentale de la dynamique d un mini drone par approche à erreur de sortie Elie Tohme 1, Guillaume Mercère 1, Régis Ouvrard 1, Thierry Poinot 1 et Alain Farcy 2 1 Université de Poitiers,

Plus en détail

Commande prédictive distribuée. Approches appliquées à la régulation thermique des bâtiments

Commande prédictive distribuée. Approches appliquées à la régulation thermique des bâtiments Commande prédictive distribuée. Approches appliquées à la régulation thermique des bâtiments Petru-Daniel Morosan To cite this version: Petru-Daniel Morosan. Commande prédictive distribuée. Approches appliquées

Plus en détail