ENSPS 3A ISAV Master ISTI AR. J. Gangloff

Dimension: px
Commencer à balayer dès la page:

Download "ENSPS 3A ISAV Master ISTI AR. J. Gangloff"

Transcription

1 Commande prédictive ENSPS 3A ISAV Master ISTI AR J. Gangloff

2 Plan 1.Introduction / Historique 2.Modélisation du système 3.Fonction de coût 4.Équations de prédiction 5.Commande optimale 6.Exemples 7.Réglage du GPC 8.Bibliographie

3 1. Introduction 1.1. Définition du «MPC» Model Predictive Control (MPC) : Utilisation explicite d'un modèle pour prédire le comportement futur du système Calcul d'une séquence d'échantillons futurs de commande minimisant une fonction de coût sur un horizon fuyant Seul le premier échantillon de commande est réellement appliqué au système. Toute la séquence est recalculée à chaque pas.

4 1. Introduction 1.2. Principe du «MPC» [ r t 1 ] r t N Optimisation [ u t N u 1 ] u t u t Système [ y t 1 ] y t N 2 Prédicteur y t N 2 mesures futures N 1 commandes futures N 2 consignes futures

5 1. Introduction 1.2. Principe du «MPC» r y Horizon fuyant t N 1 t N 2 t Objectif de l'optimisation : minimiser la surface

6 1. Introduction 1.3. Déclinaisons du «MPC» DMC (Dynamic Matrix Control) Utilise la réponse indicielle du système Processus stable et sans intégrateur MAC (Model Algorithmic Control) Utilise la réponse impulsionnelle PFC (Predictive Functional Control) Utilise un modèle d'état du système Peut s'appliquer aux systèmes non linéaires GPC (Generalized Predictive Control) Utilise un modèle CARMA Le plus répandu

7 1. Introduction 1.4. Avantages/inconvénient du «MPC» Avantages : Concept simple, réglage intuitif et aisé S'applique à tout type de systèmes, des plus simples aux plus complexes (systèmes instables, avec retards, non minimum de phase, très peu amortis, multivariables, non linéaires, variants) Si la consigne est connue à l'avance, son caractère prédictif permet de l'anticiper et donc d'améliorer le suivi. Numériquement stable Inconvénient : modélisation précise

8 2. Modélisation 2.1. Cas du MAC Modèle impulsionnel La sortie est reliée à l'entrée par l'équation suivante : y t = h i u t i i=1 On tronque aux N premiers échantillons : N y t k t = h i u t k i t i=1 Inconvénient : représentation non minimale

9 2. Modélisation 2.2. Cas du GPC Modélisation CARMA (Controller Auto- Regressive Moving-Average) : Avec : A q -1 y t =q -d B q -1 u t 1 C q-1 D q -1 e t On fait souvent : A q =1 a 1q a 2q a na q -na B q =b 0 b 1q b 2q b nb q -nb C q =1 c 1q c 2q c nc q -nc D q -1 = q -1 =1 q -1

10 3. Fonction de coût N 2 J= j=n 1 [ y t j t r t j ] 2 N u [ u t j 1 ] 2 j=1 Erreur quadratique Énergie de la commande Paramètres de réglage : N 2, N u,

11 4. Équations de prédiction Cas du GPC : Première équation diophantienne : Avec C=1 : C=E j A q -j F j On a : 1=E j A q -j F j deg E j = j 1 deg F j =na [ Ay t =Bq -d u t 1 e t ] E j q j A E j y t j =E j B u t j d 1 E j e t j

12 4. Équations de prédiction On utilise l'équation diophantienne : D'où on tire : Meilleure prédiction : 1 q -j F j y t j =E j B u t j d 1 E j e t j y t j =F j y t E j B u t j d 1 E j e t j y t j t =E j B u t j d 1 F j y t

13 4. Équations de prédiction Séparation des commandes : Deuxième équation diophantienne : E j B=G j q -j j Équation de prédiction : y t j t =G j u t j d 1 j u t d 1 F j y t Réponse forcée Réponse libre

14 5. Commande optimale Équation de prédiction : Avec : y=[ y t 1 t y t N 2 t ] T u=[ u t t u t N u 1 t ] T f=[ f t 1 t f t N 2 t ] T y=g u f G=[ g0 u] g N2 1 g N2 2 g 0 g N2 1 g N2 2 g N2 N 0 0 g 1 g 0 0 N 2 Les g 0... g N2-1 sont les échantillons de la réponse indicielle. N u

15 5. Commande optimale Fonction de coût : J= y r T y r u T u On a : u opt qui annule dj d u : u opt= G T G I -1 G T r f Avec : r=[r t 1 r t N 2 ] T consignes futures Seule la première valeur de la commande optimale est appliquée au système.

16 6. Exemples 6.1. Exemple simple Soit le système mis sous la forme CARIMA : -1 A=1 0.7q On a : B= q -1

17 6. Exemples 6.1. Exemple simple Ce qui peut être mis sous la forme : G = G T G I 3-1 G T f

18 6. Exemples 6.2. Résultats de simulation

19 6. Exemples 6.2. Résultats de simulation

20 7. Réglage du GPC Paramètre : Augmentation : ralentissement du système Diminution : commande plus énergique donc accélération du système Paramètre N 2 : Doit être au moins aussi grand que le transitoire du système corrigé Paramètre N 1 : Doit être supérieur au retard du système Paramètre N u : Tend vers une réponse pile quand N u ->0

21 8. Bibliographie R. Bitmead, M. Gevers et V. Wertz, «Adaptive Optimal control The thinking man 's GPC», Prentice Hall International, E. F. Camacho et C. Bordons, «Model Predictive Control», Springer Verlag, J.-M. Dion et D. Popescu, «Commande optimale, conception optimisée des systèmes», Diderot, P. Boucher et D. Dumur, «La commande prédictive», Technip, 1996.

Commande Prédictive. J. P. Corriou. LSGC-ENSIC-CNRS, Nancy. e-mail : corriou@ensic.inpl-nancy.fr

Commande Prédictive. J. P. Corriou. LSGC-ENSIC-CNRS, Nancy. e-mail : corriou@ensic.inpl-nancy.fr Commande Prédictive J P Corriou LSGC-ENSIC-CNRS, Nancy e-mail : corriou@ensicinpl-nancyfr Ý Consigne Trajectoire de référence Ý Ö Réponse Ý Horizon de prédiction À Ô ¹ Ù ¹ Temps Entrée Ù Horizon de commande

Plus en détail

Apports de la commande prédictive pour la régulation thermique des bâtiments

Apports de la commande prédictive pour la régulation thermique des bâtiments Apports de la commande prédictive pour la régulation thermique des bâtiments Petru-Daniel Moroşan, Romain Bourdais et Hervé Guéguen SUPELEC - IETR Avenue de la Boulaie - B.P. 81127 F-35511 Cesson-Sévigné

Plus en détail

Analyse de la Commande Prédictive Floue : Algorithmes et Méthodologies de Solution

Analyse de la Commande Prédictive Floue : Algorithmes et Méthodologies de Solution République Algérienne Démocratique et Populaire MINISÈTRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE MÉMOIRE DE MAGISTÈRE Présenté à L UNIVERSITÉ MENTOURI CONSTANTINE FACULTÉ DES SCIENCES

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre.

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Isabelle Bombard, Bruno da Silva, Pascal Dufour *, Pierre Laurent, Joseph Lieto. Laboratoire d Automatique

Plus en détail

Commande Prédictive des. Convertisseurs Statiques

Commande Prédictive des. Convertisseurs Statiques Commande Prédictive des Convertisseurs Statiques 1 Classification des méthodes de commande pour les convertisseurs statiques Commande des convertisseurs Hystérésis MLI Cde Linéaire Fuzzy Logic Sliding

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4.

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4. codage correcteur d erreurs convolutionnel. éfinition.... représentation en treillis...3 3. écodage : algorithme de Viterbi...3 4. istance libre...5 5. iagramme d état. Fonction de transfert...5 6. écodage

Plus en détail

Apprentissage automatique

Apprentissage automatique Apprentissage automatique François Denis, Hachem Kadri, Cécile Capponi Laboratoire d Informatique Fondamentale de Marseille LIF - UMR CNRS 7279 Equipe QARMA francois.denis@lif.univ-mrs.fr 2 Chapitre 1

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Modèle GARCH Application à la prévision de la volatilité

Modèle GARCH Application à la prévision de la volatilité Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes

Plus en détail

SAS ENTERPRISE MINER POUR L'ACTUAIRE

SAS ENTERPRISE MINER POUR L'ACTUAIRE SAS ENTERPRISE MINER POUR L'ACTUAIRE Conférence de l Association des Actuaires I.A.R.D. 07 JUIN 2013 Sylvain Tremblay Spécialiste en formation statistique SAS Canada AGENDA Survol d Enterprise Miner de

Plus en détail

Techniques de DM pour la GRC dans les banques Page 11

Techniques de DM pour la GRC dans les banques Page 11 Techniques de DM pour la GRC dans les banques Page 11 II.1 Introduction Les techniques de data mining sont utilisé de façon augmentaté dans le domaine économique. Tels que la prédiction de certains indicateurs

Plus en détail

Notions d asservissements et de Régulations

Notions d asservissements et de Régulations I. Introduction I. Notions d asservissements et de Régulations Le professeur de Génie Electrique doit faire passer des notions de régulation à travers ses enseignements. Les notions principales qu'il a

Plus en détail

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

2.1 Rapport scientifique concis

2.1 Rapport scientifique concis 2.1 Rapport scientifique concis On se contentera de donner les directions générales dans lesquelles les membres du Lamav ont obtenu des résultats durant les quatre dernières années. Pour plus de détails,

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Chapitre 7 Solutions des exercices de révision

Chapitre 7 Solutions des exercices de révision Chapitre 7 Solutions des exercices de révision Section 7.2 La construction du réseau 1. Construction du réseau représentant un projet. La figure de gauche ci-dessous donne un réseau qui représente le projet

Plus en détail

Modélisation d'un axe asservi d'un robot cueilleur de pommes

Modélisation d'un axe asservi d'un robot cueilleur de pommes Modélisation d'un axe asservi d'un robot cueilleur de pommes Problématique Le bras asservi Maxpid est issu d'un robot cueilleur de pommes. Il permet, après détection d'un fruit par un système optique,

Plus en détail

LA GMAO ACCEDER : PRESENTATION et VISUALISATION

LA GMAO ACCEDER : PRESENTATION et VISUALISATION LA GMAO ACCEDER : PRESENTATION et VISUALISATION 1 AVANTAGES DE LA GMAO ACCEDER POUR L EXPLOITATION 2 VISUALISATION : QUELQUES FORMULAIRES DE RECHERCHE 3 VISUALISATION : QUELQUES FORMULAIRES DE SAISIE page.

Plus en détail

الجمهىريت الجسائريت الديمقراطيت الشعبيت وزارة التعليم العالي و البحث العلمي

الجمهىريت الجسائريت الديمقراطيت الشعبيت وزارة التعليم العالي و البحث العلمي الجمهىريت الجسائريت الديمقراطيت الشعبيت وزارة التعليم العالي و البحث العلمي République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Ecole Nationale

Plus en détail

Mémoire d Actuariat Tarification de la branche d assurance des accidents du travail Aymeric Souleau aymeric.souleau@axa.com 3 Septembre 2010 Plan 1 Introduction Les accidents du travail L assurance des

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

CHAPITRE 1 : ETAT DE L ART.

CHAPITRE 1 : ETAT DE L ART. CHAPITRE 1 : ETAT DE L ART. 1. INTRODUCTION De nos jours, les machines tournantes sont de plus en plus performantes notamment en terme de rapport masse/puissance. Cela implique qu elles deviennent de plus

Plus en détail

Nicolas Petit. Commande prédictive. Notes de cours Option Procédé Environnement. http ://cas.ensmp.fr/~petit/

Nicolas Petit. Commande prédictive. Notes de cours Option Procédé Environnement. http ://cas.ensmp.fr/~petit/ Nicolas Petit Commande prédictive Notes de cours Option Procédé Environnement http ://cas.ensmp.fr/~petit/ École Centrale Paris Année scolaire 2005-2006 Table des matières 1 Théorie générale de la commande

Plus en détail

La régulation. Principe de régulation p. 2. La régulation PID p. 5. La régulation à modèle p. 12. Autres types de régulation p. 15

La régulation. Principe de régulation p. 2. La régulation PID p. 5. La régulation à modèle p. 12. Autres types de régulation p. 15 Le magazine Schneider Electric de l'enseignement technologique et professionnel Juin 2004 La régulation Principe de régulation p. 2 La régulation PID p. 5 La régulation est au cœur de toutes nos actions

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Premier ordre Expression de la fonction de transfert : H(p) = K

Premier ordre Expression de la fonction de transfert : H(p) = K Premier ordre Expression de la fonction de transfert : H(p) = K + τ.p. K.e τ K.e /τ τ 86% 95% 63% 5% τ τ 3τ 4τ 5τ Temps Caractéristiques remarquables de la réponse à un échelon e(t) = e.u(t). La valeur

Plus en détail

Construction à partir d une régression logistique

Construction à partir d une régression logistique Construction à partir d une régression logistique Ricco RAKOTOMALALA Université Lumière Lyon 2 Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 1 PLAN 1. Position du problème Grille de score?

Plus en détail

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans

Plus en détail

Comparer l intérêt simple et l intérêt composé

Comparer l intérêt simple et l intérêt composé Comparer l intérêt simple et l intérêt composé Niveau 11 Dans la présente leçon, les élèves compareront divers instruments d épargne et de placement en calculant l intérêt simple et l intérêt composé.

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

FUTURMASTER FUTURMASTER

FUTURMASTER FUTURMASTER Mars 2010 Pour vos appels d offre APS Logiciels de planification 2 e ÉDITION FUTURMASTER FUTURMASTER SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort 1. NOM de l'éditeur FUTURMASTER

Plus en détail

SolarWinds Virtualization Manager

SolarWinds Virtualization Manager SolarWinds Virtualization Manager Une gestion de la virtualisation puissante et unifiée qui ne cassera pas votre tirelire! Chez SolarWinds, nous avons amélioré la façon dont les professionnels de l'informatique

Plus en détail

Analyse et Commande des systèmes linéaires

Analyse et Commande des systèmes linéaires Analyse et Commande des systèmes linéaires Frédéric Gouaisbaut LAAS-CNRS Tel : 05 61 33 63 07 email : fgouaisb@laas.fr webpage: www.laas.fr/ fgouaisb September 24, 2009 Présentation du Cours Volume Horaire:

Plus en détail

Modélisation Prédictive Robuste

Modélisation Prédictive Robuste INTELLIGENT TECHNOLOGIES Modélisation Prédictive Robuste GENERATE P R E D I C T O P T I M I Z E Découvrir l'essentiel. pour comprendre, prédire et optimiser. est une solution inédite de modélisation et

Plus en détail

LA GESTION DES EVENEMENTS PLUVIEUX

LA GESTION DES EVENEMENTS PLUVIEUX SMART WATER NETWORKS LA GESTION DES EVENEMENTS PLUVIEUX Les défis posés au gestionnaire du système d assainissement La sécurité des biens et des personnes Anticiper et limiter les risques de débordements

Plus en détail

Découverte du tableur CellSheet

Découverte du tableur CellSheet Découverte du tableur CellSheet l application pour TI-83 Plus et TI-84 Plus. Réalisé par Guy Juge Professeur de mathématiques et formateur IUFM de l académie de Caen Pour l équipe des formateurs T 3 Teachers

Plus en détail

Modélisation de l'amortissement en dynamique linéaire

Modélisation de l'amortissement en dynamique linéaire Titre : Modélisation de l'amortissement en dynamique linéa[...] Date : 4/11/11 Page : 1/13 Modélisation de l'amortissement en dynamique linéaire Résumé : Les analyses dynamiques linéaires des structures

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

Mises en relief. Information supplémentaire relative au sujet traité. Souligne un point important à ne pas négliger.

Mises en relief. Information supplémentaire relative au sujet traité. Souligne un point important à ne pas négliger. Cet ouvrage est fondé sur les notes d un cours dispensé pendant quelques années à l Institut universitaire de technologie de Grenoble 2, au sein du Département statistique et informatique décisionnelle

Plus en détail

Entraînement de la force musculaire

Entraînement de la force musculaire Module S.PH.370.0301.F.08 Evaluation et traitement des fonctions musculo-squelettiques Membre inférieur Entraînement de la force musculaire Les modes de contraction Isométrique Concentrique Excentrique

Plus en détail

Utilisation de PARI/GP pour la théorie algébrique des nombres. Bill Allombert

Utilisation de PARI/GP pour la théorie algébrique des nombres. Bill Allombert Utilisation de PARI/GP pour la théorie algébrique des nombres. Bill Allombert Université Montpellier 2 LIRMM/I3M (avec Karim Belabas, Université Bordeaux 1) 22/01/2010 GP> Qu est ce que PARI/GP Le système

Plus en détail

Projet C++ :Salle de marchés

Projet C++ :Salle de marchés Université Paris Diderot Langages à Objets Avancés Master 1 II Année 2010-2011 Projet C++ :Salle de marchés November 24, 2010 1 Salle de marchés C est un lieu qui regroupe différents services spécialisés

Plus en détail

Magister en : Automatique. Commande Prédictive Non Linéaire en Utilisant Les Systèmes Neuro-Flous et les Algorithmes Génétiques.

Magister en : Automatique. Commande Prédictive Non Linéaire en Utilisant Les Systèmes Neuro-Flous et les Algorithmes Génétiques. الجوهىريت الجسائريت الديوقراطيت الشعبيت République Algérienne Démocratique et Populaire وزارة التعلين العالي و البحث العلوي Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS

La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS Rev. Energ. Ren. : Chemss 2000 39-44 La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS D.K. Mohamed, A. Midoun et F. Safia Département

Plus en détail

Instrumentation électronique

Instrumentation électronique Instrumentation électronique Le cours d électrocinétique donne lieu à de nombreuses études expérimentales : tracé de caractéristiques statique et dynamique de dipôles, étude des régimes transitoire et

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Master de Bioinformatique et Biologie des Systèmes Toulouse http://m2pbioinfo.biotoul.fr Responsable : Pr. Gwennaele Fichant

Master de Bioinformatique et Biologie des Systèmes Toulouse http://m2pbioinfo.biotoul.fr Responsable : Pr. Gwennaele Fichant Master de Bioinformatique et Biologie des Systèmes Toulouse http://m2pbioinfo.biotoul.fr Responsable : Pr. Gwennaele Fichant Parcours: Master 1 : Bioinformatique et biologie des Systèmes dans le Master

Plus en détail

Commande prédictive, pilote automatique de l usine écoperformante

Commande prédictive, pilote automatique de l usine écoperformante Commande prédictive, pilote automatique de l usine écoperformante Konrad S. Stadler, Eduardo Gallestey, Jan Poland, Greg Cairns Optimiser la production tout en se pliant aux obligations contractuelles

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

W SCHRACK-INFO. DESCRIPTION DIM (LxHxP) mm EMB. TYPE POIDS N DE COMMANDE. Horloge hebdomadaire 35x82x68 1 V97/2digi30 0,17 BZ327522

W SCHRACK-INFO. DESCRIPTION DIM (LxHxP) mm EMB. TYPE POIDS N DE COMMANDE. Horloge hebdomadaire 35x82x68 1 V97/2digi30 0,17 BZ327522 W 2 CANAUX, 2 MODULES BZ327522 35 38 2 inverseur (1 / canal) Horloge de semaine Changement horaire été/hiver automatique Programmation par jour de semaine par consigne fixe 212 Réserve de marche: 3 ans

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

UNIVERSITÉ PARIS DESCARTES

UNIVERSITÉ PARIS DESCARTES UNIVERSITÉ PARIS DESCARTES MASTER Domaine DROIT, ÉCONOMIE, GESTION Mention MONNAIE,BANQUE, FINANCE, ASSURANCE Spécialité RISQUE, ASSURANCE, DÉCISION 2014 / 2015 Z.Trocellier Directeurs Pr Kouroche VAFAÏ

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

Overmind. Project Management Optimization

Overmind. Project Management Optimization Project Management Optimization Contenu Objectifs Expérience et compétences Project Management Optimization : Mission et Vision Grands programmes Données, Méthodologie et Résultats Process Appendix 1 Front

Plus en détail

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X INTRODUCTION La conception d'un mécanisme en vue de sa réalisation industrielle comporte plusieurs étapes. Avant d'aboutir à la maquette numérique du produit définitif, il est nécessaire d'effectuer une

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

Session de rattachement : comment faire parler vos données géographiques?

Session de rattachement : comment faire parler vos données géographiques? Contributions pratiques d une géostatistique raisonnée en environnement : méthodes et application à la cartographie nationale de la pollution par l ozone en France Nicolas Jeannée, GEOVARIANCES 49bis av.

Plus en détail

Imagerie interférométrique avec des données bruitées

Imagerie interférométrique avec des données bruitées Imagerie interférométrique avec des données bruitées Josselin Garnier (Université Paris Diderot) But de l imagerie : sonder un milieu inconnu avec des ondes pour en extraire de l information. Une méthode

Plus en détail

Analyse des Systèmes Asservis

Analyse des Systèmes Asservis Analyse des Systèmes Asservis Après quelques rappels, nous verrons comment évaluer deux des caractéristiques principales d'un système asservi : Stabilité et Précision. Si ces caractéristiques ne sont pas

Plus en détail

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers

Plus en détail

ماستر في مجال البحث فرع هندسة الكهرباء

ماستر في مجال البحث فرع هندسة الكهرباء Université Saint-Joseph Faculté d Ingénierie École Supérieure d Ingénieurs de Beyrouth MASTER RECHERCHE OPTION GÉNIE ÉLECTRIQUE ماستر في مجال البحث فرع هندسة الكهرباء Responsable : Professeur Ragi GHOSN

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Repères Gérer la capacité

Repères Gérer la capacité Repères Gérer la http://www.agilecom.fr Les enjeux de la gestion de la Réaliser cet ajustement est un effort continuel : La stratégie de l entreprise évolue avec la conjoncture ; Les métiers développent

Plus en détail

Valorisation dans le secteur de l assurance

Valorisation dans le secteur de l assurance DRAFT Valorisation dans le secteur de l assurance Philippe TRAINAR Chief Risk Officer, SCOR Group Colloque de l Association de Comptabilité Nationale 2-4 juin 2010, Paris INTRODUCTION La question de la

Plus en détail

Capital économique en assurance vie : utilisation des «replicating portfolios»

Capital économique en assurance vie : utilisation des «replicating portfolios» Capital économique en assurance vie : utilisation des «replicating portfolios» Anne LARPIN, CFO SL France Stéphane CAMON, CRO SL France 1 Executive summary Le bouleversement de la réglementation financière

Plus en détail

PROCONCEPT EASY START

PROCONCEPT EASY START PROCONCEPT EASY START Découvrez les avantages d une solution logicielle Suisse, développée spécialement pour couvrir l ensemble des besoins des PME DÉVELOPPÉE PAR UNE PME POUR LES PME Avec ProConcept Easy

Plus en détail

Les nouveautés de Femap 11.1

Les nouveautés de Femap 11.1 Siemens PLM Software Les nouveautés de Femap 11.1 Amélioration de la productivité des Ingénieurs calcul Avantages Manipulation plus rapide des modèles grâce à des performances graphiques améliorées Flexibilité

Plus en détail

Manuel DLCX Version 3.00 sept 2014

Manuel DLCX Version 3.00 sept 2014 EURODIEC 6 Rue de la commune de Paris Zone Indusrtielle 77370 NANGIS Manuel DLCX Version 3.00 sept 2014 Contrôleur d effort digital pour presse = Sommaire. Description...3 Les fonctionnalités du contrôleur

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

Componentisation et Aspectisation de l'équation de la chaleur ARC COA 07/09/06

Componentisation et Aspectisation de l'équation de la chaleur ARC COA 07/09/06 Componentisation et Aspectisation de l'équation de la chaleur ARC COA 07/09/06 1 Introduction et objectifs Etude sur une application legacy Java Equation de la chaleur "Helloworld" en simulation numérique

Plus en détail

Cours STAT 2150. "Statistique non paramétrique: Méthodes de lissage"

Cours STAT 2150. Statistique non paramétrique: Méthodes de lissage Cours STAT 2150 "Statistique non paramétrique: Méthodes de lissage" Année académique 2008-2009 Séance 1 1 Table de matière du cours 1. Introduction (Fonction de répartition, histogramme, propriétés d un

Plus en détail

FICHE UE Licence/Master Sciences, Technologies, Santé Mention Informatique

FICHE UE Licence/Master Sciences, Technologies, Santé Mention Informatique NOM DE L'UE : Algorithmique et programmation C++ LICENCE INFORMATIQUE Non Alt Alt S1 S2 S3 S4 S5 S6 Parcours : IL (Ingénierie Logicielle) SRI (Systèmes et Réseaux Informatiques) MASTER INFORMATIQUE Non

Plus en détail

Modules d automatismes simples

Modules d automatismes simples Modules d automatismes simples Solutions pour automatiser Modules d'automatismes Enfin, vraiment simple! Un concentré de solution Pour vos petites applications d'automatismes millenium gère : Temporisations

Plus en détail

MODÉLISATION DU FONCTIONNEMENT EN PARALLELE À DEUX OU PLUSIEURS POMPES CENTRIFUGES IDENTIQUES OU DIFFERENTES

MODÉLISATION DU FONCTIONNEMENT EN PARALLELE À DEUX OU PLUSIEURS POMPES CENTRIFUGES IDENTIQUES OU DIFFERENTES Annals of the University of Craiova, Electrical Engineering series, No. 30, 006 MODÉLISATION DU FONCTIONNEMENT EN PARALLELE À DEUX OU PLUSIEURS POMPES CENTRIFUGES IDENTIQUES OU DIFFERENTES Daniela POPESCU,

Plus en détail

AU CONTRAT DE SURVEILLANCE DES INSTALLATIONS DE CHAUFFAGE - EAU CHAUDE SANITAIRE (ECS)

AU CONTRAT DE SURVEILLANCE DES INSTALLATIONS DE CHAUFFAGE - EAU CHAUDE SANITAIRE (ECS) Service de l énergie (ScanE) AGCV suissetec USPI Genève AVENANT AU CONTRAT DE SURVEILLANCE DES INSTALLATIONS DE CHAUFFAGE - EAU CHAUDE SANITAIRE (ECS) entre ci-après désigné "le Client", représenté par

Plus en détail

MODELISATION ET COMMANDE PREDICTIVE D UNE STATION DE PRODUCTION D EAU GLACEE BASEE SUR UN COMPRESSEUR SCROLL

MODELISATION ET COMMANDE PREDICTIVE D UNE STATION DE PRODUCTION D EAU GLACEE BASEE SUR UN COMPRESSEUR SCROLL MEMOIRE Présenté en vue de l obtention du diplôme de MAGISTER THEME MODELISATION ET COMMANDE PREDICTIVE D UNE STATION DE PRODUCTION D EAU GLACEE BASEE SUR UN COMPRESSEUR SCROLL par Matoug Lamia 2008 Encadreur

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab

ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab notre compétence d'éditeur à votre service créée en juin 2010, Scilab enterprises propose services et support autour

Plus en détail

ITIL Gestion de la capacité

ITIL Gestion de la capacité ITIL Sommaire 1 GENERALITES 3 2 PERIMETRE DE LA GESTION DES CAPACITES 3 3 ACTIVITES ET LIVRABLES DE LA GESTION DES CAPACITES 4 3.1 ACTIVITES ITERATIVES OU GESTION DE PERFORMANCES : 4 3.2 GESTION DE LA

Plus en détail

Préleveur d'échantillons d eau automatique ELECTRO-MAGNUM /AQUAMAX 1 & 2 / SERVOTOP

Préleveur d'échantillons d eau automatique ELECTRO-MAGNUM /AQUAMAX 1 & 2 / SERVOTOP Préleveur d'échantillons d eau automatique ELECTRO-MAGNUM /AQUAMAX 1 & 2 / SERVOTOP Paramétrage du thermostat digital de réfrigération Modèle avec sonde NTC depuis début 2009 (4 touches en dessous de l'afficheur)

Plus en détail

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008) Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut

Plus en détail

LA PREVISION DU TAUX DE CHANGE. Finance internationale, 9 ème éd. Y. Simon & D. Lautier

LA PREVISION DU TAUX DE CHANGE. Finance internationale, 9 ème éd. Y. Simon & D. Lautier LA PREVISION DU TAUX DE CHANGE 1 Qui cherche à prévoir? Les entreprises Les banques Les fonds d investissement Les investisseurs institutionnels Pourquoi chercher à prévoir? Créances et dettes en devises

Plus en détail

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents Master ISI 2010-2011 Data Mining Recherche des sous-ensembles fréquents Yves Lechevallier INRIA-Rocquencourt E_mail : Yves.Lechevallier@inria.fr 1 Processus Data Mining Phase A : Entrepôt de données Entrepôt

Plus en détail

JDA SOFTWARE OPTIMISATION DES STOCKS. Pour vos appels d offre. 2 e ÉDITION. SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort

JDA SOFTWARE OPTIMISATION DES STOCKS. Pour vos appels d offre. 2 e ÉDITION. SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort Mars 2009 Pour vos appels d offre OPTIMISATION DES STOCKS 2 e ÉDITION JDA SOFTWARE SupplyChainMagazine.fr 19, rue Saint-Georges - 94700 Maisons-Alfort QUESTIONNAIRE EDITEURS DE LOGICIELS D OPTIMISATION

Plus en détail

Les arbres de décision

Les arbres de décision Les arbres de décision 25 Septembre 2007 Datamining 1 2007-2008 Plan 1 Le partitionnement récursif 2 C4.5 3 CART 4 Evaluation de performances 5 Bilan Datamining 2 2007-2008 Les données du Titanic Le partitionnement

Plus en détail

Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé

Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé 1 TGR Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé Simon Munier Institut des Sciences et Industries du Vivant et de l'environnement (AgroParisTech)

Plus en détail

Semestre 2 Spécialité «Analyse in silico des complexes macromolécules biologiques-médicaments»

Semestre 2 Spécialité «Analyse in silico des complexes macromolécules biologiques-médicaments» Master In silico Drug Design Semestre 2 Spécialité «Analyse in silico des complexes macromolécules biologiques-médicaments» 30NU01IS INITIATION A LA PROGRAMMATION (6 ECTS) Responsables : D. MESTIVIER,

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail