ENSPS 3A ISAV Master ISTI AR. J. Gangloff

Dimension: px
Commencer à balayer dès la page:

Download "ENSPS 3A ISAV Master ISTI AR. J. Gangloff"

Transcription

1 Commande prédictive ENSPS 3A ISAV Master ISTI AR J. Gangloff

2 Plan 1.Introduction / Historique 2.Modélisation du système 3.Fonction de coût 4.Équations de prédiction 5.Commande optimale 6.Exemples 7.Réglage du GPC 8.Bibliographie

3 1. Introduction 1.1. Définition du «MPC» Model Predictive Control (MPC) : Utilisation explicite d'un modèle pour prédire le comportement futur du système Calcul d'une séquence d'échantillons futurs de commande minimisant une fonction de coût sur un horizon fuyant Seul le premier échantillon de commande est réellement appliqué au système. Toute la séquence est recalculée à chaque pas.

4 1. Introduction 1.2. Principe du «MPC» [ r t 1 ] r t N Optimisation [ u t N u 1 ] u t u t Système [ y t 1 ] y t N 2 Prédicteur y t N 2 mesures futures N 1 commandes futures N 2 consignes futures

5 1. Introduction 1.2. Principe du «MPC» r y Horizon fuyant t N 1 t N 2 t Objectif de l'optimisation : minimiser la surface

6 1. Introduction 1.3. Déclinaisons du «MPC» DMC (Dynamic Matrix Control) Utilise la réponse indicielle du système Processus stable et sans intégrateur MAC (Model Algorithmic Control) Utilise la réponse impulsionnelle PFC (Predictive Functional Control) Utilise un modèle d'état du système Peut s'appliquer aux systèmes non linéaires GPC (Generalized Predictive Control) Utilise un modèle CARMA Le plus répandu

7 1. Introduction 1.4. Avantages/inconvénient du «MPC» Avantages : Concept simple, réglage intuitif et aisé S'applique à tout type de systèmes, des plus simples aux plus complexes (systèmes instables, avec retards, non minimum de phase, très peu amortis, multivariables, non linéaires, variants) Si la consigne est connue à l'avance, son caractère prédictif permet de l'anticiper et donc d'améliorer le suivi. Numériquement stable Inconvénient : modélisation précise

8 2. Modélisation 2.1. Cas du MAC Modèle impulsionnel La sortie est reliée à l'entrée par l'équation suivante : y t = h i u t i i=1 On tronque aux N premiers échantillons : N y t k t = h i u t k i t i=1 Inconvénient : représentation non minimale

9 2. Modélisation 2.2. Cas du GPC Modélisation CARMA (Controller Auto- Regressive Moving-Average) : Avec : A q -1 y t =q -d B q -1 u t 1 C q-1 D q -1 e t On fait souvent : A q =1 a 1q a 2q a na q -na B q =b 0 b 1q b 2q b nb q -nb C q =1 c 1q c 2q c nc q -nc D q -1 = q -1 =1 q -1

10 3. Fonction de coût N 2 J= j=n 1 [ y t j t r t j ] 2 N u [ u t j 1 ] 2 j=1 Erreur quadratique Énergie de la commande Paramètres de réglage : N 2, N u,

11 4. Équations de prédiction Cas du GPC : Première équation diophantienne : Avec C=1 : C=E j A q -j F j On a : 1=E j A q -j F j deg E j = j 1 deg F j =na [ Ay t =Bq -d u t 1 e t ] E j q j A E j y t j =E j B u t j d 1 E j e t j

12 4. Équations de prédiction On utilise l'équation diophantienne : D'où on tire : Meilleure prédiction : 1 q -j F j y t j =E j B u t j d 1 E j e t j y t j =F j y t E j B u t j d 1 E j e t j y t j t =E j B u t j d 1 F j y t

13 4. Équations de prédiction Séparation des commandes : Deuxième équation diophantienne : E j B=G j q -j j Équation de prédiction : y t j t =G j u t j d 1 j u t d 1 F j y t Réponse forcée Réponse libre

14 5. Commande optimale Équation de prédiction : Avec : y=[ y t 1 t y t N 2 t ] T u=[ u t t u t N u 1 t ] T f=[ f t 1 t f t N 2 t ] T y=g u f G=[ g0 u] g N2 1 g N2 2 g 0 g N2 1 g N2 2 g N2 N 0 0 g 1 g 0 0 N 2 Les g 0... g N2-1 sont les échantillons de la réponse indicielle. N u

15 5. Commande optimale Fonction de coût : J= y r T y r u T u On a : u opt qui annule dj d u : u opt= G T G I -1 G T r f Avec : r=[r t 1 r t N 2 ] T consignes futures Seule la première valeur de la commande optimale est appliquée au système.

16 6. Exemples 6.1. Exemple simple Soit le système mis sous la forme CARIMA : -1 A=1 0.7q On a : B= q -1

17 6. Exemples 6.1. Exemple simple Ce qui peut être mis sous la forme : G = G T G I 3-1 G T f

18 6. Exemples 6.2. Résultats de simulation

19 6. Exemples 6.2. Résultats de simulation

20 7. Réglage du GPC Paramètre : Augmentation : ralentissement du système Diminution : commande plus énergique donc accélération du système Paramètre N 2 : Doit être au moins aussi grand que le transitoire du système corrigé Paramètre N 1 : Doit être supérieur au retard du système Paramètre N u : Tend vers une réponse pile quand N u ->0

21 8. Bibliographie R. Bitmead, M. Gevers et V. Wertz, «Adaptive Optimal control The thinking man 's GPC», Prentice Hall International, E. F. Camacho et C. Bordons, «Model Predictive Control», Springer Verlag, J.-M. Dion et D. Popescu, «Commande optimale, conception optimisée des systèmes», Diderot, P. Boucher et D. Dumur, «La commande prédictive», Technip, 1996.

Commande Prédictive. J. P. Corriou. LSGC-ENSIC-CNRS, Nancy. e-mail : corriou@ensic.inpl-nancy.fr

Commande Prédictive. J. P. Corriou. LSGC-ENSIC-CNRS, Nancy. e-mail : corriou@ensic.inpl-nancy.fr Commande Prédictive J P Corriou LSGC-ENSIC-CNRS, Nancy e-mail : corriou@ensicinpl-nancyfr Ý Consigne Trajectoire de référence Ý Ö Réponse Ý Horizon de prédiction À Ô ¹ Ù ¹ Temps Entrée Ù Horizon de commande

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Apports de la commande prédictive pour la régulation thermique des bâtiments

Apports de la commande prédictive pour la régulation thermique des bâtiments Apports de la commande prédictive pour la régulation thermique des bâtiments Petru-Daniel Moroşan, Romain Bourdais et Hervé Guéguen SUPELEC - IETR Avenue de la Boulaie - B.P. 81127 F-35511 Cesson-Sévigné

Plus en détail

en sciences de l ingénieur

en sciences de l ingénieur Systèmes Automatisés Optimisation en sciences de l ingénieur présente les principales méthodes exactes d optimisation statique et dynamique. Parmi les méthodes décrites figurent : - la programmation linéaire

Plus en détail

IUT Toulouse II - Automatique et Systèmes Génie Industriel et Maintenance GIM 2 Promo 14 Année 2007-2008. AUTOMATIQUE et SYSTEMES

IUT Toulouse II - Automatique et Systèmes Génie Industriel et Maintenance GIM 2 Promo 14 Année 2007-2008. AUTOMATIQUE et SYSTEMES IUT Toulouse II - Automatique et Systèmes Génie Industriel et Blagnac Maintenance GIM 2 Promo 14 Année 2007-2008 AUTOMATIQUE et SYSTEMES Les cours, TD et TP seront entièrement programmés en 2 ème année.

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus

Plus en détail

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Domaine Sciences et Technologie Filière Génie Electrique Spécialité Automatique

Domaine Sciences et Technologie Filière Génie Electrique Spécialité Automatique Université des Sciences et de la Technologie Houari Boumédiene Faculté d Electronique et d Informatique Domaine Sciences et Technologie Filière Génie Electrique Spécialité Automatique 1 Programme de la

Plus en détail

Chapitre 2: Prévisions des ventes

Chapitre 2: Prévisions des ventes Chapitre 2: Prévisions des ventes AVIS IMPORTANT : Ces notes sont basées sur le livre de Steven Nahmias : Production et Operations Analysis, 4 ième édition, McGraw-Hill Irwin 200. Les figures sont issues

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Modèle GARCH Application à la prévision de la volatilité

Modèle GARCH Application à la prévision de la volatilité Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes

Plus en détail

Commande Prédictive des. Convertisseurs Statiques

Commande Prédictive des. Convertisseurs Statiques Commande Prédictive des Convertisseurs Statiques 1 Classification des méthodes de commande pour les convertisseurs statiques Commande des convertisseurs Hystérésis MLI Cde Linéaire Fuzzy Logic Sliding

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Dimensionnement et contrôle d un véhicule hybride électrique basé sur une pile à combustible

Dimensionnement et contrôle d un véhicule hybride électrique basé sur une pile à combustible Électrotechnique du Futur 14&15 décembre 2011, Belfort Dimensionnement et contrôle d un véhicule hybride électrique basé sur une pile à combustible Alexandre RAVEY, Benjamin BLUNIER, Abdellatif MIRAOUI

Plus en détail

Modélisation et analyse des structures des réseaux hydrographiques

Modélisation et analyse des structures des réseaux hydrographiques Modélisation et analyse des structures des réseaux hydrographiques Université des Sciences et Techniques du Languedoc Stage de Master Parcours : Fonctionnement des Ecosystèmes Naturels Et Cultivés Réalisé

Plus en détail

TP DE DATA MINING 2 : MODELISATION AVEC SPSS CLEMENTINE

TP DE DATA MINING 2 : MODELISATION AVEC SPSS CLEMENTINE TP DE DATA MINING 2 : MODELISATION AVEC SPSS CLEMENTINE EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET TP n 2 de DATA MINING : Modélisation 1 Jeu de données

Plus en détail

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4.

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4. codage correcteur d erreurs convolutionnel. éfinition.... représentation en treillis...3 3. écodage : algorithme de Viterbi...3 4. istance libre...5 5. iagramme d état. Fonction de transfert...5 6. écodage

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

Maquette pédagogique : Licence en Finance quantitative

Maquette pédagogique : Licence en Finance quantitative Maquette pédagogique : Licence en Finance quantitative Semestre1 Analyse Analyse 1 60 4 Calcul Calcul 1 60 4 Algèbre Algèbre linéaire 60 4 Arithmétique Mathématiques discrètes 60 4 Prob. et Statistique

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Analyse d un système de freinage récupératif d un véhicule électrique

Analyse d un système de freinage récupératif d un véhicule électrique Analyse d un système de freinage récupératif d un véhicule électrique Par Mohamed Amine Bey, Gabriel Georges, Pascal Jacq, Doha Hadouni, Roxane Duroux, Erwan Scornet, Encadré par Alexis Simonnet 1 Compréhension

Plus en détail

2.1. Les stades d évolution de la fonction de Supply Chain Management 7 2.2. L intégration horizontale des fonctions de l entreprise 12

2.1. Les stades d évolution de la fonction de Supply Chain Management 7 2.2. L intégration horizontale des fonctions de l entreprise 12 Table des matières Avant-propos 3 Introduction 1. L entreprise et l environnement financier...5 2. Le concept traditionnel...6 2.1. Les stades d évolution de la fonction de Supply Chain Management 7 2.2.

Plus en détail

Prévision de la demande

Prévision de la demande But : Pour prendre des décisions relatives à la structure et au fonctionnement opérationnel de tout système logistique; il faut s appuyer sur un système de prévision fiable. Concerne le long, moyen et

Plus en détail

Analyse de la Commande Prédictive Floue : Algorithmes et Méthodologies de Solution

Analyse de la Commande Prédictive Floue : Algorithmes et Méthodologies de Solution République Algérienne Démocratique et Populaire MINISÈTRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE MÉMOIRE DE MAGISTÈRE Présenté à L UNIVERSITÉ MENTOURI CONSTANTINE FACULTÉ DES SCIENCES

Plus en détail

Identification des systèmes linéaires

Identification des systèmes linéaires Identification des systèmes linéaires G. Laurent 2009 Introduction On cherche à identifier les paramètres d un modèle entrée-sortie linéaire (en temps discret) sous la forme générale : y(k) = G(q)u(k)

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Notions d asservissements et de Régulations

Notions d asservissements et de Régulations I. Introduction I. Notions d asservissements et de Régulations Le professeur de Génie Electrique doit faire passer des notions de régulation à travers ses enseignements. Les notions principales qu'il a

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

Deuxième année Mastère Systèmes Commandes & Diagnostics

Deuxième année Mastère Systèmes Commandes & Diagnostics Année 2006-2007 Deuxième année Mastère Systèmes Commandes & Diagnostics Modélisation et commande d un hélicoptère. Nom et prénom de l étudiant : Guetteche Djeber Dirigé par : Mr : El Mostafa El Adel et

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Identification et réglage assisté par ordinateur d un processus thermique

Identification et réglage assisté par ordinateur d un processus thermique I- But de la manipulation : Identification et réglage assisté par ordinateur d un processus thermique Le but est de procéder à la modélisation et à l identification paramétrique d un procédé considéré

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

SY09 Rapport TP4 : Analyse discriminante, régression logistique

SY09 Rapport TP4 : Analyse discriminante, régression logistique UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE SY09 Rapport TP4 : Analyse discriminante, régression logistique CUNI Frédéric 15 juin 2015 Objectifs du TP : Le but de ce TP est l application de l analyse discriminante

Plus en détail

Analyse et Commande des systèmes linéaires

Analyse et Commande des systèmes linéaires Analyse et Commande des systèmes linéaires Frédéric Gouaisbaut LAAS-CNRS Tel : 05 61 33 63 07 email : fgouaisb@laas.fr webpage: www.laas.fr/ fgouaisb September 24, 2009 Présentation du Cours Volume Horaire:

Plus en détail

Recherche Opérationnelle

Recherche Opérationnelle Chapitre 2 : Programmation linéaire (Introduction) Vendredi 06 Novembre 2015 Sommaire 1 Historique 2 3 4 5 Plan 1 Historique 2 3 4 5 La programmation linéaire est un cadre mathématique général permettant

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Commande H prédictive pour l asservissement par vision d un stabilisateur cardiaque actif

Commande H prédictive pour l asservissement par vision d un stabilisateur cardiaque actif Commande H prédictive pour l asservissement par vision d un stabilisateur cardiaque actif W. Bachta, E. Laroche, P. Renaud, J. Gangloff LSIIT, CNRS, Université de Strasbourg, INSA de Strasbourg, France

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

La rugosité arithmétique (Ra), la rugosité quadratique moyenne (Rq) et les normes Lα

La rugosité arithmétique (Ra), la rugosité quadratique moyenne (Rq) et les normes Lα WORKSHOP RUGOSITE Université de Poitiers 11 Octobre 27 La rugosité arithmétique (Ra), la rugosité quadratique moyenne (Rq) et les normes Lα François HENNEBELLE 1,3, Maxence BIGERELLE 2 et Thierry COOREVITS

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite): Paramétrisation. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite): Paramétrisation. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite): Paramétrisation Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale Paramétrisation Distances

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre.

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre. Isabelle Bombard, Bruno da Silva, Pascal Dufour *, Pierre Laurent, Joseph Lieto. Laboratoire d Automatique

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES CORRIGE TYPE DE L EXAMEN

ECOLE DES HAUTES ETUDES COMMERCIALES CORRIGE TYPE DE L EXAMEN ECOLE DES HAUTES ETUDES COMMERCIALES Niveau : 1 ème année Master TC Groupes : 1, 2, 3, 4, 5, 6 et 7 Date : 21/05/2012 Module : Recherche Marketing Durée : 2h CORRIGE TYPE DE L EXAMEN Correction 1 ère Partie

Plus en détail

Techniques de DM pour la GRC dans les banques Page 11

Techniques de DM pour la GRC dans les banques Page 11 Techniques de DM pour la GRC dans les banques Page 11 II.1 Introduction Les techniques de data mining sont utilisé de façon augmentaté dans le domaine économique. Tels que la prédiction de certains indicateurs

Plus en détail

La science des fusées 1

La science des fusées 1 Mth1101 - TD - Application 9 : optimisation avec contraintes, multiplicateurs de Lagrange La science des fusées 1 Introduction Une fusée comporte plusieurs étages composés d un moteur et de son carburant.

Plus en détail

Plan. Entreprise Guide ou comment rendre presque séduisantes les procédures statistiques de SAS. Tirer un échantillon d'une table existante (1)

Plan. Entreprise Guide ou comment rendre presque séduisantes les procédures statistiques de SAS. Tirer un échantillon d'une table existante (1) Entreprise Guide ou comment rendre presque séduisantes les procédures statistiques de SAS Présentation au Club des Utilisateurs SAS de Québec 30 octobre 2006 Jean Hardy Services Conseils Hardy Plan Tirer

Plus en détail

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels

Plus en détail

Co Design Mécanique/ Contrôle d Attitude d un Satellite Flexible avec Commande Robuste Structurée

Co Design Mécanique/ Contrôle d Attitude d un Satellite Flexible avec Commande Robuste Structurée Co Design Mécanique/ Contrôle d Attitude d un Satellite Flexible avec Commande Robuste Structurée Etude supervisé par: Jose Alvaro PEREZ GONZALEZ Doctorant à ONERA DCSD Christelle PITTET Thomas LOQUEN

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

Schneider Electric Vers des process plus économes Francis NICOLAS 1

Schneider Electric Vers des process plus économes Francis NICOLAS 1 Schneider Electric Vers des process plus économes Francis NICOLAS 1 «Le contrôle avancé pour des process plus économes» L expertise contrôle avancé Pour améliorer la performance de vos procédés Respect

Plus en détail

Régulation par PID Mickaël CAMUS Etienne DEGUINE Daniel ROSS

Régulation par PID Mickaël CAMUS Etienne DEGUINE Daniel ROSS Régulation par PID Mickaël CAMUS Etienne DEGUINE Daniel ROSS 26/02/10 Plan Définition 1. Proportionnel 2. Intégral 3. Dérivé Réglages des coefficients 1. Différentes approches 2. Ziegler-Nichols 3. Process

Plus en détail

NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011

NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011 NOMBRES ALEATOIRES et PSEUDO-ALEATOIRES G.Saporta, P.Périé et S.Rousseau, octobre 2011 Utiles pour réaliser r des tirages et simuler des phénom nomènes nes aléatoires atoires Nombres aléatoires: atoires:

Plus en détail

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page /5 Terminale STI2D - Bac 203 - Polynésie - Corrigé. TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page 2/5 Exercice QCM. Le carré de

Plus en détail

Maquette, licence en économie quantitative

Maquette, licence en économie quantitative Maquette, licence en économie quantitative Semestre1 Analyse Analyse 1 60 4 Calcul Calcul 1 60 4 Algèbre Algèbre linéaire 60 4 Arithmétique Mathématiques discrètes 60 4 Prob. et Statistique Introduction

Plus en détail

Étapes du développement et de l utilisation d un modèle de simulation

Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Formulation du problème Cueillette et analyse de données Conception

Plus en détail

Cours Systèmes d exploitation 1

Cours Systèmes d exploitation 1 Cours Systèmes d exploitation 1 Achraf Othman Support du cours : www.achrafothman.net 1 Plan du cours Chapitre 1 : Gestion des processus Chapitre 2 : Ordonnancement des processus Chapitre 3 : La communication

Plus en détail

Apprentissage automatique

Apprentissage automatique Apprentissage automatique François Denis, Hachem Kadri, Cécile Capponi Laboratoire d Informatique Fondamentale de Marseille LIF - UMR CNRS 7279 Equipe QARMA francois.denis@lif.univ-mrs.fr 2 Chapitre 1

Plus en détail

PJE : Analyse de comportements avec Twitter Classification supervisée

PJE : Analyse de comportements avec Twitter Classification supervisée PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe arnaud.liefooghe@univ-lille1.fr Master 1 Informatique PJE2 2015-16 B. Derbel L. Jourdan A. Liefooghe 1 2 Agenda Partie

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Management. des processus

Management. des processus Management des processus 1 Sommaire Introduction I Cartographie * ISO 9001 : 2000 * Cartographie - définition * Processus - définition * Identification des processus II Processus * Définitions * Objectifs

Plus en détail

Étude Des Zones D un Joint De Soudure D une Eprouvette Sollicitée En Fatigue

Étude Des Zones D un Joint De Soudure D une Eprouvette Sollicitée En Fatigue Étude Des Zones D un Joint De Soudure D une Eprouvette Sollicitée En Fatigue F.Z.KETTAF 1, N.H.CHERIET 2, B. BOUCHOUICHA 3 Laboratoire LMSR.Université Djillali Liabès Sidi Bel Abbes- Algérie. 1 fz.kettaf@gmail.com

Plus en détail

Dimensionnement d'un vérin électrique

Dimensionnement d'un vérin électrique Dimensionnement d'un vérin électrique Problématique Pour restituer les mouvements (et les accélérations) d'un vol par exemple, une solution classique est l'architecture appelée plate-fome Stewart. Celle-ci

Plus en détail

Componentisation et Aspectisation de l'équation de la chaleur ARC COA 07/09/06

Componentisation et Aspectisation de l'équation de la chaleur ARC COA 07/09/06 Componentisation et Aspectisation de l'équation de la chaleur ARC COA 07/09/06 1 Introduction et objectifs Etude sur une application legacy Java Equation de la chaleur "Helloworld" en simulation numérique

Plus en détail

C1 S informer. C1.1 Rechercher, Exploiter des documents

C1 S informer. C1.1 Rechercher, Exploiter des documents C1 S informer C1.1 Rechercher, Exploiter des documents Une commande Un besoin exprimé Expliciter le besoin*. Le service rendu, les utilisateurs, les conditions d'utilisation sont listés. Les performances

Plus en détail

Approche hybride De la correction des erreurs à la sélection de variables

Approche hybride De la correction des erreurs à la sélection de variables Approche hybride De la correction des erreurs à la sélection de variables G.M. Saulnier 1, W. Castaing 2 1 Laboratoire EDYTEM (UMR 5204, CNRS, Université de Savoie) 2 TENEVIA (http://www.tenevia.com) Projet

Plus en détail

AUTOMATIQUE Glossaire

AUTOMATIQUE Glossaire AUTOMATIQUE Glossaire J.J. Orteu 22 septembre 2005 Table des matières 1 Français Anglais 2 2 Anglais Français 5 1 1 Français Anglais Action dérivée Action intégrale Action proportionnelle Actionneur Amorti

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

SAS ENTERPRISE MINER POUR L'ACTUAIRE

SAS ENTERPRISE MINER POUR L'ACTUAIRE SAS ENTERPRISE MINER POUR L'ACTUAIRE Conférence de l Association des Actuaires I.A.R.D. 07 JUIN 2013 Sylvain Tremblay Spécialiste en formation statistique SAS Canada AGENDA Survol d Enterprise Miner de

Plus en détail

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE Porteurs du projet Marc Arnaudon, professeur des universités, responsable des relations avec les entreprises.

Plus en détail

Exercice 2 du cours Management Bancaire : «Calcul de la VaR d une position de marché»

Exercice 2 du cours Management Bancaire : «Calcul de la VaR d une position de marché» Exercice du cours Management Bancaire : «Calcul de la VaR d une position de marché» La réglementation bancaire impose aux banques de maintenir un niveau de capital minimum pour absorber les pertes dues

Plus en détail

Monitoring continu et gestion optimale des performances énergétiques des bâtiments

Monitoring continu et gestion optimale des performances énergétiques des bâtiments Monitoring continu et gestion optimale des performances énergétiques des bâtiments Alexandre Nassiopoulos et al. Journée d inauguration de Sense-City, 23/03/2015 Croissance de la demande énergétique et

Plus en détail

Chapitre 4 : Identification

Chapitre 4 : Identification Chapitre 4 : Identification 1- Généralités - Identification en boucle ouverte.1 Méthodologie. Méthode directe : confrontation de la réponse théorique et expérimentale.3 Méthode de Strejc.4 Méthode de Broida.5

Plus en détail

Licence de Génie Electrique et Génie des Systèmes

Licence de Génie Electrique et Génie des Systèmes Licence de Génie Electrique et Génie des Systèmes Objectif de la Formation L objectif de cette licence est de donner une formation solide et consistante sur les plans théorique et pratique couvrant l ensemble

Plus en détail

Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué

Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué Séminaire du LGI Centrale Paris Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué Y. Hayel 1, D. Quadri 2, T. Jimenez 1, L. Brotcorne 3, B. Tousni 3 LGI,

Plus en détail

Robotique Manipulation et commande. Université de Strasbourg Telecom Physique Strasbourg, option ISAV Master IRIV, parcours AR Chapitre 5 Commande

Robotique Manipulation et commande. Université de Strasbourg Telecom Physique Strasbourg, option ISAV Master IRIV, parcours AR Chapitre 5 Commande Robotique Manipulation et commande Université de Strasbourg Telecom Physique Strasbourg, option ISAV Master IRIV, parcours AR Chapitre 5 Commande Plan du chapitre 1. Introduction 2. Commande articulaire

Plus en détail

Simulation Examen de Statistique Approfondie II **Corrigé **

Simulation Examen de Statistique Approfondie II **Corrigé ** Simulation Examen de Statistique Approfondie II **Corrigé ** Ces quatre exercices sont issus du livre d exercices de François Husson et de Jérôme Pagès intitulé Statistiques générales pour utilisateurs,

Plus en détail

Méthodes d apprentissage statistique («Machine Learning»)

Méthodes d apprentissage statistique («Machine Learning») Méthodes d apprentissage statistique («Machine Learning») Journées d Etudes IARD Niort, 21 Mars 2014 Fabrice TAILLIEU Sébastien DELUCINGE Rémi BELLINA 2014 Milliman. All rights reserved Sommaire Introduction

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Modélisation stochastique et analyse de données

Modélisation stochastique et analyse de données Modélisation stochastique et analyse de données Formation FIL - Année 1 Régression par la méthode des moindres carrés 2011/2012 Tony Bourdier Modélisation stochastique et analyse de données 1 / 25 Plan

Plus en détail

Valorisation dans le secteur de l assurance

Valorisation dans le secteur de l assurance DRAFT Valorisation dans le secteur de l assurance Philippe TRAINAR Chief Risk Officer, SCOR Group Colloque de l Association de Comptabilité Nationale 2-4 juin 2010, Paris INTRODUCTION La question de la

Plus en détail

Voiture Jouet sur un plan incliné

Voiture Jouet sur un plan incliné Voiture Jouet sur un plan incliné Le but de l'expérience est d'explorer les notions élémentaires pour un corps en mouvement sur un plan incliné. On enregistrera puis on analysera les données relative à

Plus en détail

La régulation. Principe de régulation p. 2. La régulation PID p. 5. La régulation à modèle p. 12. Autres types de régulation p. 15

La régulation. Principe de régulation p. 2. La régulation PID p. 5. La régulation à modèle p. 12. Autres types de régulation p. 15 Le magazine Schneider Electric de l'enseignement technologique et professionnel Juin 2004 La régulation Principe de régulation p. 2 La régulation PID p. 5 La régulation est au cœur de toutes nos actions

Plus en détail

Comparer l intérêt simple et l intérêt composé

Comparer l intérêt simple et l intérêt composé Comparer l intérêt simple et l intérêt composé Niveau 11 Dans la présente leçon, les élèves compareront divers instruments d épargne et de placement en calculant l intérêt simple et l intérêt composé.

Plus en détail

Utilisation de PARI/GP pour la théorie algébrique des nombres. Bill Allombert

Utilisation de PARI/GP pour la théorie algébrique des nombres. Bill Allombert Utilisation de PARI/GP pour la théorie algébrique des nombres. Bill Allombert Université Montpellier 2 LIRMM/I3M (avec Karim Belabas, Université Bordeaux 1) 22/01/2010 GP> Qu est ce que PARI/GP Le système

Plus en détail

Commande par retour d états ou placement des pôles

Commande par retour d états ou placement des pôles Cas continu Commande par retour d états ou placement des pôles Position de problème Soit le système décrit par l équation d état. = + X AX BU Y = CX est dont le polynôme caractéristique est n P( λ) = λ

Plus en détail

Commande Optimale. B. Bayle. Télécom Physique Strasbourg - 3A ISAV, UdS - master IRIV. Commande Optimale 1

Commande Optimale. B. Bayle. Télécom Physique Strasbourg - 3A ISAV, UdS - master IRIV. Commande Optimale 1 Commande Optimale B. Bayle Télécom Physique Strasbourg - 3A ISAV, UdS - master IRIV Commande Optimale 1 Plan du cours Objectifs Problématique de commande optimale Méthodes et limitations Intérêt pratique

Plus en détail

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis Notion de modèle - Processus d analyse Application à la méthode des Eléments finis La présentation est animée, avancez à votre vitesse par un simple clic Chapitres 1 et 6 du polycopié de cours. Bonne lecture

Plus en détail

Manuel DLCX Version 3.00 sept 2014

Manuel DLCX Version 3.00 sept 2014 EURODIEC 6 Rue de la commune de Paris Zone Indusrtielle 77370 NANGIS Manuel DLCX Version 3.00 sept 2014 Contrôleur d effort digital pour presse = Sommaire. Description...3 Les fonctionnalités du contrôleur

Plus en détail

Commande robuste et extensions Pierre Apkarian. Travail Sous-Marin 15-16 Janv. 2014

Commande robuste et extensions Pierre Apkarian. Travail Sous-Marin 15-16 Janv. 2014 Commande robuste et extensions Pierre Apkarian Travail Sous-Marin 15-16 Janv. 2014 Sommaire Introduction Techniques fondamentales de commande robuste Extensions Travail Sous-Marin 15-16 Janv. 2014 - -

Plus en détail

Optimisation de trajectoire pour une mission Ariane 5

Optimisation de trajectoire pour une mission Ariane 5 Optimisation de trajectoire pour une mission Ariane 5 Ludovic Goudenège (sur la base d un projet de Pierre Martinon) ENSTA - Module IN103 Septembre 2012 Plan 1 Quelques données et chiffres 2 Dynamique

Plus en détail

Analyse et modélisation de visages

Analyse et modélisation de visages Analyse et modélisation de visages Pascal Bourdon Laboratoire XLIM-SIC (UMR CNRS 7252) / Université de Poitiers pascal.bourdon@univ-poitiers.fr Analyse et modélisation de visages Plan Introduction Outils

Plus en détail

Mémoire d Actuariat Tarification de la branche d assurance des accidents du travail Aymeric Souleau aymeric.souleau@axa.com 3 Septembre 2010 Plan 1 Introduction Les accidents du travail L assurance des

Plus en détail

RECOGNITION ProductInfo

RECOGNITION ProductInfo RECOGNITION Product Info Indexation automatique à l aide de la reconnaissance de texte et de codes barres RECOGNITION vous permet de classer les documents encore plus rapidement dans DocuWare en capturant

Plus en détail

Modélisation d'un axe asservi d'un robot cueilleur de pommes

Modélisation d'un axe asservi d'un robot cueilleur de pommes Modélisation d'un axe asservi d'un robot cueilleur de pommes Problématique Le bras asservi Maxpid est issu d'un robot cueilleur de pommes. Il permet, après détection d'un fruit par un système optique,

Plus en détail

AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f

AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f JFMS Toulouse 24, 25, 26 mars 2010 AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f Benjamin Echard Nicolas Gayton Maurice Lemaire LaMI Laboratoire

Plus en détail