Les figures complexes en CM1

Dimension: px
Commencer à balayer dès la page:

Download "Les figures complexes en CM1"

Transcription

1 Les figures complexes en CM1 Les nouveaux programmes de l Ecole Primaire extraits du Bulletin Officiel de 2008 mettent en avant les objectifs de l enseignement de la géométrie pour le cycle des approfondissements, en l occurrence, l item qui nous intéresse évoque les «figures composées», je cite : «Les figures planes : le carré, le rectangle, le losange, le parallélogramme, le triangle et ses cas particuliers, le cercle ainsi que l étude de figures composées : - Description, reproduction, construction. - Vocabulaire spécifique relatif à ces figures : côté, sommet, angle, diagonale, axe de symétrie, centre, rayon, diamètre. - Agrandissement et la réduction de figures planes, en lien avec la proportionnalité». Il nous est alors possible de proposer une définition des figures complexes, auquel nous préfèrerons utiliser le terme exposé dans les programmes, à savoir les figures composées : «Une figure composée est donc une figure géométrique plane sur laquelle il est possible de reconnaître de manière perceptive, de nommer et d identifier plusieurs figures planes simples.» ou bien «Une figure géométrique composée est constituée de plusieurs figures simples.» Ainsi, l enseignement des figures complexes ou composées présupposent les connaissances suivantes selon les programmes de l Ecole Primaire de 2008 : «Connaître les relations et les propriétés géométriques : alignement, perpendicularité, parallélisme, égalité de longueurs, symétrie axiale, milieu d un segment.» «Utiliser les instruments et leurs techniques : règle, équerre, compas, calque, papier quadrillé, papier pointé, pliage.» On peut distinguer plusieurs sortes de géométrie que l élève va découvrir progressivement. En effet, au début de l école primaire, l élève va essentiellement travailler une géométrie perceptive. C est en voyant que l élève va reconnaître les différents objets géométriques. Avec l utilisation de la règle graduée, de l équerre, l élève pourra vérifier certaines propriétés de figures, il sera alors dans le domaine de la géométrie instrumentée. Enfin, connaissant les définitions des figures géométriques, il pourra à partir de l énoncé ou d indications codées sur la figure, passer à une géométrie déductive. Les compétences alors attendues en géométrie sont de plusieurs ordres, elles concernent tout ce qui relève du tracé (main levé ou instruments), de la reconnaissance de formes ou de configurations, du discours à tenir sur les objets géométriques, du codage. 1

2 Ainsi pour le cours moyen première année, les connaissances et les compétences visées sont les suivantes : Dans le plan : Reconnaître que des droites sont parallèles. Utiliser en situation le vocabulaire géométrique : points alignés, droite, droites perpendiculaires, droites parallèles, segment, milieu, angle, axe de symétrie, centre d un cercle, rayon, diamètre. Vérifier la nature d une figure plane simple en utilisant la règle graduée, l équerre, le compas. Décrire une figure en vue de l identifier parmi d autres figures ou de la faire reproduire. Problèmes de reproduction, de construction : Compléter une figure par symétrie axiale. Tracer une figure simple à partir d un programme de construction ou en suivant des consignes. Dans une première partie, nous proposerons une progression sur l enseignement des figures complexes ou composées en CM1. Puis, dans une deuxième partie, nous développerons une séquence sur cet enseignement. I. Progression pour l enseignement des figures complexes ou composées en CM1 A. Reconnaître et décrire Dans une figure complexe, reconnaître une ou plusieurs figures simples : carré, rectangle, losange, triangle particulier, parallélogramme. B. Composer Décomposer Composer une figure complexe en utilisant des figures simples : carré, rectangle, losange, triangle particulier, parallélogramme. C. Reproduire Reproduire une figure complexe par tracés à partir des propriétés et des mesures. Compléter une figure complexe par tracés à partir des propriétés et des mesures. 2

3 II. Séquence : les figures complexes en CM1 Séance 1 : Evaluation diagnostique : Décrire une figure simple pour en permettre la reproduction. Objectifs de la séquence : Savoir reconnaître des figures simples dans une figure complexe. Etre capable de construire une figure complexe. Objectif de la séance : Décrire une figure simple pour pouvoir la reproduire. Pré requis : Connaître les relations et les propriétés géométriques : alignement, perpendicularité, parallélisme, égalité de longueurs, symétrie axiale, milieu d un segment. Compétence visée : Effectuer des tracés à l aide des instruments de géométrie comme la règle graduée, l équerre, le compas. Matériel : Instruments de géométrie. Fiches où sont représentées différentes figures simples (triangle, rectangle, carré, parallélogramme). Feuilles de classeur ou utilisation du cahier de brouillon pour rédiger les propriétés des figures. Papier uni pour la construction des figures. Résumé de la séance : Première phase : Recherche Les différentes figures sont réparties entre les élèves en veillant à ce que deux voisins n aient pas la même figure et que tous les types de figures soient distribuées. Les élèves devront décrire la figure qu ils ont et en énumérer les propriétés à l écrit pour en permettre la reproduction. Deuxième phase : Mise en commun Les élèves citent les propriétés qu ils ont retenu pour la reproduction de chaque figure, l enseignante les classe et les note au tableau. 3

4 Troisième phase : Reproduction à partir de la description Les papiers unis sont distribués aux élèves, et chacun à partir des différentes descriptions et propriétés retenues devront reproduire les quatre figures. Séance 2 : Description d une figure complexe pour la reproduire Objectifs de la séquence : Savoir reconnaître des figures simples dans une figure complexe. Etre capable de construire une figure complexe. Objectif de la séance : Décrire une figure complexe pour pouvoir la reproduire. Pré requis : Connaître les relations et les propriétés géométriques : alignement, perpendicularité, parallélisme, égalité de longueurs, symétrie axiale, milieu d un segment. Compétences visées : Décrire une figure en vue de l identifier parmi les figures qui la composent. Effectuer des tracés à l aide des instruments de géométrie comme la règle graduée, l équerre, le compas. Matériel : Instruments de géométrie. Fiches où sont représentées deux figures complexes à réaliser. Feuilles de classeur ou utilisation du cahier de brouillon pour rédiger les propriétés des figures. Papier uni pour la construction des figures. Résumé de la séance : Première phase : Recherche et description Les élèves sont répartis par binômes et l enseignante leur distribue la fiche où sont représentées les deux figures complexes. Les figures de base qui composent chaque figure sont des figures simples. Décrire ces figures simples constitue un réinvestissement de la première séance. La difficulté se 4

5 situe au niveau de la description des liens entre ces figures simples, de leur positionnement l une par rapport à l autre. Deuxième phase : Mise en commun A l issue de la recherche, procéder à l échange de descriptions entre les équipes, les écrire au tableau. Les élèves devront confronter leurs descriptions, l enseignante notera les descriptions les plus pertinentes au tableau. Les élèves et l enseignante se mettent d accord sur la description des figures élémentaires qui composent chaque figure pour ensuite insister sur la description du positionnement des différents éléments les uns par rapport aux autres. Les descriptions seront rectifiées si nécessaire en apportant les modifications minimales pour les rendre opérationnelles. Troisième phase : Reproduction à partir des deux descriptions Les papiers unis sont distribués aux élèves, et chacun à partir des différentes descriptions et propriétés retenues devront reproduire les deux figures. Variables didactiques Représenter la figure sans avoir effectué une analyse collective des figures. Proposer une description de la figure aux élèves, ils doivent se la représenter mentalement pour ensuite émettre des hypothèses de reproduction, puis construire la figure. 5

6 Séance 3 : Evaluation sommative. L évaluation arrive au terme de l apprentissage et a pour but de valider les objectifs de la séquence qui sont : Savoir reconnaître des figures simples dans une figure complexe. Etre capable de construire une figure complexe. L enseignante proposera donc une évaluation en plusieurs parties, avec tout d abord une étape de reconnaissance des figures simples dans une figure complexe, puis une étape où les élèves devront décrire la figure complexe représentée, ce qui relève de la compétence «Connaître les relations et les propriétés géométriques : alignement, perpendicularité, parallélisme, égalité de longueurs, symétrie axiale, milieu d un segment.». Enfin, la dernière étape constituera la représentation d une figure complexe en suivant un modèle. Un point de la progression proposée n a pas encore été développé. En effet, il s agit de la partie «Composer Décomposer» qui interviendrait dans le domaine des arts visuels. L enseignement des figures complexes ou composées appartient à un dispositif d enseignement pluridisciplinaire ou transversal. A la manière des Concentric Circles de Vassily Kandinsky, les élèves construisent une figure composée de rectangles, triangles, carrés, cercles et parallélogrammes de différentes tailles et de différentes couleurs, en les superposant dans une première séance, puis en reliant des différents polygones dans une autre séance. Conclusion : Pour conclure, l enseignement des figures complexes fait partie intégrante du cycle des approfondissements. L étude des figures planes simples, en particulier les polygones débute dès la fin du cycle 2 en CE1 et leur reproduction se fait au cycle 3. Néanmoins, l étude des figures complexes atteint son apogée en CM2 puisque les élèves devront construire ces figures complexes selon un programme de construction ou en suivant des consignes. 6

7 Bibliographie Publications institutionnelles Bulletin Officiel n 3 du 18 juin 2008, Nouveaux programmes de l école primaire. Socle Commun de Connaissances et de Compétences. Ouvrage général GREFF Eric, MUL André, LOISON Marc, Professeur des écoles, Epreuve orale de mathématiques, Collection Admis Concours de l enseignement, Edition VUIBERT, 2011 Ouvrages spécialisés CHARNAY Roland, COMBIER Georges, DUSSUC Marie-Paule, MADIER Dany, Cap Maths CM1 Fichier de l élève, Hatier, 2010 CHARNAY Roland, COMBIER Georges, DUSSUC Marie-Paule, MADIER Dany, Cap Maths CM1 Guide de l enseignant, Hatier, 2010 DUMAGNY Christophe, DUMAGNY Jean-Pierre, DIAS Thierry, DUPLAY Jean-Paul, La tribu des maths Guide du maître, Guide pédagogique pratique, Magnard, 2009 Sites internet Site du Ministère de l Education Nationale : Portail d informations et de ressources proposé par l Education Nationale : 7

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Document d aide au suivi scolaire

Document d aide au suivi scolaire Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde

Plus en détail

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs) (d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

Indications pour une progression au CM1 et au CM2

Indications pour une progression au CM1 et au CM2 Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir

Plus en détail

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013 Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane

Plus en détail

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes). SUJET DE CONCOURS Sujet Exploitation d une documentation scientifique sur le thème de l énergie 2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D,

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation Socle commun - palier 2 : Compétence 3 : les principaux éléments de mathématiques Grandeurs et mesures Compétences : Comparer des surfaces selon leurs aires (par pavage) Mesurer l aire d une surface par

Plus en détail

Ecrire Savoir rédiger une réponse claire à une question

Ecrire Savoir rédiger une réponse claire à une question Champ Compétence Ecrire Savoir rédiger une réponse claire à une question Séance 1 : prise de conscience de la notion de réponse claire Etape 1 Proposer un document comportant des réponses "brutes", sans

Plus en détail

Apprendre à résoudre des problèmes numériques. Utiliser le nombre pour résoudre des problèmes

Apprendre à résoudre des problèmes numériques. Utiliser le nombre pour résoudre des problèmes Apprendre à résoudre des problèmes numériques Utiliser le nombre pour résoudre des problèmes Ce guide se propose de faire le point sur les différentes pistes pédagogiques, qui visent à construire le nombre,

Plus en détail

Document à l attention de l enseignant Grande section

Document à l attention de l enseignant Grande section ÉCOLE : CLASSE : Numéro confidentiel de saisie : Document à l attention de l enseignant Grande section Passation 1 Évaluations «prévention de l illettrisme» - 31-2010-2011 Présentation générale Dans le

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2

NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /

Plus en détail

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879- Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année

Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année PALIER 2 CM2 La maîtrise de la langue française DIRE S'exprimer à l'oral comme à l'écrit dans un vocabulaire approprié

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

S entraîner au calcul mental

S entraîner au calcul mental E F C I - R E H S E S O S A PHOTOCOPIER S R U C Une collection dirigée par Jean-Luc Caron S entraîner au calcul mental CM Jean-François Quilfen Illustrations : Julie Olivier Sommaire Introduction au calcul

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

LIVRET PERSONNEL DE COMPÉTENCES

LIVRET PERSONNEL DE COMPÉTENCES Nom... Prénom... Date de naissance... Note aux parents Le livret personnel de compétences vous permet de suivre la progression des apprentissages de votre enfant à l école et au collège. C est un outil

Plus en détail

Usages pédagogiques des tablettes

Usages pédagogiques des tablettes Usages pédagogiques des tablettes 1. Qu est-ce qu une tablette? Bien que définie comme un «ordinateur portable et ultraplat, qui se présente comme un écran tactile et qui permet notamment d accéder à des

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Les titres en gras correspondent à de nouveaux manuels

Les titres en gras correspondent à de nouveaux manuels CLASSES DE CM2 ANNEE SCOLAIRE 2015/2016 Interlignes (livre de l élève )ISBN 978-23 52 477 785 édititon SED Lecture envol Edition SED Référence 40 600 ( livre de l élève uniquement ) Bescherelle 12.000

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Proposition de programmes de calculs en mise en train

Proposition de programmes de calculs en mise en train Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................

Plus en détail

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES) EXAMEN : CAP ADAL SESSION 20 N du sujet : 02. FOLIO : /6 Rédiger les réponses sur ce document qui sera intégralement remis à la fin de l épreuve. L usage de la calculatrice est autorisé. Exercice : (7

Plus en détail

UTILISATION DE CABRI-GEOMETRE POUR LES PROGRAMMES DE CONSTRUCTION EN CLASSE DE SIXIEME

UTILISATION DE CABRI-GEOMETRE POUR LES PROGRAMMES DE CONSTRUCTION EN CLASSE DE SIXIEME I.U.F.M Académie de Montpellier Site de Montpellier BUFFET Charles UTILISATION DE CABRI-GEOMETRE POUR LES PROGRAMMES DE CONSTRUCTION EN CLASSE DE SIXIEME Contexte du mémoire Discipline : Mathématiques

Plus en détail

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice) Utilisation de l'ordinateur et apport des TIC en enseignement (1NP) Module 03 Maîtriser les fonctionnalités d un traitement de texte. Sens du Module De nombreux documents remis aux enfants sont réalisés

Plus en détail

BIBLIOGRAPHIE CONCOURS AGENT DE MAITRISE TERRITORIAL

BIBLIOGRAPHIE CONCOURS AGENT DE MAITRISE TERRITORIAL BIBLIOGRAPHIE CONCOURS AGENT DE MAITRISE TERRITORIAL Octobre 2013 TEXTES DE REFERENCE Décret n 88-547 du 6 mai 1988 portant statut particulier du cadre d'emplois des agents de maîtrise territoriaux Décret

Plus en détail

Demande d admission au Centre pédagogique Lucien-Guilbault Secteur primaire

Demande d admission au Centre pédagogique Lucien-Guilbault Secteur primaire Date d envoi : Demande d admission au Centre pédagogique Lucien-Guilbault Secteur primaire QUESTIONNAIRE AU TITULAIRE Ce document doit être complété par le titulaire de classe et/ou par l orthopédagogue

Plus en détail

Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème

Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Les TICE en cours de Mathématiques au collège Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Généralités page 2 Différents outils page 4 Classe de 6 ème page 5 Classe de 5 ème page

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

BTS TECHNICO-COMMERCIAL PREMIÈRE ANNEE COMMUNICATION NÉGOCIATION GESTION DE PROJET 2006/2007

BTS TECHNICO-COMMERCIAL PREMIÈRE ANNEE COMMUNICATION NÉGOCIATION GESTION DE PROJET 2006/2007 CAHIIER DES CHARGES DU DOSSIIER À CONSTIITUER À L IISSUE DE LA PREMIIÈRE PÉRIIODE DE STAGE (29//01-17//02 2007) Gestion de Projet Communication-Négociation 1 Finalités et objectifs du dossier L étudiant

Plus en détail

INFO 2 : Traitement des images

INFO 2 : Traitement des images INFO 2 : Traitement des images Objectifs : Comprendre la différence entre image vectorielle et bipmap. Comprendre les caractéristiques d'une image : résolution, définition, nombre de couleurs, poids Etre

Plus en détail

Exercice numéro 1 - L'escalier

Exercice numéro 1 - L'escalier Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?

Plus en détail

Démontrer qu'un point est le milieu d'un segment

Démontrer qu'un point est le milieu d'un segment émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales

Plus en détail

UN TOURNOI A GAGNER ENSEMBLE

UN TOURNOI A GAGNER ENSEMBLE UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir

Plus en détail

ENSEIGNEMENT DES SCIENCES ET DE LA TECHNOLOGIE A L ECOLE PRIMAIRE : QUELLE DEMARCHE?

ENSEIGNEMENT DES SCIENCES ET DE LA TECHNOLOGIE A L ECOLE PRIMAIRE : QUELLE DEMARCHE? ENSEIGNEMENT DES SCIENCES ET DE LA TECHNOLOGIE A L ECOLE PRIMAIRE : QUELLE DEMARCHE? Les nouveaux programmes 2008 confirment que l observation, le questionnement, l expérimentation et l argumentation sont

Plus en détail

Thème 1. Quelles sont les relations entre le droit et l entreprise?

Thème 1. Quelles sont les relations entre le droit et l entreprise? S O M M A I R E Thème. Quelles sont les relations entre le droit et l entreprise? CHAPITRE Qu est-ce que l «entreprise» pour le droit aujourd hui? 9 Le principe d unité des règles de droit... 0 Le statut

Plus en détail

Compétences en fin de maternelle Comparer des quantités.

Compétences en fin de maternelle Comparer des quantités. Le socle commun : Palier 1 - Compétence 3 «Les principaux éléments de mathématiques» Ecrire, nommer, comparer, ranger les nombres entiers naturels inférieurs à 1000. Les programmes : Compétences en fin

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

EVALUATION Nombres CM1

EVALUATION Nombres CM1 IEN HAUTE VALLEE DE L OISE EVALUATION Nombres CM1 PRESENTATION CONSIGNES DE PASSATION CONSIGNES DE CODAGE Livret du maître Nombres évaluation CM1 2011/2012 Page 1 CM1 MATHÉMATIQUES Champs Compétences Composantes

Plus en détail

Paris et New-York sont-ils les sommets d'un carré?

Paris et New-York sont-ils les sommets d'un carré? page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2

Plus en détail

Sillage Météo. Notion de sillage

Sillage Météo. Notion de sillage Sillage Météo Les représentations météorologiques sous forme d animation satellites image par image sont intéressantes. Il est dommage que les données ainsi visualisées ne soient pas utilisées pour une

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Joëlle Bolot, Stéphane Cipriani.

Joëlle Bolot, Stéphane Cipriani. Joëlle Bolot, Stéphane Cipriani. Sommaire Programme, Capacités (http://www.education.gouv.fr/cid50636/ mene0925419a.html) Dossier documentaire d histoire géographie en CAP : Note de cadrage de l épreuve.

Plus en détail

Drupal : quelques fonctionnalités (ce qu il permet, ce qu il ne permet pas)

Drupal : quelques fonctionnalités (ce qu il permet, ce qu il ne permet pas) Licence de cette présentation : Creative Common BY-NC-ND Drupal : quelques fonctionnalités (ce qu il permet, ce qu il ne permet pas) Jean-Luc Archimbaud Mathdoc [email protected] Présentation

Plus en détail

Construction de la bissectrice d un angle

Construction de la bissectrice d un angle onstruction de la bissectrice d un angle 1. Trace un angle. 1. 2. Trace un angle cercle. de centre (le sommet de l angle) et de rayon quelconque. 1. 2. 3. Trace Le cercle un angle cercle coupe. de la demi-droite

Plus en détail

Didactique des arts visuels :

Didactique des arts visuels : Didactique des arts visuels : Principes et grandes lignes Du coté des instructions officielles Les objectifs de l'éducation artistique et culturelle à l'école L éducation artistique et culturelle a pleinement

Plus en détail

Introduction à Adobe Illustrator pour la cartographie et la mise en page

Introduction à Adobe Illustrator pour la cartographie et la mise en page Atelier Carto. Septembre 2009 Dept. Géographie / Université de Toulouse-Le Mirail Laurent Jégou Introduction à Adobe Illustrator pour la cartographie et la mise en page Le présent support n'a pas prétention

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

«LIRE», février 2015, classe de CP-CE1 de Mme Mardon, école Moselly à TOUL (54)

«LIRE», février 2015, classe de CP-CE1 de Mme Mardon, école Moselly à TOUL (54) «LIRE», février 2015, classe de CP-CE1 de Mme Mardon, école Moselly à TOUL (54) Remarque : Bien que le verbe «lire» soit situé au CE2 dans la progression Vocanet, il nous a semblé important de traiter

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Math 5 Dallage Tâche d évaluation

Math 5 Dallage Tâche d évaluation Math 5 Dallage Tâche d évaluation Résultat d apprentissage spécifique La forme et l espace (les transformations) FE 21 Reconnaître des mosaïques de figures régulières et irrégulières de l environnement.

Plus en détail

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) : Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

Document ressource pour le socle commun dans l enseignement des mathématiques au collège

Document ressource pour le socle commun dans l enseignement des mathématiques au collège Document ressource pour le socle commun dans l enseignement des mathématiques au collège SOMMAIRE : I. Le programme de mathématiques et le socle... 3 1. Introduction... 3 1. La formation des élèves en

Plus en détail

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux

Plus en détail

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE

Plus en détail

Plan académique de formation. Le socle commun : formation, évaluation, validation

Plan académique de formation. Le socle commun : formation, évaluation, validation ACADÉMIE DE BORDEAUX Plan académique de formation Le socle commun : formation, évaluation, validation Nous devons valider les sept compétences du palier 3 du Livret personnel de compétences (LPC). Nous

Plus en détail

Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard

Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard Pylote (http://pascal.peter.free.fr/?17/pylote) Logiciels d aide en mathématique

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

Trois personnes mangent dans un restaurant. Le serveur

Trois personnes mangent dans un restaurant. Le serveur 29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte

Plus en détail

Eléments de Choix d Utilisation de l Informatique dans l Enseignement des Mathématiques en Classe de Cinquième

Eléments de Choix d Utilisation de l Informatique dans l Enseignement des Mathématiques en Classe de Cinquième GUYOT Stéphanie Professeur stagiaire en mathématiques au collège Lo Trentanel de GIGNAC I.U.F.M. de l académie de Montpellier Site de Montpellier Eléments de Choix d Utilisation de l Informatique dans

Plus en détail

Synthèse «Le Plus Grand Produit»

Synthèse «Le Plus Grand Produit» Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels

Plus en détail

Le Dessin Technique.

Le Dessin Technique. Jardin-Nicolas Hervé cours 1 / 9. Modélisation et représentation d un objet technique. La modélisation et la représentation d un objet sont deux formes de langage permettant de définir complètement la

Plus en détail

Travail en groupe Apprendre la coopération

Travail en groupe Apprendre la coopération Travail en groupe Apprendre la coopération Travailler en groupe, en atelier peut répondre à de nombreux objectifs qui peuvent être très différents les uns des autres. Nous insisterons ici sur les pratiques

Plus en détail

Master Energie spécialité Energie électrique

Master Energie spécialité Energie électrique 03/12/2013 http://www.univ-fcomte.fr Master Energie spécialité Energie UFR Sciences, techniques, et gestion de l'industrie http://stgi.univ-fcomte.fr/ Dénomination officielle : Master Sciences, technologies,

Plus en détail

cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral

cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral Chapitre 3 cent NOMBRS 5 T RPÉRAGȘ RLATIFS Notion de nombre relatif 3 Comparaison 9 mille Repérage sur une droite et dans le plan Calcul littéral ACTIVITÉS USAG DS NOMBRS RLATIFS ACTIVITÉ Dans la vie quotidienne

Plus en détail

UNE ÉVALUATION SOUS FORME NUMÉRIQUE EST-ELLE COMPARABLE À UNE ÉVALUATION DE TYPE «PAPIER-CRAYON»?

UNE ÉVALUATION SOUS FORME NUMÉRIQUE EST-ELLE COMPARABLE À UNE ÉVALUATION DE TYPE «PAPIER-CRAYON»? UNE ÉVALUATION SOUS FORME NUMÉRIQUE EST-ELLE COMPARABLE À UNE ÉVALUATION DE TYPE «PAPIER-CRAYON»? Pascal Bessonneau MENESR-DEPP, bureau de l évaluation des actions éducatives et des expérimentations Philippe

Plus en détail

Organisation d une action de prévention collective en entreprise

Organisation d une action de prévention collective en entreprise Organisation d une action de prévention collective en entreprise Intérêt de la pluridisciplinarité Anne LE MAULT 15 mai 2014 L'éducation pour la santé une demande Quelqu un demande explicitement quelque

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

L ACCOMPAGNEMENT PERSONNALISE AU LYCEE PICASSO DE PERPIGNAN (Document de travail)

L ACCOMPAGNEMENT PERSONNALISE AU LYCEE PICASSO DE PERPIGNAN (Document de travail) L ACCOMPAGNEMENT PERSONNALISE AU LYCEE PICASSO DE PERPIGNAN (Document de travail) 1. Définition L'accompagnement personnalisé, qui s'adresse à tous les élèves, est un espace de liberté pédagogique permettant

Plus en détail

Epreuve écrite d admissibilité du Mercredi 15 Janvier 2014 DOSSIER REPONSE

Epreuve écrite d admissibilité du Mercredi 15 Janvier 2014 DOSSIER REPONSE SUJET DE CONCOURS COMMUN AUX CENTRES DE GESTION : CONCOURS D ADJOINT TECHNIQUE DE 1ERE CLASSE SESSION 2014 SPECIALITE «ENVIRONNEMENT, HYGIENE» Epreuve écrite d admissibilité du Mercredi 15 Janvier 2014

Plus en détail

Lecture critique et pratique de la médecine

Lecture critique et pratique de la médecine 1-00.qxp 24/04/2006 11:23 Page 13 Lecture critique appliquée à la médecine vasculaireecture critique et pratique de la médecine Lecture critique et pratique de la médecine Introduction Si la médecine ne

Plus en détail

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN MOTO ELECTRIQUE MISE EN SITUATION La moto électrique STRADA EVO 1 est fabriquée par une société SUISSE, située à LUGANO. Moyen de transport alternatif, peut-être la solution pour concilier contraintes

Plus en détail

A quels élèves profite l approche par les compétences de base? Etude de cas à Djibouti

A quels élèves profite l approche par les compétences de base? Etude de cas à Djibouti A quels élèves profite l approche par les compétences de base? Etude de cas à Djibouti Hamid Mohamed Aden, Directeur du CRIPEN, Djibouti Xavier Roegiers, Professeur à l Université de Louvain, Directeur

Plus en détail

Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée

Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée 1/5 Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée Étape 1 : associer la droite graduée à deux objets du quotidien : la règle graduée ici, celle de l'enseignant

Plus en détail

Le 13 e RMT, première édition en Communauté française de Belgique. PHILIPPE SKILBECQ, Responsable de l organisation du RMT pour la SBPMef

Le 13 e RMT, première édition en Communauté française de Belgique. PHILIPPE SKILBECQ, Responsable de l organisation du RMT pour la SBPMef RMT Tome 1, 5, 2004-2005 5 Le 13 e RMT, première édition en Communauté française de Belgique. PHILIPPE SKILBECQ, Responsable de l organisation du RMT pour la SBPMef Le Rallye Mathématique Transalpin est

Plus en détail

DES ÉCOLES PROFESSEUR CRPE SESSIONS NOUVEAU. Tous les ouvrages pour vous préparer Des infos pratiques sur votre futur métier Des QCM pour vous évaluer

DES ÉCOLES PROFESSEUR CRPE SESSIONS NOUVEAU. Tous les ouvrages pour vous préparer Des infos pratiques sur votre futur métier Des QCM pour vous évaluer SESSIOS 014 OUVEAU CRPE Guide concours PROFESSEUR DES ÉCOLES Tous les ouvrages pour vous préparer Des infos pratiques sur votre futur métier Des QCM pour vous évaluer Compléments gratuits sur www.concours.vuibert.fr

Plus en détail