Les figures complexes en CM1
|
|
|
- Blanche Breton
- il y a 9 ans
- Total affichages :
Transcription
1 Les figures complexes en CM1 Les nouveaux programmes de l Ecole Primaire extraits du Bulletin Officiel de 2008 mettent en avant les objectifs de l enseignement de la géométrie pour le cycle des approfondissements, en l occurrence, l item qui nous intéresse évoque les «figures composées», je cite : «Les figures planes : le carré, le rectangle, le losange, le parallélogramme, le triangle et ses cas particuliers, le cercle ainsi que l étude de figures composées : - Description, reproduction, construction. - Vocabulaire spécifique relatif à ces figures : côté, sommet, angle, diagonale, axe de symétrie, centre, rayon, diamètre. - Agrandissement et la réduction de figures planes, en lien avec la proportionnalité». Il nous est alors possible de proposer une définition des figures complexes, auquel nous préfèrerons utiliser le terme exposé dans les programmes, à savoir les figures composées : «Une figure composée est donc une figure géométrique plane sur laquelle il est possible de reconnaître de manière perceptive, de nommer et d identifier plusieurs figures planes simples.» ou bien «Une figure géométrique composée est constituée de plusieurs figures simples.» Ainsi, l enseignement des figures complexes ou composées présupposent les connaissances suivantes selon les programmes de l Ecole Primaire de 2008 : «Connaître les relations et les propriétés géométriques : alignement, perpendicularité, parallélisme, égalité de longueurs, symétrie axiale, milieu d un segment.» «Utiliser les instruments et leurs techniques : règle, équerre, compas, calque, papier quadrillé, papier pointé, pliage.» On peut distinguer plusieurs sortes de géométrie que l élève va découvrir progressivement. En effet, au début de l école primaire, l élève va essentiellement travailler une géométrie perceptive. C est en voyant que l élève va reconnaître les différents objets géométriques. Avec l utilisation de la règle graduée, de l équerre, l élève pourra vérifier certaines propriétés de figures, il sera alors dans le domaine de la géométrie instrumentée. Enfin, connaissant les définitions des figures géométriques, il pourra à partir de l énoncé ou d indications codées sur la figure, passer à une géométrie déductive. Les compétences alors attendues en géométrie sont de plusieurs ordres, elles concernent tout ce qui relève du tracé (main levé ou instruments), de la reconnaissance de formes ou de configurations, du discours à tenir sur les objets géométriques, du codage. 1
2 Ainsi pour le cours moyen première année, les connaissances et les compétences visées sont les suivantes : Dans le plan : Reconnaître que des droites sont parallèles. Utiliser en situation le vocabulaire géométrique : points alignés, droite, droites perpendiculaires, droites parallèles, segment, milieu, angle, axe de symétrie, centre d un cercle, rayon, diamètre. Vérifier la nature d une figure plane simple en utilisant la règle graduée, l équerre, le compas. Décrire une figure en vue de l identifier parmi d autres figures ou de la faire reproduire. Problèmes de reproduction, de construction : Compléter une figure par symétrie axiale. Tracer une figure simple à partir d un programme de construction ou en suivant des consignes. Dans une première partie, nous proposerons une progression sur l enseignement des figures complexes ou composées en CM1. Puis, dans une deuxième partie, nous développerons une séquence sur cet enseignement. I. Progression pour l enseignement des figures complexes ou composées en CM1 A. Reconnaître et décrire Dans une figure complexe, reconnaître une ou plusieurs figures simples : carré, rectangle, losange, triangle particulier, parallélogramme. B. Composer Décomposer Composer une figure complexe en utilisant des figures simples : carré, rectangle, losange, triangle particulier, parallélogramme. C. Reproduire Reproduire une figure complexe par tracés à partir des propriétés et des mesures. Compléter une figure complexe par tracés à partir des propriétés et des mesures. 2
3 II. Séquence : les figures complexes en CM1 Séance 1 : Evaluation diagnostique : Décrire une figure simple pour en permettre la reproduction. Objectifs de la séquence : Savoir reconnaître des figures simples dans une figure complexe. Etre capable de construire une figure complexe. Objectif de la séance : Décrire une figure simple pour pouvoir la reproduire. Pré requis : Connaître les relations et les propriétés géométriques : alignement, perpendicularité, parallélisme, égalité de longueurs, symétrie axiale, milieu d un segment. Compétence visée : Effectuer des tracés à l aide des instruments de géométrie comme la règle graduée, l équerre, le compas. Matériel : Instruments de géométrie. Fiches où sont représentées différentes figures simples (triangle, rectangle, carré, parallélogramme). Feuilles de classeur ou utilisation du cahier de brouillon pour rédiger les propriétés des figures. Papier uni pour la construction des figures. Résumé de la séance : Première phase : Recherche Les différentes figures sont réparties entre les élèves en veillant à ce que deux voisins n aient pas la même figure et que tous les types de figures soient distribuées. Les élèves devront décrire la figure qu ils ont et en énumérer les propriétés à l écrit pour en permettre la reproduction. Deuxième phase : Mise en commun Les élèves citent les propriétés qu ils ont retenu pour la reproduction de chaque figure, l enseignante les classe et les note au tableau. 3
4 Troisième phase : Reproduction à partir de la description Les papiers unis sont distribués aux élèves, et chacun à partir des différentes descriptions et propriétés retenues devront reproduire les quatre figures. Séance 2 : Description d une figure complexe pour la reproduire Objectifs de la séquence : Savoir reconnaître des figures simples dans une figure complexe. Etre capable de construire une figure complexe. Objectif de la séance : Décrire une figure complexe pour pouvoir la reproduire. Pré requis : Connaître les relations et les propriétés géométriques : alignement, perpendicularité, parallélisme, égalité de longueurs, symétrie axiale, milieu d un segment. Compétences visées : Décrire une figure en vue de l identifier parmi les figures qui la composent. Effectuer des tracés à l aide des instruments de géométrie comme la règle graduée, l équerre, le compas. Matériel : Instruments de géométrie. Fiches où sont représentées deux figures complexes à réaliser. Feuilles de classeur ou utilisation du cahier de brouillon pour rédiger les propriétés des figures. Papier uni pour la construction des figures. Résumé de la séance : Première phase : Recherche et description Les élèves sont répartis par binômes et l enseignante leur distribue la fiche où sont représentées les deux figures complexes. Les figures de base qui composent chaque figure sont des figures simples. Décrire ces figures simples constitue un réinvestissement de la première séance. La difficulté se 4
5 situe au niveau de la description des liens entre ces figures simples, de leur positionnement l une par rapport à l autre. Deuxième phase : Mise en commun A l issue de la recherche, procéder à l échange de descriptions entre les équipes, les écrire au tableau. Les élèves devront confronter leurs descriptions, l enseignante notera les descriptions les plus pertinentes au tableau. Les élèves et l enseignante se mettent d accord sur la description des figures élémentaires qui composent chaque figure pour ensuite insister sur la description du positionnement des différents éléments les uns par rapport aux autres. Les descriptions seront rectifiées si nécessaire en apportant les modifications minimales pour les rendre opérationnelles. Troisième phase : Reproduction à partir des deux descriptions Les papiers unis sont distribués aux élèves, et chacun à partir des différentes descriptions et propriétés retenues devront reproduire les deux figures. Variables didactiques Représenter la figure sans avoir effectué une analyse collective des figures. Proposer une description de la figure aux élèves, ils doivent se la représenter mentalement pour ensuite émettre des hypothèses de reproduction, puis construire la figure. 5
6 Séance 3 : Evaluation sommative. L évaluation arrive au terme de l apprentissage et a pour but de valider les objectifs de la séquence qui sont : Savoir reconnaître des figures simples dans une figure complexe. Etre capable de construire une figure complexe. L enseignante proposera donc une évaluation en plusieurs parties, avec tout d abord une étape de reconnaissance des figures simples dans une figure complexe, puis une étape où les élèves devront décrire la figure complexe représentée, ce qui relève de la compétence «Connaître les relations et les propriétés géométriques : alignement, perpendicularité, parallélisme, égalité de longueurs, symétrie axiale, milieu d un segment.». Enfin, la dernière étape constituera la représentation d une figure complexe en suivant un modèle. Un point de la progression proposée n a pas encore été développé. En effet, il s agit de la partie «Composer Décomposer» qui interviendrait dans le domaine des arts visuels. L enseignement des figures complexes ou composées appartient à un dispositif d enseignement pluridisciplinaire ou transversal. A la manière des Concentric Circles de Vassily Kandinsky, les élèves construisent une figure composée de rectangles, triangles, carrés, cercles et parallélogrammes de différentes tailles et de différentes couleurs, en les superposant dans une première séance, puis en reliant des différents polygones dans une autre séance. Conclusion : Pour conclure, l enseignement des figures complexes fait partie intégrante du cycle des approfondissements. L étude des figures planes simples, en particulier les polygones débute dès la fin du cycle 2 en CE1 et leur reproduction se fait au cycle 3. Néanmoins, l étude des figures complexes atteint son apogée en CM2 puisque les élèves devront construire ces figures complexes selon un programme de construction ou en suivant des consignes. 6
7 Bibliographie Publications institutionnelles Bulletin Officiel n 3 du 18 juin 2008, Nouveaux programmes de l école primaire. Socle Commun de Connaissances et de Compétences. Ouvrage général GREFF Eric, MUL André, LOISON Marc, Professeur des écoles, Epreuve orale de mathématiques, Collection Admis Concours de l enseignement, Edition VUIBERT, 2011 Ouvrages spécialisés CHARNAY Roland, COMBIER Georges, DUSSUC Marie-Paule, MADIER Dany, Cap Maths CM1 Fichier de l élève, Hatier, 2010 CHARNAY Roland, COMBIER Georges, DUSSUC Marie-Paule, MADIER Dany, Cap Maths CM1 Guide de l enseignant, Hatier, 2010 DUMAGNY Christophe, DUMAGNY Jean-Pierre, DIAS Thierry, DUPLAY Jean-Paul, La tribu des maths Guide du maître, Guide pédagogique pratique, Magnard, 2009 Sites internet Site du Ministère de l Education Nationale : Portail d informations et de ressources proposé par l Education Nationale : 7
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
Le contexte. Le questionnement du P.E.R. :
Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et
EVALUATIONS MI-PARCOURS CM2
Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice
Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés
P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Document d aide au suivi scolaire
Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde
Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)
(d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation
point On obtient ainsi le ou les points d inter- entre deux objets».
Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet
TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
MAT2027 Activités sur Geogebra
MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013
Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane
2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).
SUJET DE CONCOURS Sujet Exploitation d une documentation scientifique sur le thème de l énergie 2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D,
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation
Socle commun - palier 2 : Compétence 3 : les principaux éléments de mathématiques Grandeurs et mesures Compétences : Comparer des surfaces selon leurs aires (par pavage) Mesurer l aire d une surface par
Ecrire Savoir rédiger une réponse claire à une question
Champ Compétence Ecrire Savoir rédiger une réponse claire à une question Séance 1 : prise de conscience de la notion de réponse claire Etape 1 Proposer un document comportant des réponses "brutes", sans
Apprendre à résoudre des problèmes numériques. Utiliser le nombre pour résoudre des problèmes
Apprendre à résoudre des problèmes numériques Utiliser le nombre pour résoudre des problèmes Ce guide se propose de faire le point sur les différentes pistes pédagogiques, qui visent à construire le nombre,
Document à l attention de l enseignant Grande section
ÉCOLE : CLASSE : Numéro confidentiel de saisie : Document à l attention de l enseignant Grande section Passation 1 Évaluations «prévention de l illettrisme» - 31-2010-2011 Présentation générale Dans le
Diviser un nombre décimal par 10 ; 100 ; 1 000
Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /
Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-
Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année
Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année PALIER 2 CM2 La maîtrise de la langue française DIRE S'exprimer à l'oral comme à l'écrit dans un vocabulaire approprié
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
S entraîner au calcul mental
E F C I - R E H S E S O S A PHOTOCOPIER S R U C Une collection dirigée par Jean-Luc Caron S entraîner au calcul mental CM Jean-François Quilfen Illustrations : Julie Olivier Sommaire Introduction au calcul
Problèmes de dénombrement.
Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers
LIVRET PERSONNEL DE COMPÉTENCES
Nom... Prénom... Date de naissance... Note aux parents Le livret personnel de compétences vous permet de suivre la progression des apprentissages de votre enfant à l école et au collège. C est un outil
Usages pédagogiques des tablettes
Usages pédagogiques des tablettes 1. Qu est-ce qu une tablette? Bien que définie comme un «ordinateur portable et ultraplat, qui se présente comme un écran tactile et qui permet notamment d accéder à des
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Les titres en gras correspondent à de nouveaux manuels
CLASSES DE CM2 ANNEE SCOLAIRE 2015/2016 Interlignes (livre de l élève )ISBN 978-23 52 477 785 édititon SED Lecture envol Edition SED Référence 40 600 ( livre de l élève uniquement ) Bescherelle 12.000
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
Sommaire de la séquence 10
Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................
EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)
EXAMEN : CAP ADAL SESSION 20 N du sujet : 02. FOLIO : /6 Rédiger les réponses sur ce document qui sera intégralement remis à la fin de l épreuve. L usage de la calculatrice est autorisé. Exercice : (7
UTILISATION DE CABRI-GEOMETRE POUR LES PROGRAMMES DE CONSTRUCTION EN CLASSE DE SIXIEME
I.U.F.M Académie de Montpellier Site de Montpellier BUFFET Charles UTILISATION DE CABRI-GEOMETRE POUR LES PROGRAMMES DE CONSTRUCTION EN CLASSE DE SIXIEME Contexte du mémoire Discipline : Mathématiques
Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)
Utilisation de l'ordinateur et apport des TIC en enseignement (1NP) Module 03 Maîtriser les fonctionnalités d un traitement de texte. Sens du Module De nombreux documents remis aux enfants sont réalisés
BIBLIOGRAPHIE CONCOURS AGENT DE MAITRISE TERRITORIAL
BIBLIOGRAPHIE CONCOURS AGENT DE MAITRISE TERRITORIAL Octobre 2013 TEXTES DE REFERENCE Décret n 88-547 du 6 mai 1988 portant statut particulier du cadre d'emplois des agents de maîtrise territoriaux Décret
Demande d admission au Centre pédagogique Lucien-Guilbault Secteur primaire
Date d envoi : Demande d admission au Centre pédagogique Lucien-Guilbault Secteur primaire QUESTIONNAIRE AU TITULAIRE Ce document doit être complété par le titulaire de classe et/ou par l orthopédagogue
Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème
Les TICE en cours de Mathématiques au collège Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Généralités page 2 Différents outils page 4 Classe de 6 ème page 5 Classe de 5 ème page
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
Triangles isométriques Triangles semblables
Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction
Ch.G3 : Distances et tangentes
4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
BTS TECHNICO-COMMERCIAL PREMIÈRE ANNEE COMMUNICATION NÉGOCIATION GESTION DE PROJET 2006/2007
CAHIIER DES CHARGES DU DOSSIIER À CONSTIITUER À L IISSUE DE LA PREMIIÈRE PÉRIIODE DE STAGE (29//01-17//02 2007) Gestion de Projet Communication-Négociation 1 Finalités et objectifs du dossier L étudiant
INFO 2 : Traitement des images
INFO 2 : Traitement des images Objectifs : Comprendre la différence entre image vectorielle et bipmap. Comprendre les caractéristiques d'une image : résolution, définition, nombre de couleurs, poids Etre
Exercice numéro 1 - L'escalier
Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?
Démontrer qu'un point est le milieu d'un segment
émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales
UN TOURNOI A GAGNER ENSEMBLE
UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir
ENSEIGNEMENT DES SCIENCES ET DE LA TECHNOLOGIE A L ECOLE PRIMAIRE : QUELLE DEMARCHE?
ENSEIGNEMENT DES SCIENCES ET DE LA TECHNOLOGIE A L ECOLE PRIMAIRE : QUELLE DEMARCHE? Les nouveaux programmes 2008 confirment que l observation, le questionnement, l expérimentation et l argumentation sont
Thème 1. Quelles sont les relations entre le droit et l entreprise?
S O M M A I R E Thème. Quelles sont les relations entre le droit et l entreprise? CHAPITRE Qu est-ce que l «entreprise» pour le droit aujourd hui? 9 Le principe d unité des règles de droit... 0 Le statut
Compétences en fin de maternelle Comparer des quantités.
Le socle commun : Palier 1 - Compétence 3 «Les principaux éléments de mathématiques» Ecrire, nommer, comparer, ranger les nombres entiers naturels inférieurs à 1000. Les programmes : Compétences en fin
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
EVALUATION Nombres CM1
IEN HAUTE VALLEE DE L OISE EVALUATION Nombres CM1 PRESENTATION CONSIGNES DE PASSATION CONSIGNES DE CODAGE Livret du maître Nombres évaluation CM1 2011/2012 Page 1 CM1 MATHÉMATIQUES Champs Compétences Composantes
Paris et New-York sont-ils les sommets d'un carré?
page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2
Sillage Météo. Notion de sillage
Sillage Météo Les représentations météorologiques sous forme d animation satellites image par image sont intéressantes. Il est dommage que les données ainsi visualisées ne soient pas utilisées pour une
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Joëlle Bolot, Stéphane Cipriani.
Joëlle Bolot, Stéphane Cipriani. Sommaire Programme, Capacités (http://www.education.gouv.fr/cid50636/ mene0925419a.html) Dossier documentaire d histoire géographie en CAP : Note de cadrage de l épreuve.
Drupal : quelques fonctionnalités (ce qu il permet, ce qu il ne permet pas)
Licence de cette présentation : Creative Common BY-NC-ND Drupal : quelques fonctionnalités (ce qu il permet, ce qu il ne permet pas) Jean-Luc Archimbaud Mathdoc [email protected] Présentation
Construction de la bissectrice d un angle
onstruction de la bissectrice d un angle 1. Trace un angle. 1. 2. Trace un angle cercle. de centre (le sommet de l angle) et de rayon quelconque. 1. 2. 3. Trace Le cercle un angle cercle coupe. de la demi-droite
Didactique des arts visuels :
Didactique des arts visuels : Principes et grandes lignes Du coté des instructions officielles Les objectifs de l'éducation artistique et culturelle à l'école L éducation artistique et culturelle a pleinement
Introduction à Adobe Illustrator pour la cartographie et la mise en page
Atelier Carto. Septembre 2009 Dept. Géographie / Université de Toulouse-Le Mirail Laurent Jégou Introduction à Adobe Illustrator pour la cartographie et la mise en page Le présent support n'a pas prétention
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
«LIRE», février 2015, classe de CP-CE1 de Mme Mardon, école Moselly à TOUL (54)
«LIRE», février 2015, classe de CP-CE1 de Mme Mardon, école Moselly à TOUL (54) Remarque : Bien que le verbe «lire» soit situé au CE2 dans la progression Vocanet, il nous a semblé important de traiter
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
Math 5 Dallage Tâche d évaluation
Math 5 Dallage Tâche d évaluation Résultat d apprentissage spécifique La forme et l espace (les transformations) FE 21 Reconnaître des mosaïques de figures régulières et irrégulières de l environnement.
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer
Document ressource pour le socle commun dans l enseignement des mathématiques au collège
Document ressource pour le socle commun dans l enseignement des mathématiques au collège SOMMAIRE : I. Le programme de mathématiques et le socle... 3 1. Introduction... 3 1. La formation des élèves en
Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable
Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux
ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES
ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE
Plan académique de formation. Le socle commun : formation, évaluation, validation
ACADÉMIE DE BORDEAUX Plan académique de formation Le socle commun : formation, évaluation, validation Nous devons valider les sept compétences du palier 3 du Livret personnel de compétences (LPC). Nous
Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard
Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard Pylote (http://pascal.peter.free.fr/?17/pylote) Logiciels d aide en mathématique
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
Trois personnes mangent dans un restaurant. Le serveur
29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte
Eléments de Choix d Utilisation de l Informatique dans l Enseignement des Mathématiques en Classe de Cinquième
GUYOT Stéphanie Professeur stagiaire en mathématiques au collège Lo Trentanel de GIGNAC I.U.F.M. de l académie de Montpellier Site de Montpellier Eléments de Choix d Utilisation de l Informatique dans
Synthèse «Le Plus Grand Produit»
Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch
Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels
Le Dessin Technique.
Jardin-Nicolas Hervé cours 1 / 9. Modélisation et représentation d un objet technique. La modélisation et la représentation d un objet sont deux formes de langage permettant de définir complètement la
Travail en groupe Apprendre la coopération
Travail en groupe Apprendre la coopération Travailler en groupe, en atelier peut répondre à de nombreux objectifs qui peuvent être très différents les uns des autres. Nous insisterons ici sur les pratiques
Master Energie spécialité Energie électrique
03/12/2013 http://www.univ-fcomte.fr Master Energie spécialité Energie UFR Sciences, techniques, et gestion de l'industrie http://stgi.univ-fcomte.fr/ Dénomination officielle : Master Sciences, technologies,
cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral
Chapitre 3 cent NOMBRS 5 T RPÉRAGȘ RLATIFS Notion de nombre relatif 3 Comparaison 9 mille Repérage sur une droite et dans le plan Calcul littéral ACTIVITÉS USAG DS NOMBRS RLATIFS ACTIVITÉ Dans la vie quotidienne
UNE ÉVALUATION SOUS FORME NUMÉRIQUE EST-ELLE COMPARABLE À UNE ÉVALUATION DE TYPE «PAPIER-CRAYON»?
UNE ÉVALUATION SOUS FORME NUMÉRIQUE EST-ELLE COMPARABLE À UNE ÉVALUATION DE TYPE «PAPIER-CRAYON»? Pascal Bessonneau MENESR-DEPP, bureau de l évaluation des actions éducatives et des expérimentations Philippe
Organisation d une action de prévention collective en entreprise
Organisation d une action de prévention collective en entreprise Intérêt de la pluridisciplinarité Anne LE MAULT 15 mai 2014 L'éducation pour la santé une demande Quelqu un demande explicitement quelque
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
L ACCOMPAGNEMENT PERSONNALISE AU LYCEE PICASSO DE PERPIGNAN (Document de travail)
L ACCOMPAGNEMENT PERSONNALISE AU LYCEE PICASSO DE PERPIGNAN (Document de travail) 1. Définition L'accompagnement personnalisé, qui s'adresse à tous les élèves, est un espace de liberté pédagogique permettant
Epreuve écrite d admissibilité du Mercredi 15 Janvier 2014 DOSSIER REPONSE
SUJET DE CONCOURS COMMUN AUX CENTRES DE GESTION : CONCOURS D ADJOINT TECHNIQUE DE 1ERE CLASSE SESSION 2014 SPECIALITE «ENVIRONNEMENT, HYGIENE» Epreuve écrite d admissibilité du Mercredi 15 Janvier 2014
Lecture critique et pratique de la médecine
1-00.qxp 24/04/2006 11:23 Page 13 Lecture critique appliquée à la médecine vasculaireecture critique et pratique de la médecine Lecture critique et pratique de la médecine Introduction Si la médecine ne
MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN
MOTO ELECTRIQUE MISE EN SITUATION La moto électrique STRADA EVO 1 est fabriquée par une société SUISSE, située à LUGANO. Moyen de transport alternatif, peut-être la solution pour concilier contraintes
A quels élèves profite l approche par les compétences de base? Etude de cas à Djibouti
A quels élèves profite l approche par les compétences de base? Etude de cas à Djibouti Hamid Mohamed Aden, Directeur du CRIPEN, Djibouti Xavier Roegiers, Professeur à l Université de Louvain, Directeur
Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée
1/5 Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée Étape 1 : associer la droite graduée à deux objets du quotidien : la règle graduée ici, celle de l'enseignant
Le 13 e RMT, première édition en Communauté française de Belgique. PHILIPPE SKILBECQ, Responsable de l organisation du RMT pour la SBPMef
RMT Tome 1, 5, 2004-2005 5 Le 13 e RMT, première édition en Communauté française de Belgique. PHILIPPE SKILBECQ, Responsable de l organisation du RMT pour la SBPMef Le Rallye Mathématique Transalpin est
DES ÉCOLES PROFESSEUR CRPE SESSIONS NOUVEAU. Tous les ouvrages pour vous préparer Des infos pratiques sur votre futur métier Des QCM pour vous évaluer
SESSIOS 014 OUVEAU CRPE Guide concours PROFESSEUR DES ÉCOLES Tous les ouvrages pour vous préparer Des infos pratiques sur votre futur métier Des QCM pour vous évaluer Compléments gratuits sur www.concours.vuibert.fr
