Les figures complexes en CM1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les figures complexes en CM1"

Transcription

1 Les figures complexes en CM1 Les nouveaux programmes de l Ecole Primaire extraits du Bulletin Officiel de 2008 mettent en avant les objectifs de l enseignement de la géométrie pour le cycle des approfondissements, en l occurrence, l item qui nous intéresse évoque les «figures composées», je cite : «Les figures planes : le carré, le rectangle, le losange, le parallélogramme, le triangle et ses cas particuliers, le cercle ainsi que l étude de figures composées : - Description, reproduction, construction. - Vocabulaire spécifique relatif à ces figures : côté, sommet, angle, diagonale, axe de symétrie, centre, rayon, diamètre. - Agrandissement et la réduction de figures planes, en lien avec la proportionnalité». Il nous est alors possible de proposer une définition des figures complexes, auquel nous préfèrerons utiliser le terme exposé dans les programmes, à savoir les figures composées : «Une figure composée est donc une figure géométrique plane sur laquelle il est possible de reconnaître de manière perceptive, de nommer et d identifier plusieurs figures planes simples.» ou bien «Une figure géométrique composée est constituée de plusieurs figures simples.» Ainsi, l enseignement des figures complexes ou composées présupposent les connaissances suivantes selon les programmes de l Ecole Primaire de 2008 : «Connaître les relations et les propriétés géométriques : alignement, perpendicularité, parallélisme, égalité de longueurs, symétrie axiale, milieu d un segment.» «Utiliser les instruments et leurs techniques : règle, équerre, compas, calque, papier quadrillé, papier pointé, pliage.» On peut distinguer plusieurs sortes de géométrie que l élève va découvrir progressivement. En effet, au début de l école primaire, l élève va essentiellement travailler une géométrie perceptive. C est en voyant que l élève va reconnaître les différents objets géométriques. Avec l utilisation de la règle graduée, de l équerre, l élève pourra vérifier certaines propriétés de figures, il sera alors dans le domaine de la géométrie instrumentée. Enfin, connaissant les définitions des figures géométriques, il pourra à partir de l énoncé ou d indications codées sur la figure, passer à une géométrie déductive. Les compétences alors attendues en géométrie sont de plusieurs ordres, elles concernent tout ce qui relève du tracé (main levé ou instruments), de la reconnaissance de formes ou de configurations, du discours à tenir sur les objets géométriques, du codage. 1

2 Ainsi pour le cours moyen première année, les connaissances et les compétences visées sont les suivantes : Dans le plan : Reconnaître que des droites sont parallèles. Utiliser en situation le vocabulaire géométrique : points alignés, droite, droites perpendiculaires, droites parallèles, segment, milieu, angle, axe de symétrie, centre d un cercle, rayon, diamètre. Vérifier la nature d une figure plane simple en utilisant la règle graduée, l équerre, le compas. Décrire une figure en vue de l identifier parmi d autres figures ou de la faire reproduire. Problèmes de reproduction, de construction : Compléter une figure par symétrie axiale. Tracer une figure simple à partir d un programme de construction ou en suivant des consignes. Dans une première partie, nous proposerons une progression sur l enseignement des figures complexes ou composées en CM1. Puis, dans une deuxième partie, nous développerons une séquence sur cet enseignement. I. Progression pour l enseignement des figures complexes ou composées en CM1 A. Reconnaître et décrire Dans une figure complexe, reconnaître une ou plusieurs figures simples : carré, rectangle, losange, triangle particulier, parallélogramme. B. Composer Décomposer Composer une figure complexe en utilisant des figures simples : carré, rectangle, losange, triangle particulier, parallélogramme. C. Reproduire Reproduire une figure complexe par tracés à partir des propriétés et des mesures. Compléter une figure complexe par tracés à partir des propriétés et des mesures. 2

3 II. Séquence : les figures complexes en CM1 Séance 1 : Evaluation diagnostique : Décrire une figure simple pour en permettre la reproduction. Objectifs de la séquence : Savoir reconnaître des figures simples dans une figure complexe. Etre capable de construire une figure complexe. Objectif de la séance : Décrire une figure simple pour pouvoir la reproduire. Pré requis : Connaître les relations et les propriétés géométriques : alignement, perpendicularité, parallélisme, égalité de longueurs, symétrie axiale, milieu d un segment. Compétence visée : Effectuer des tracés à l aide des instruments de géométrie comme la règle graduée, l équerre, le compas. Matériel : Instruments de géométrie. Fiches où sont représentées différentes figures simples (triangle, rectangle, carré, parallélogramme). Feuilles de classeur ou utilisation du cahier de brouillon pour rédiger les propriétés des figures. Papier uni pour la construction des figures. Résumé de la séance : Première phase : Recherche Les différentes figures sont réparties entre les élèves en veillant à ce que deux voisins n aient pas la même figure et que tous les types de figures soient distribuées. Les élèves devront décrire la figure qu ils ont et en énumérer les propriétés à l écrit pour en permettre la reproduction. Deuxième phase : Mise en commun Les élèves citent les propriétés qu ils ont retenu pour la reproduction de chaque figure, l enseignante les classe et les note au tableau. 3

4 Troisième phase : Reproduction à partir de la description Les papiers unis sont distribués aux élèves, et chacun à partir des différentes descriptions et propriétés retenues devront reproduire les quatre figures. Séance 2 : Description d une figure complexe pour la reproduire Objectifs de la séquence : Savoir reconnaître des figures simples dans une figure complexe. Etre capable de construire une figure complexe. Objectif de la séance : Décrire une figure complexe pour pouvoir la reproduire. Pré requis : Connaître les relations et les propriétés géométriques : alignement, perpendicularité, parallélisme, égalité de longueurs, symétrie axiale, milieu d un segment. Compétences visées : Décrire une figure en vue de l identifier parmi les figures qui la composent. Effectuer des tracés à l aide des instruments de géométrie comme la règle graduée, l équerre, le compas. Matériel : Instruments de géométrie. Fiches où sont représentées deux figures complexes à réaliser. Feuilles de classeur ou utilisation du cahier de brouillon pour rédiger les propriétés des figures. Papier uni pour la construction des figures. Résumé de la séance : Première phase : Recherche et description Les élèves sont répartis par binômes et l enseignante leur distribue la fiche où sont représentées les deux figures complexes. Les figures de base qui composent chaque figure sont des figures simples. Décrire ces figures simples constitue un réinvestissement de la première séance. La difficulté se 4

5 situe au niveau de la description des liens entre ces figures simples, de leur positionnement l une par rapport à l autre. Deuxième phase : Mise en commun A l issue de la recherche, procéder à l échange de descriptions entre les équipes, les écrire au tableau. Les élèves devront confronter leurs descriptions, l enseignante notera les descriptions les plus pertinentes au tableau. Les élèves et l enseignante se mettent d accord sur la description des figures élémentaires qui composent chaque figure pour ensuite insister sur la description du positionnement des différents éléments les uns par rapport aux autres. Les descriptions seront rectifiées si nécessaire en apportant les modifications minimales pour les rendre opérationnelles. Troisième phase : Reproduction à partir des deux descriptions Les papiers unis sont distribués aux élèves, et chacun à partir des différentes descriptions et propriétés retenues devront reproduire les deux figures. Variables didactiques Représenter la figure sans avoir effectué une analyse collective des figures. Proposer une description de la figure aux élèves, ils doivent se la représenter mentalement pour ensuite émettre des hypothèses de reproduction, puis construire la figure. 5

6 Séance 3 : Evaluation sommative. L évaluation arrive au terme de l apprentissage et a pour but de valider les objectifs de la séquence qui sont : Savoir reconnaître des figures simples dans une figure complexe. Etre capable de construire une figure complexe. L enseignante proposera donc une évaluation en plusieurs parties, avec tout d abord une étape de reconnaissance des figures simples dans une figure complexe, puis une étape où les élèves devront décrire la figure complexe représentée, ce qui relève de la compétence «Connaître les relations et les propriétés géométriques : alignement, perpendicularité, parallélisme, égalité de longueurs, symétrie axiale, milieu d un segment.». Enfin, la dernière étape constituera la représentation d une figure complexe en suivant un modèle. Un point de la progression proposée n a pas encore été développé. En effet, il s agit de la partie «Composer Décomposer» qui interviendrait dans le domaine des arts visuels. L enseignement des figures complexes ou composées appartient à un dispositif d enseignement pluridisciplinaire ou transversal. A la manière des Concentric Circles de Vassily Kandinsky, les élèves construisent une figure composée de rectangles, triangles, carrés, cercles et parallélogrammes de différentes tailles et de différentes couleurs, en les superposant dans une première séance, puis en reliant des différents polygones dans une autre séance. Conclusion : Pour conclure, l enseignement des figures complexes fait partie intégrante du cycle des approfondissements. L étude des figures planes simples, en particulier les polygones débute dès la fin du cycle 2 en CE1 et leur reproduction se fait au cycle 3. Néanmoins, l étude des figures complexes atteint son apogée en CM2 puisque les élèves devront construire ces figures complexes selon un programme de construction ou en suivant des consignes. 6

7 Bibliographie Publications institutionnelles Bulletin Officiel n 3 du 18 juin 2008, Nouveaux programmes de l école primaire. Socle Commun de Connaissances et de Compétences. Ouvrage général GREFF Eric, MUL André, LOISON Marc, Professeur des écoles, Epreuve orale de mathématiques, Collection Admis Concours de l enseignement, Edition VUIBERT, 2011 Ouvrages spécialisés CHARNAY Roland, COMBIER Georges, DUSSUC Marie-Paule, MADIER Dany, Cap Maths CM1 Fichier de l élève, Hatier, 2010 CHARNAY Roland, COMBIER Georges, DUSSUC Marie-Paule, MADIER Dany, Cap Maths CM1 Guide de l enseignant, Hatier, 2010 DUMAGNY Christophe, DUMAGNY Jean-Pierre, DIAS Thierry, DUPLAY Jean-Paul, La tribu des maths Guide du maître, Guide pédagogique pratique, Magnard, 2009 Sites internet Site du Ministère de l Education Nationale : Portail d informations et de ressources proposé par l Education Nationale : 7

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

LA RÉSOLUTION DE PROBLÈME

LA RÉSOLUTION DE PROBLÈME 1 LA RÉSOLUTION DE PROBLÈME CYCLES 2 ET 3 Circonscription de Grenoble 4 Evelyne TOUCHARD conseillère pédagogique Mots clé Démarche d enseignement - catégories de problèmes (typologie)- problème du jour-

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES

PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES CAHIER D EXERCICES Les Services de la formation professionnelle et de l éducation des adultes FP9706 C0106 TABLE DES MATIÈRES 1 EXPLICATION

Plus en détail

Les dimensions de la tablette

Les dimensions de la tablette Les dimensions de la tablette Niveau d enseignement Type d activité Durée Outils Compétences mathématiques Prérequis TICE Place dans la progression, moment de l étude Forme de calcul favorisée Commentaires

Plus en détail

Projet de programme pour le cycle 2

Projet de programme pour le cycle 2 Projet de programme pour le cycle 2 3 Cycle 2 Mathématiques Au cycle 2, la résolution de problèmes est au centre de l activité mathématique des élèves, développant leurs capacités à chercher, raisonner

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Mathématiques. Géométrie

Mathématiques. Géométrie Mathématiques CE2 Nombres Calcul Géométrie Grandeurs Mesures AVANT-PROPOS Ce livret a été réalisé dans le but de rendre plus lisibles les compétences à acquérir en mathématiques au terme du CE2. Il donne

Plus en détail

La géométrie du cercle. Durée suggérée: 3 semaines

La géométrie du cercle. Durée suggérée: 3 semaines La géométrie du cercle Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Dans le présent module, les élèves étudieront les propriétés des cercles. Ils découvriront la relation entre la

Plus en détail

Module 8 : Périmètre et aire de figures planes

Module 8 : Périmètre et aire de figures planes RÉDUCTION DES ÉCARTS DE RENDEMENT 9 e année Module 8 : Périmètre et aire de figures planes Guide de l élève Module 8 Périmètre et aire de figures planes Évaluation diagnostique...3 Aire de parallélogrammes,

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Document d aide au suivi scolaire

Document d aide au suivi scolaire Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde

Plus en détail

ÉPREUVE EXTERNE COMMUNE CE1D 2010

ÉPREUVE EXTERNE COMMUNE CE1D 2010 NOM : Prénom : Classe : MINISTÈRE DE LA COMMUNAUTÉ FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Pour cette première partie : la calculatrice est interdite tu auras besoin de ton

Plus en détail

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs) (d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation

Plus en détail

Animation Maths au Cycle 3 le 24 octobre 2012, Chaumont

Animation Maths au Cycle 3 le 24 octobre 2012, Chaumont Animation Maths au Cycle 3 le 24 octobre 2012, Chaumont Frédéric Castel, Professeur à l'université de Reims, IUFM de Chaumont Avec l'appui précieux des travaux didactiques de Christelle Urbany, Jean-Claude

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

Elaboration d une séquence d apprentissage

Elaboration d une séquence d apprentissage Elaboration d une séquence d apprentissage La séquence propose de présenter le passage du retour à l unité lors de résolution de problèmes de proportionnalité puis, à partir de cette situation, de retrouver

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Activités de généralisation pour l aire

Activités de généralisation pour l aire Activités de généralisation pour l aire L aire du rectangle et du carré But Cette activité permet de développer la formule pour calculer l aire de la surface du rectangle et celle du carré. Matériel Rectangles

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France

Plus en détail

Utilisation des ateliers 2D en classe. Stage au collège de Saint-Denis-en-Val 13 novembre 2007 Juliette Hernando

Utilisation des ateliers 2D en classe. Stage au collège de Saint-Denis-en-Val 13 novembre 2007 Juliette Hernando Utilisation des ateliers 2D en classe Stage au collège de Saint-Denis-en-Val 13 novembre 2007 Juliette Hernando Déroulement de la demi-journée mardi 13 novembre 2007 Présentation openoffice (15 minutes)

Plus en détail

Professeur des écoles Mathématiques

Professeur des écoles Mathématiques ENSEIGNEMENT CONCOURS 2014/2015 Concours NOUVEAU CRPE Professeur des écoles Mathématiques Cours et exercices opérations fonctions équations géométrie proportionnalité probabilités L essentiel en 35 fiches

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane hapitre 10 TNGL TNGL Triangle rectangle et cercle circonscrit Triangle rectangle et médiane «git -Prop-Tram #2» de Dennis John shbaugh, 1974 TVTÉ TNGL TNGL T L NT TVTÉ 1 Dans un triangle rectangle oit

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

PROBLÉMATIQUE EN SCIENCE ET TECHNOLOGIE AU PRIMAIRE

PROBLÉMATIQUE EN SCIENCE ET TECHNOLOGIE AU PRIMAIRE PROBLÉMATIQUE EN SCIENCE ET TECHNOLOGIE AU PRIMAIRE Titre : À vous les architectes! Thème : Technologie Niveau(x) scolaire(s) : 2 e cycle Durée : 4 heures Préalables : Matériel pour l ensemble de la problématique

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Indications pour une progression au CM1 et au CM2

Indications pour une progression au CM1 et au CM2 Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir

Plus en détail

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013 Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane

Plus en détail

Secteur 3 : Métiers de l'électricité - Électronique - Audiovisuel - Industries graphiques

Secteur 3 : Métiers de l'électricité - Électronique - Audiovisuel - Industries graphiques Examen : CAP Épreuve : Mathématiques-Sciences durée : 2 heures Secteur 3 : Métiers de l'électricité - Électronique - Audiovisuel - Industries graphiques Sont concernées les spécialités suivantes : Accessoiriste

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

TP spécialité N 3 La Lunette Astronomique 1 / 7

TP spécialité N 3 La Lunette Astronomique 1 / 7 TP spécialité N 3 La Lunette Astronomique / 7 I- Matériel disponible. - Un banc d optique avec accessoires : Une lanterne avec la lettre «F», deux supports pour lentille, un porte écran, un miroir plan,

Plus en détail

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes). SUJET DE CONCOURS Sujet Exploitation d une documentation scientifique sur le thème de l énergie 2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D,

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Organisation et gestion de données cycle 3

Organisation et gestion de données cycle 3 Organisation et gestion de données cycle 3 Clarifier les enjeux de cet enseignement Formation d enseignants de cycle 3 Circonscription de Grenoble 2 Positionnement de la pratique. En classe, comment travaillez-

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Plan d accompagnement personnalisé

Plan d accompagnement personnalisé Logo de l académie et/ou du département Plan d accompagnement personnalisé Vu la loi n 2013-595 du 8 juillet 2013 d orientation et de programmation pour la refondation de l École de la République ; vu

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

Une bien jolie curiosité

Une bien jolie curiosité Une bien jolie curiosité Roland Dassonval et Catherine Combelles Tracez un polygone régulier à n sommets inscrit dans un cercle de rayon 1, puis les cordes qui joignent un sommet donné aux n-1 autres.

Plus en détail

Expérimentation Pédagogique

Expérimentation Pédagogique Expérimentation Pédagogique L'UTILISATION DE TABLETTES EN RÉSOLUTION DE PROBLÈMES POUR DÉVELOPPER LE PLAISIR DE CHERCHER Circonscription de Lunéville Ecole primaire d'hériménil Expérimentation tablette

Plus en détail

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*)

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Dans nos classes 645 Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Jean-Jacques Dahan(**) Historiquement, la géométrie dynamique plane trouve ses racines chez les grands géomètres de

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

FRANÇAIS Langage oral. Lecture - écriture. Vocabulaire. Grammaire. Orthographe. MATHÉMATIQUES Nombres et calcul. Géométrie. Grandeurs et mesures

FRANÇAIS Langage oral. Lecture - écriture. Vocabulaire. Grammaire. Orthographe. MATHÉMATIQUES Nombres et calcul. Géométrie. Grandeurs et mesures FRANÇAIS Langage oral Demander des explications. Écouter et comprendre les textes lus par l enseignant. Restituer les principales idées d un texte lu par l enseignant. Dire un texte court appris par cœur,

Plus en détail

ACADÉMIE DE CRÉTEIL Inspection pédagogique régionale de mathématiques LA LIAISON ÉCOLE-COLLÈGE EN MATHÉMATIQUES

ACADÉMIE DE CRÉTEIL Inspection pédagogique régionale de mathématiques LA LIAISON ÉCOLE-COLLÈGE EN MATHÉMATIQUES ACADÉMIE DE CRÉTEIL Inspection pédagogique régionale de mathématiques LA LIAISON ÉCOLE-COLLÈGE EN MATHÉMATIQUES http://maths.ac-creteil.fr Septembre 2014 Image de couverture : Loïc ASIUS Robert CORNE Nicolas

Plus en détail

Réunion de classe CE2 / CM1 21 septembre 2015

Réunion de classe CE2 / CM1 21 septembre 2015 Réunion de classe CE2 / CM1 21 septembre 2015 Petit rappel sur le fonctionnement de l'école par la directrice Mme Bazin C'est sa deuxième année en tant que directrice de l établissement. Suite à la demande

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

GEOGEBRA : Les indispensables

GEOGEBRA : Les indispensables Préambule GeoGebra est un logiciel de géométrie dynamique dans le plan qui permet de créer des figures dans lesquelles il sera possible de déplacer des objets afin de vérifier si certaines conjectures

Plus en détail

GRAVURE - TISSAGE VANNERIE - ENTRELACS FICHE PROFESSEUR DE MATHEMATIQUES NIVEAUX DÉROULEMENT DE LA SÉQUENCE ET DESCRIPTION DE LA DÉMARCHE

GRAVURE - TISSAGE VANNERIE - ENTRELACS FICHE PROFESSEUR DE MATHEMATIQUES NIVEAUX DÉROULEMENT DE LA SÉQUENCE ET DESCRIPTION DE LA DÉMARCHE FICHE PROFESSEUR DE MATHEMATIQUES NIVEAUX Classe de CM2-6 ème DÉROULEMENT DE LA SÉQUENCE ET DESCRIPTION DE LA DÉMARCHE Cette séquence peut s organiser autour de trois séances en mathématiques 1 ère séance

Plus en détail

PROGRESSION DU PARCOURS HDA-COLLEGE ENTRAINEMENT PROGRESSIF A L ORAL

PROGRESSION DU PARCOURS HDA-COLLEGE ENTRAINEMENT PROGRESSIF A L ORAL PROGRESSION DU PARCOURS HDA-COLLEGE ENTRAINEMENT PROGRESSIF A L ORAL avec appui sur la recherche documentaire autour des arts Collège SAINT JOSEPH LASALLE PRUILLE LE CHETIF (72) 2011-2015 DEGRE D AUTONOMIE

Plus en détail

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation Socle commun - palier 2 : Compétence 3 : les principaux éléments de mathématiques Grandeurs et mesures Compétences : Comparer des surfaces selon leurs aires (par pavage) Mesurer l aire d une surface par

Plus en détail

«Le plan d une ville»

«Le plan d une ville» «Le plan d une ville» doc 1 Evariste doit réaliser une maquette de la ville de Géocity. Il n a qu un plan très partiel de cette ville qu il ne connaît pas. Son ami Léonhard, géocitien, lui envoie par SMS

Plus en détail

Apprendre à résoudre des problèmes numériques. Utiliser le nombre pour résoudre des problèmes

Apprendre à résoudre des problèmes numériques. Utiliser le nombre pour résoudre des problèmes Apprendre à résoudre des problèmes numériques Utiliser le nombre pour résoudre des problèmes Ce guide se propose de faire le point sur les différentes pistes pédagogiques, qui visent à construire le nombre,

Plus en détail

Ecrire Savoir rédiger une réponse claire à une question

Ecrire Savoir rédiger une réponse claire à une question Champ Compétence Ecrire Savoir rédiger une réponse claire à une question Séance 1 : prise de conscience de la notion de réponse claire Etape 1 Proposer un document comportant des réponses "brutes", sans

Plus en détail

Livret personnel de compétences

Livret personnel de compétences Livret personnel de compétences Grilles de références pour l évaluation et la validation des compétences du socle commun au palier 1 Janvier 2011 MENJVA/DGESCO eduscol.education.fr/soclecommun LES GRILLES

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014 COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2014 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Document à l attention de l enseignant Grande section

Document à l attention de l enseignant Grande section ÉCOLE : CLASSE : Numéro confidentiel de saisie : Document à l attention de l enseignant Grande section Passation 1 Évaluations «prévention de l illettrisme» - 31-2010-2011 Présentation générale Dans le

Plus en détail

5 Les géométries : géométrie instrumentée sur papier, géométrie dynamique, géométrie mentale...quelle complémentarité?

5 Les géométries : géométrie instrumentée sur papier, géométrie dynamique, géométrie mentale...quelle complémentarité? Groupe départemental mathématiques 10 (CM2/6 ème ) MATHÉMATIQUES ET GÉOMÉTRIE DYNAMIQUE AU CYCLE 3 Quels enjeux? SOMMAIRE 1 La géométrie dynamique dans les textes officiels p2 2 Choix pédagogiques et didactiques

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

La démarche d investigation en mathématiques. 26 novembre 2008 La démarche d investigation en mathématiques P. KOBER- IUFM Nice

La démarche d investigation en mathématiques. 26 novembre 2008 La démarche d investigation en mathématiques P. KOBER- IUFM Nice La démarche d investigation en mathématiques 1) Qu est ce que la démarche d investigation en sciences? 2) Qu est-ce que faire des mathématiques? - Pour un chercheur Plan de cette intervention - Dans l

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Introduction au Dessin Vectoriel

Introduction au Dessin Vectoriel Introduction au Dessin Vectoriel Introduction Lorsque l'on affiche une image sur l'écran d'un ordinateur, ce que l'on voit n'est qu'une succession de points. Il existe pourtant deux manières différentes

Plus en détail

Représentations et transformations géométriques. Version évaluation formative. Livraison de cellulaire. Cahier de l adulte. Commission scolaire

Représentations et transformations géométriques. Version évaluation formative. Livraison de cellulaire. Cahier de l adulte. Commission scolaire Représentations et transformations géométriques 2102 Version évaluation formative Livraison de cellulaire Cahier de l adulte Nom de l élève Numéro de fiche Nom de l'enseignant Date de naissance Centre

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

Ecole la Clairière de Baudrigue, place de l école, 11 290 Roullens tél : 05 61 68 23 31 / mail : ce.0110534w@ac-montpellier.fr. Livret des progrès et

Ecole la Clairière de Baudrigue, place de l école, 11 290 Roullens tél : 05 61 68 23 31 / mail : ce.0110534w@ac-montpellier.fr. Livret des progrès et Ecole la Clairière de audrigue, place de l école, 11 290 oullens tél : 05 61 68 23 31 / mail : ce.0110534w@ac-montpellier.fr Prénom et nom :... Livret des progrès et des réussites cycle 2 Années scolaires,

Plus en détail

Chapitre n 8 : «Parallélogrammes particuliers»

Chapitre n 8 : «Parallélogrammes particuliers» Chapitre n 8 : «Parallélogrammes particuliers» I. Rappels (parallélogramme) Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. Construction Propriétés des parallélogrammes Dans

Plus en détail

RECHERCHE DE CHEMIN MINIMAL

RECHERCHE DE CHEMIN MINIMAL REHERHE DE HEIN INIL par Yvon KWLSK, Sofiane SERUTU et Jérémy VEIRN, élèves de troisième au collège dulphe DELEGRGUE de ourcelles lès Lens (Pas de alais) 2003 Enseignant : Stéphane RERT (collège DELEGRGUE

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Création de formes élémentaires

Création de formes élémentaires Retour au sommaire Exercices ADOBE ILLUSTRATOR 8.0 Création de formes élémentaires Dans le programme Adobe Illustrator, vous pouvez créer la plupart des formes en partant de figures élémentaires que vous

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Organisation et gestion des données

Organisation et gestion des données Organisation et gestion des données Résoudre des problèmes Etablir une programmation de cycle Maîtriser l usage de didacticiels Equipe de la circonscription d Albi Mars 2012 Organisation et gestion des

Plus en détail

2/ DIFFICULTES A L ECRIT

2/ DIFFICULTES A L ECRIT Adaptations Primaire Difficultés repérées Adaptations et aménagements possibles (non exhaustifs) 1/ DIFFICULTES EN LECTURE - Lenteur en lecture - Erreurs de lecture - Compréhension difficile du texte lu

Plus en détail

AGRANDISSEMENT-RÉDUCTION D'UNE FIGURE. Un Parcours d'étude et de Recherche à partir de la quatrième

AGRANDISSEMENT-RÉDUCTION D'UNE FIGURE. Un Parcours d'étude et de Recherche à partir de la quatrième AGRANDISSEMENT-RÉDUCTION D'UNE FIGURE Un Parcours d'étude et de Recherche à partir de la quatrième Groupe didactique de l'irem de Bordeaux Cet article fait suite à la présentation de ce PER lors d'un atelier

Plus en détail

NOM: GROUPE: Laboratoire L OPTIQUE

NOM: GROUPE: Laboratoire L OPTIQUE PARTIE 1: LA LUMIÈRE A DES COULEURS : NOM: GROUPE: Laboratoire L OPTIQUE Observer les différentes couleurs qui composent la lumière blanche. (OU THÉORIE): Pour votre théorie, définissez une onde électromagnétique,

Plus en détail

NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2

NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /

Plus en détail

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879- Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer.

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer. I Aire d une surface A cause du remembrement, la commune de Thérouanne propose à M. Ducheval et à M. Leboeuf d échanger leurs parcelles de terrain qui ont les formes ci-dessous. L échange est-il équitable?

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Activités à faire à la maison pour renforcer le concept de formes géométriques

Activités à faire à la maison pour renforcer le concept de formes géométriques pour renforcer le concept de formes géométriques Une œuvre en figures planes Crée une œuvre qui comprend toutes les figures planes décrites ci-dessous. Un cercle jaune Deux triangles isocèles rouges non

Plus en détail

Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année

Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année PALIER 2 CM2 La maîtrise de la langue française DIRE S'exprimer à l'oral comme à l'écrit dans un vocabulaire approprié

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

S entraîner au calcul mental

S entraîner au calcul mental E F C I - R E H S E S O S A PHOTOCOPIER S R U C Une collection dirigée par Jean-Luc Caron S entraîner au calcul mental CM Jean-François Quilfen Illustrations : Julie Olivier Sommaire Introduction au calcul

Plus en détail

Travailler par compétences

Travailler par compétences Travailler par compétences Equipe de la circonscription de Cluses (74) : Delsaut Marie-Ghislaine (PEMF) Laporte Jean-Paul (PEMF) Richard Gérald (CPAIEN) Sonzogni Eric (CPC) Martinez Richard (IEN) Animations

Plus en détail

Les titres en gras correspondent à de nouveaux manuels

Les titres en gras correspondent à de nouveaux manuels CLASSES DE CM2 ANNEE SCOLAIRE 2014/2015 Interlignes (livre de l élève )ISBN -13 978-23 52 477 785 édititon SED Lecture envol Edition SED Référence 40 600 ( livre de l élève uniquement ) Bescherelle 12.000

Plus en détail

Programme de Mathématiques Années 1-3 du Secondaire

Programme de Mathématiques Années 1-3 du Secondaire Schola Europaea Bureau du Secrétaire Général Ref. : 2007-D-3310-fr-3 Orig. : EN Programme de Mathématiques Années 1-3 du Secondaire APPROUVE PAR LE CONSEIL SUPERIEUR DES ECOLES EUROPÉENNES DES 22 ET 23

Plus en détail

Sciences Boîte à Outils

Sciences Boîte à Outils Sciences Boîte à Outils Si le cours de Sciences, comme tous les autres d ailleurs, est fait pour te permettre d acquérir des connaissances générales, il doit aussi te servir à utiliser des techniques,

Plus en détail

Usages pédagogiques des tablettes

Usages pédagogiques des tablettes Usages pédagogiques des tablettes 1. Qu est-ce qu une tablette? Bien que définie comme un «ordinateur portable et ultraplat, qui se présente comme un écran tactile et qui permet notamment d accéder à des

Plus en détail

Fiche descriptive - Clip vidéo anglais : Observation des formes tridimensionnelles en vue de résoudre des problèmes trigonométriques

Fiche descriptive - Clip vidéo anglais : Observation des formes tridimensionnelles en vue de résoudre des problèmes trigonométriques Fiche descriptive - Clip vidéo anglais : Observation des formes tridimensionnelles en vue de résoudre des problèmes trigonométriques Informations générales Année de production : 2009 Pays : Langue : Age

Plus en détail