ANNALES SCIENTIFIQUES DE L É.N.S.
|
|
|
- Bertrand Bergeron
- il y a 10 ans
- Total affichages :
Transcription
1 ANNALES SCIENTIFIQUES DE L É.N.S. Y. KATZNELSON Sur les algèbres dont les éléments non négatifs admettent des racines carrées Annales scientifiques de l É.N.S. 3 e série, tome 77, n o 2 (1960), p < Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1960, tous droits réservés. L accès aux archives de la revue «Annales scientifiques de l É.N.S.» ( elsevier.com/locate/ansens), implique l accord avec les conditions générales d utilisation ( Toute utilisation commerciale ou impression systématique est constitutive d une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques
2 Ann. scient. Ec. Norm. Sup.^ 3 e série, t. 77, 1960, p. 167 à 174. STTR LES ALGÉBRES DONT LES ÉLÉMENTS NON NÉGATIFS ADMETTENT DES RACINES CARRÉES PAR M. Y. KATZNELSON ( 1 ). 1. Dans tout ce qui suit, B est une algèbre commutative de Banach, semisimple et auto-adjointe. Nous supposerons également que B admet un élément unité, hypothèse qui ne restreint pas la généralité vu la possibilité d'ajouter l'unité si elle est absente. Notre but est de démontrer que si chaque élément non négatif de B admet une racine carrée non-négative, B est l'algèbre de toutes les fonctions continues sur son espace d'idéaux maximaux JTl. Ceci complète quelques résultats partiels, obtenus dans [1], dont nous nous servons dans la présente démonstration. La même méthode de démonstration permet d'obtenir quelques résultats d'ordre un peu plus général (c/. théorèmes 1 et 2). Nous gardons la terminologie de [1]. 2. LEMME 1. Si Fensemble des idempotents de B n'est pas borné, il existe une suite non bornée d^ idempotents mutuellement orthogonaux. Démonstration. Pour un idempotent ÀçB, posons N(A)=:Sup /^, le supremum étant pris pour tous les idempotents x. L'hypothèse du lemme peut s'écrire N(i) = oc. Soit h\ un idempotent de norme supérieure à 10, on a N(/^)==oo ou bien N(i /^)=oo. Si N(i /^)=oc, posons h^=h\, sinon h^ = ï h\, de façon que [M>9. N(i-/^)=oo. ( 1 ) L'auteur tient à exprimer sa reconnaissance à MM. Kakutani, Malliavin et Rudin pour leur aide précieuse.
3 l68 Y. KATZNELSON. De manière générale, h,, peut être choisi inférieur à -2^ tel que h,, i > tf 1 et que N ( i v /i,n } =00. G. Q. F. D. Pour une suite {A,,}A,,^i, nous désignons par o{a,,} l'algèbre des suites a=[a^\ telles que II a [I =:V a,, A/,< oc, avec les opérations algébriques usuelles! ^n \ + \ bn\ == { On^r ^ }, { Un } \ b,, ; = { Cl,,b,, j, À { ^ j = { la,, }. Nous désignons par ^ {A,,} l'algèbre des suites a=[a,,\ telles que lim u^ \ A^== o, avec les mêmes opérations algébriques, s [ A,,} est une algèbre de Banach si l'on pose a]]==sup <^ A/,. LEMME 2. Soit [h^} une suite ct idempotents orthogonaux dans B. Soit [K^\ une suite de nombres positifs. Supposons que toute fonction f définie sur 3TI qui prend la valeur a^ sur le support de h,, et qui s^ annule ailleurs appartienne à B dès que ^. an \ A,,< oc ; alors \\ hn \ ^ KA/,. Démonstration. L'application { a^} ->f, f étant définie comme dans l'énoncé du lemme, est un homomorphisme de a {A,,} dans B. L'hypothèse que B soit semi-simple entraîne, d'après un théorème connu de Sylov [3], la continuité de cet homomorphisme. Il existe, par conséquent, une constante K telle que / ^K[H =K^ a, A/, et le théorème résulte en prenant pour/fidempotent h^ 3. Rappelons qu'une fonction F(T), définie dans une partie 1 du plan complexe, opère dans B si F(/) B pour toute/eb dont le spectre est contenu dans I. THÉORÈME 1. S 9 il existe une fonction F(x) définie pour o^x^ï, qui opère
4 SUR LES ALGÈBRES DONT LES ÉLÉMENTS NON NÉGATIFS ADMETTENT DES RACINES CARRÉES. 169 dans B telle que F(o) == o et que \\mx~^v(x) == oo, alors Vensemble des idempo- tents de B est borné..x->0 Démonstration. Si l'ensemble des idempotents n'est pas borné, il existe, d'après le lemme 1, une suite d'idempotents {h,,} telle que h,,h^=o pour n^m, [ h^ -^oo. En prenant, si nécessaire, une sous-suite de \hn\ on peut supposer (x) > nx pour x < [ /^ " 1. Posons A,, ^/i" 1 II A,, II; soit {rf,,} une suite de nombres non négatifs telle que ^^A^<QO. On a ( d,\ d,,,.,, F ^ -^-» > // == dn si d,,an < i et comme la fonction F est continue ([!], th. 2. i) ( 2 ) il existe <^< ' tel que F(^) =z dn. Or ^an\\hn\\^^\\k^=^d^<^ et, par conséquent, f=z^anhnçb, donc F(/)eB. Si V rf,< A,,<^cio, la fonction qui prend la valeur dn sur le support de A,, est une combinaison linéaire de quatre fonctions non négatives du même type et appartient donc à B. D'après le lemme 2, on a ce qui est impossible. ^ ^KA,=^ AJ, COROLLAIRE. Si Vespace JTl des idéaux maximaux de B est totalement discontinu^ on a, sous les hypothèses du théorème 1, B = C(Jn). Démonstration. Soit Bo la sous-algèbre de B de toutes les combinaisons linéaires finies d'idempotents. La norme induite sur Bo par B est équivalente, d'après le théorème 1, à celle induite sur Bo par C(3Tl). Comme Bo est dense dans C(<m), on a B = C(3U). ( 2 ) Dans [l], Remploi de la fonction G(z) dans la démonstration du théorème 2.1 est erroné et superflu. Cette partie de la démonstration peut se faire directement.
5 17 Y. KATZNELSON. Remarque. La condition lim^-' F (œ) ==oc r->-u dans l'énoncé du théorème 1 ne peut être remplacée par comme le montre l'exemple suivant : lim^~ 1 F(^-') == oc a'-^o Soit {P^n\ une suite croissante telle que Considérons l'algèbre -.-. A/^+i km-. ==oo. n >- 0 -^/i ±1 ^> 3 et soit F(x) définie comme suit : ^/i.y {A,,}. Pour simplifier les notations, supposons aussi F ( o^) == F ( 2 a/,+i ) == ^a/, a,,+i, a/,==a;, 1, F(.r) étant linéaire pour a/^^^2a,,+j et pour 2a,^^^a,,. On voit facilement que V(x) opère dans s {A,,} et l'on a lim x- j F (^) ^ lim ( 2 a/,+i )- 1 ^a/< a,,+i == - lim ^/a/, a^, == x. La condition lim ±1 -==oo est essentielle dans la construction de cet exemple; r A//, signalons, en effet, le résultat suivant : THÉORÈME 2. S^il existe dans B une suite (T idempotents orthogonaux [ hn} dont les normes A^== h^ [[ satisfont aux conditions {a) A^->oo, (b) A^A^^K, alors toute fonction qui opère dans B est lipschitzienne d ) ordre i en tout point. Démonstration. Supposons que F(^) soit définie dans [o, i], qu'elle opère dans B et qu'elle n'est pas Lip i à l'origine. On ne restreint pas la généralité en supposant que F(.r) est réelle et s'annule à l'origine. En prenant, si nécessaire, F(^) au lieu de F(^) on peut affirmer qu'il existe une suite {a,,} telle que F(a,,) ^> n 4 a,^ Pour tout n il existe m = m^ tel que y'ni^^. <a///r. A-m/i Posons g\,== h,, ^ ^b,,g\, appartient à B dès que b,, < a,,, la série étant absolument convergente. Par un raisonnement tout à fait analogue à celui utilisé dans la démonstration du théorème 1, on obtient que la fonction qui prend la
6 SUR LES ALGÈBRES DONT LES ÉLÉMENTS NON NÉGATIFS ADMETTENT DES RACINES CARRÉES. 171 valeur d^ sur le support de g\ appartient à l'algèbre dès que et, en particulier, si \dn <n'^n< (an) V û^[ OÇ'/Î-^OO, ce qui implique, d'après le lemme 2, II^H^K^A^. 4. Rappelons quelques notations et résultats de [1]. a. DÉFINITION. Une fonction FÇx) qui opère dans B est bornée au voisinage d'un idéal maximal M 3TI s'il existe un voisinage V de M dans Jtl et un Y] ^> o tels que l'image par F de l'ensemble des éléments de B à support dans V et de norme inférieure à Y] est bornée. Nous dirons également que M est ordinaire par rapport à F. 6. THÉORÈME ([1J, lemme 3.2). Soit B régulière, F une fonction qui opère dans B. // n } existe qu^un nombre fini d'idéaux maximaux non ordinaires par rapport à F. c. THÉORÈME ([!]? lemmes 3. i et 6. i). Si (x)= ^x opère dans B et si'f(^) est bornée au voisinage de chaque M 3TI, on a B == C(JTL). d. THÉORÈME ([!], théorème 6.2 û). Si toutes les fonctions continues opèrent dans B, on a B== C(Jtl). 5. THÉORÈME 3. Si F(x) = \jx (o^.r^i) opère dans B, alors B = C(Jn). Démonstration. Remarquons d'abord que B doit être régulière. En effet, Fi(.r) = x\ = \/x 2, pour ^ ^i, opère dans B. Soit H un fermé dans 3YL, Mo^H, il existe une fonction réelle ^(M) C(JTl) égale à i sur H telle que A(Mo) = î. Comme B est dense dans C(Jîl) il existe une fonction réelle /(M) B telle /(M) À(M) <^/(M)+ /(M) s'annulesurh,/(mo)+ /(Mo) ^i. Pour avoir le cas général il suffirait de démontrer le théorème sous l'hypothèse supplémentaire JTl ^ [ î, î] ; ceci se voit comme suit : Soit/eB de spectre contenu dans[ î, î]. Désignons par [/] la sous-algèbre de B des éléments constants sur les lignes de niveau de f, en d'autres termes : ^ [/]4=>{/(MO=/(M,)=>^(M,)==/(M,)j. L'espace 3VLf des idéaux maximaux de [/] coïncide avec le spectre de / et fait donc partie de [ î, î] ; si cela implique [/] = C(JHy), toute fonction continue opérera sur/et,/étant quelconque, toute fonction continue opérera dans B et et Pon n'a qu'à appliquer 4.rf. Ann. Éc. Aorm., (3), LXXVII. FASC
7 172 Y. KATZNELSON. Une deuxième simplification nous est permise par 4.6. Nous pouvons supposer que \[x est bornée au voisinage de chaque MeJîl, sauf peut-être l'un d'eux, Mo. Nous montrerons que ^x est bornée au voisinage de Mo également. I er cas : Jîl est totalement discontinu en Mo. Il est clair qu'il suffit de montrer que \jx est bornée au voisinage de Mp ; lorsqu'on restreint son opération à l'algèbre Bi des éléments de B nuls au voisinage de Mo[./ Bi si et seulement siy^b et s'il existe un voisinage V=V(y) de Mo tel que/(m) =o pour Me V(F)]. Ceci montrera, en effet, l'équivalence de la norme dans Bi et la norme uniforme ([2], p. 78). Si \]x n'est pas bornée au voisinage de Mo dans Bi, on peut choisir une suite P^ Bi, P^^o, P^ ayant son support dans un voinage V^ fermé et ouvert de Mo tel que V,CV(P,_,), [ P, [^2-^ yp,\\>n. Le support de P^ est contenu dans V^ V^+i qui est un ouvert-fermé, et. dont la fonction caractéristique hn est un idempotent dans B. Posons/==VP^; on a 71 1.^^llv/P.ll^llvJ^ll^llv^ll-II^IKKilv/Jll, d'après le théorème 1; \j f ne peut donc appartenir à B contrairement à l'hypothèse. Le cas général. Si 3YL n'est pas totalement discontinu en Mo, Mo est, soit une extrémité, soit un point intérieur d'un intervalle appartenant à JTL Montrons que si B^C^Jll), il existe une algèbre quotient Bo de B dont l'espace des idéaux maximaux JTli est totalement discontinu en Mo, tel que \Jx opère dans Bo et tel que Bo^ C(JTLi) ou, ce qui revient au même, que l'idéal maximal Mo dans Bo est différent de l'ensemble de toutes les fonctions continues sur Jtli nulles en Mo. Pour tout t^> o, l'algèbre des restrictions des éléments de Mo à 3Vit=.ytir\[x\ \œ M^\^t\ est isomorphe à CÇOTit) d'après 4 c. La norme dans l'algèbre quotient est, par conséquent, équivalente à la norme dans C(Jri(). Soit A(?)la constante de cette équivalence. Cela veut dire que toute fonction fçx) continue sur Jfti est une restriction d'une fonction de Mo dont la norme dans B est inférieure à A(t) Sup \f{x)\. xçjvlt LEMME. B = C(Jn) si et seulement si A(^) est bornée.
8 SUR LES ALGÈBRES DONT LES ÉLÉMENTS NON NÉGATIFS ADMETTENT DES RACINES CARRÉES. l;3 Démonstration. II est clair que si B==C(JH), A(t) est bornée, montrons donc que si A(t) < K on a B == C(3îl). Soit ^ Mo. Soit Si tel que Sup ^(^)K^. D'après les hypothèses il! x Mo ^ ôi existe une fonction h^ dans Mo, à support dans telle que *mn Mo-', Mo ^+^ ^KSup ^)j., ^Mo-^Mo+^1 Soit Ai(^), la fonction égale à i pour égale à zéro pour et linéaire pour l^ Mo >3i, ^,,, ôi X MO < ^ -^ ^-Mol^âi. Ai emo et, d'après les hypothèses, on peut lui ajouter un élément ïl\ à support voisin de Mo de façon que l Ai+^ <K et que, si l'on pose on ait ^=(A,+À,)(^-t-Ai), Sup ^(^) ^(^) < i. Pour ^-emo et i>o on peut donc trouver deux éléments, g\ et /i tels que^=^+/i [^[ ^K^Sup ^(^), Sup /i(^) <,. Parle même argument/^ =^2+/^ tel que (I^H^K^, ^Pl/.l^^ ^ /.=^+i+/^i, II^^H^K^, On a g'=^g'n, par conséquent Sup /^(..) ^^. II^II^SlI^II^2^811?!^^)! et le lemme est démontré. Revenons maintenant à notre algèbre B et à l'hypothèse que ^x y opère. Si 8^0(311), A(t) tend vers +00 lorsque t-->o, choisissons ^ tel que
9 174 Y. KATZNELSON. A(^) ^> 10. Considérons l'algèbre Bi des restrictions des éléments de B à 3XL 3Ur\ )^', tl < 1 x Mo [ < t,. Soit Ai(^) la fonction correspondant à Bi de la même manière que A(^) correspondait à B. Il est clair que Ai^^A^) pour t^>t^ et, d'après le lemme, Ai(^)-^oo lorsque t->o. Soit ^2 tel que Ai(^)>Io 2 et ^<^ et enlevons du spectre de Bi la partie contenue dans ^< ^ Mo <^. Nous obtenons une algèbre B2 avec une fonction A^(t) qui satisfait K^(t) ==Ai(^) pour f> t^ A^(t) ^oo. De manière générale on enlève la partie de JTl incluse dans n < X Mo 1 < tn et Fon obtient une algèbre B,, et une fonction A,,(^) qui satisfait aux conditions ^n(t)=:an^(t) pour t>tn, A,(^)>10^. Soit 1 la réunion de tous les intervalles qu'on enlève de cette façon. Soit Bo l'algèbre des restrictions des éléments de B à 3TL I. Soit Ao(^) la fonction correspondant à Bo. On a Ao(^)=A^(^) >ïo n et, par conséquent, Bo^ C(JTl I). Or ^x opère dans Bo et JTl 1 est totalement discontinu en Mo; la démonstration du premier cas implique Bo=C(JTl I), contradiction qui prouve le théorème. BIBLIOGRAPHIE. [1] Y. KATZNELSON, Sur le calcul symbolique dans quelques algèbres de Banach (Ann. Ec. Norm. Sup.^ 3 e série, t. 76, 1959, p. 83). [2] L. H. LOOMIS, An Introduction to Abstract Harmonie Analysis^ Van Nostrand, [2] G. E. SILOV, On regular normed rings ( Travaux de l^ Institut Mathématique Stekioff^ t. 21, 1947).
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Construction d un cercle tangent à deux cercles donnés.
Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse
page 8 AGREGATIN de MATHEMATIQUES: 1991 1/5 externeanalyse concours externe de recrutement de professeurs agreg6s composition d analyse NTATINS ET DGFINITINS Dans tout le problème, R+ désigne l intervalle
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
D'UN THÉORÈME NOUVEAU
DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
La mesure de Lebesgue sur la droite réelle
Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Suites numériques 4. 1 Autres recettes pour calculer les limites
Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions
Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Approximations variationelles des EDP Notes du Cours de M2
Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation
Calcul différentiel. Chapitre 1. 1.1 Différentiabilité
Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace
Le produit semi-direct
Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
Carl-Louis-Ferdinand von Lindemann (1852-1939)
Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 [email protected] Alors ça, c'est fort... Tranches de vie Autour de Carl-Louis-Ferdinand von Lindemann (1852-1939) est transcendant!!! Carl Louis
Sur certaines séries entières particulières
ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane
CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2
CNAM UE MVA 210 Ph. Duran Algèbre et analyse tensorielle Cours 4: Calcul ierentiel 2 Jeui 26 octobre 2006 1 Formes iérentielles e egrés 1 Dès l'introuction es bases u calcul iérentiel, nous avons mis en
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
CHAPITRE VIII : Les circuits avec résistances ohmiques
CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Premiers exercices d Algèbre. Anne-Marie Simon
Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS?
PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS? Pierre Baumann, Michel Émery Résumé : Comment une propriété évidente visuellement en dimensions deux et trois s étend-elle aux autres dimensions? Voici une
Théorie de la mesure. S. Nicolay
Théorie de la mesure S. Nicolay Année académique 2011 2012 ii Table des matières Introduction v 1 Mesures 1 1.1 Sigma-algèbres................................. 1 1.2 Mesures.....................................
III- Raisonnement par récurrence
III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
TIQUE DE FRANCE NILSYSTÈMES D ORDRE 2 ET PARALLÉLÉPIPÈDES
Bulletin de la SOCIÉTÉ MATHÉMATIQUE DE FRANCE NILSYSTÈMES D ORDRE 2 ET PARALLÉLÉPIPÈDES Bernard Host & Alejandro Maass Tome 135 Fascicule 3 2007 SOCIÉTÉ MATHÉMATIQUE DE FRANCE Publié avec le concours du
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
FONCTION EXPONENTIELLE ( ) 2 = 0.
FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons
Axiomatique de N, construction de Z
Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................
www.h-k.fr/publications/objectif-agregation
«Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
LE PROBLEME DU PLUS COURT CHEMIN
LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Chapitre 3. Mesures stationnaires. et théorèmes de convergence
Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée
Entiers aléatoires et analyse harmonique
Entiers aléatoires et analyse harmonique Jean-Pierre Kahane et Yitzhak Katznelson Introduction. Il s agit dans cet article d ensembles de Sidon et de processus de Poisson ponctuels. Les ensembles de Sidon
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
1 Définition et premières propriétés des congruences
Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
NOTATIONS PRÉLIMINAIRES
Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Dérivées d ordres supérieurs. Application à l étude d extrema.
Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une
Chapitre 7. Récurrences
Chapitre 7 Récurrences 333 Plan 1. Introduction 2. Applications 3. Classification des récurrences 4. Résolution de récurrences 5. Résumé et comparaisons Lectures conseillées : I MCS, chapitre 20. I Rosen,
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
