1 ère S Exercices sur les probabilités
|
|
|
- Louis Lussier
- il y a 9 ans
- Total affichages :
Transcription
1 ère S Exercices sur les probabilités On donne dans le tableau ci-dessous les probabilités d apparition de chacune des s d un dé truqué. Face N 4 6 Probabilité d apparition 0, 0, 0, 0, 0, 0, Ce tableau définit donc une loi de probabilité P. ) Calculer P() + P() + P() + P(4) +P() + P(6). Quelle remarque peut-on faire? ) On lance une fois le dé. On note le numéro de la supérieure. Calculer la probabilité des événements suivants : A : «obtenir un numéro pair» ; B : «obtenir un numéro impair» ; C : «obtenir un numéro supérieur ou égal à». Dans une loterie, 00 billets numérotés de à 00 sont vendus. Les billets gagnants sont ceux dont le numéro se termine par. On achète un billet au hasard. Calculer la probabilité de l événement A : «obtenir un billet gagnant». On donnera le résultat sous forme fractionnaire. On tire une carte au hasard d un jeu de cartes. Un jeu de cartes contient 8 hauteurs (, 8, 9, 0, as, valet, dame, roi) avec chacune 4 couleurs (pique, cœur, trèfle, carreau). Calculer la probabilité (sous forme de fractions irréductibles) des événements suivants : A : «obtenir un roi» ; B : «obtenir un trèfle» ; C : «obtenir le roi de trèfle» ; D : «obtenir un roi ou un trèfle» ; E : «obtenir ni un roi ni un trèfle». 4 Un objet produit en série peut présenter deux défauts A et B. Dans un lot de 00 objets, 6 présentent le défaut A, présentent le défaut B, et 8 présentent les deux défauts A et B. Attention à bien comprendre le texte : les 8 qui présentent les deux défauts sont comptabilisés parmi les 6 qui ont le défaut A et parmi les qui ont le défaut B. Autrement dit, lorsque l on dit que 6 objets présentent le défaut A, on doit entendre que 6 objets présentent au moins le défaut A, c est-à-dire que parmi ceux qui présentent le défaut A, certains peuvent aussi présenter le défaut B. Représenter la situation par un diagramme d ensemble (diagramme de Venn). On choisit un objet au hasard dans le lot. Calculer la probabilité des événements suivants (résultats sous forme décimale) : E : «l objet ne présente aucun défaut» ; F : «l objet présente au moins un défaut» ; G : «l objet présente un seul défaut». On considère un dé cubique dont les s sont numérotées de à 6 truqué de telle manière que les numéros,,, 4, aient une probabilité d apparition de. ) Calculer la probabilité du numéro 6. ) Calculer la probabilité de l événement A : «obtenir un numéro inférieur ou égal à 4». 6 On considère un dé cubique (dont les s sont numérotées de à 6) truqué tel que P a ; P 4 P a ; P 6 6a. ) Calculer a. ) On lance une fois le dé. Calculer la probabilité de l événement E : «obtenir un numéro pair». P P a ; Une urne contient boules blanches ( B, B, B ) et boules noires ( N et N ). On tire une boule au hasard dans l urne puis, sans la remettre dans l urne, on en tire une deuxième au hasard. ) Faire un arbre de possibilités «vertical». ) Calculer la probabilité des événements suivants : A : «les deux boules sont blanches» ; B : «les deux boules sont noires» ; C : «les deux boules sont de la même couleur» ; D : «les deux boules sont de couleurs différentes». Donner les résultats sous forme de fractions irréductibles. 8 Une urne contient 4 boules rouges numérotées,,, 4 et boules noires numérotées,,. On tire une boule au hasard. On considère les événements : A : «la boule est noire» ; B : «la boule est rouge» ; C : «la boule porte un numéro pair». Calculer la probabilité des événements A, B, C, A B, B C, A C, A B, B C, A C. Donner les résultats en fractions irréductibles. 9 Une urne contient deux boules rouges (R et R ) et deux boules noires (N et N ). On tire successivement deux boules avec remise (c est-à-dire que l on remet dans l urne la première boule tirée). ) Faire un arbre de possibilités. ) Calculer la probabilité des événements : A : «obtenir deux fois la même boule» et B : «obtenir au moins une boule rouge». 0 Un sac contient jetons marqués avec les lettres M, A, R, I, E. On tire deux jetons au hasard successivement sans remise. Calculer la probabilité des événements F : «obtenir deux voyelles» ; F : «obtenir deux consonnes» ; F : «obtenir une voyelle et une consonne (dans n importe quel ordre)». Donner les résultats sous forme de fractions irréductibles. On jette un dé cubique pipé dont les s sont numérotées,,, 4,, 6 de telle sorte que : la probabilité d obtenir,,, 4 soit la même ; la probabilité d obtenir est ; la probabilité d obtenir 6 est fois plus grande que celle d obtenir. On note le numéro de la supérieure. Quelle est la probabilité d obtenir un numéro pair?
2 Simulations et probabilités Les exercices à 6 portent sur le lien entre probabilités et statistiques avec la notion de simulation. Chaque case du tableau ci-dessous contient un chiffre aléatoire : 0,,,..., 8 ou À l aide de ce tableau, on simule le lancer d'une pièce de monnaie équilibrée : P correspond à un nombre pair ; F correspond à un nombre impair. Attention, il n est pas demandé de faire cette simulation mais de s appuyer sur le tableau donné. Dans un certain sens, cette simulation est déjà donnée. Un rappel utile : 0 est un nombre pair. 4 On lance une pièce de monnaie équilibrée trois fois de suite. On note les résultats dans l ordre. Partie A : Simulation On utilise le tableau de l exercice. chiffres du tableau : 4 / / / 9 / 8 / / / 0 / 4. formations de triplets : 4 ; 98 ; 04. interprétation : PFF ; FPF ; PPP. On peut ainsi simuler 48 lancers de trois pièces. ) Comptabiliser le nombre de simulations où on obtient une seule fois. ) Calculer la fréquence de l'événement : «on obtient exactement une fois». Partie B : Probabilités ) a) Faire un arbre permettant de déterminer tous les événements élémentaires (c est-à-dire tous les résultats possibles). b) Expliquer pourquoi il s agit d une situation d équiprobabilité. ) En déduire la probabilité de l événement : «on obtient exactement une fois». On lance un dé cubique équilibré et on examine la fréquence de sortie d'un numéro sur des échantillons de même taille (n = 00) * de tailles différentes (n = 00, n = 000, n = 0 000) On prendra les résultats par lignes de gauche à droite (quand on arrive en bout de ligne à droite, on passe à la ligne suivante à gauche). Dans cet exercice, on exprimera chaque fréquence sous la forme d une fraction irréductible puis on donnera la valeur arrondie au centième. ) Donner les issues des 4 premiers lancers (rappel : on fonctionne par ligne de gauche à droite). Déterminer l effectif correspondant de. Déterminer la fréquence de. ) On étudie les issues des premiers lancers. a) Déterminer l effectif correspondant de. b) Déterminer la fréquence de. ) On étudie les issues des 44 lancers. a) Déterminer l effectif correspondant de. b) Déterminer la fréquence de. 4 ) Commenter les résultats obtenus. On lance une pièce de monnaie équilibrée deux fois de suite ; on note les résultats dans l ordre. On simule cette expérience aléatoire à l aide du tableau de chiffres au hasard donné dans l exercice. Exemples (donnés à partir du début du tableau) : nombres du tableau : 4 / / / 9 / 8 / / / 0 / formations de paires : 4 ; 9 ; 8 ; 0 ; (on groupe les chiffres deux par deux) interprétation : PF ; FF ; PF ; PP ;... On peut ainsi former paires ; on peut donc simuler lancers des deux pièces. ) Comptabiliser le nombre d'issues où l'on obtient : a) deux fois ; b) deux fois ; c) une seule fois. Ce travail est un peu fastidieux mais il faut le faire ) En déduire la fréquence d'obtenir une seule fois. ) Comparer cette fréquence avec la probabilité d'obtenir une seule fois (on pourra faire un arbre). * La lettre n désigne le nombre de lancers. Recopier et compléter les phrases suivantes. Commentaire pour le graphique (à gauche) : On constate que la distribution des fréquences pour les échantillons et sont C est ce que l on appelle la Commentaire pour le graphique (à droite) : On constate que lorsque la taille des échantillons augmente, les fréquences... 6 On lance deux dés cubiques non truqués et on examine la distance d entre les numéros sortis. Par exemple, si le premier dé sort le numéro et le deuxième dé sort le numéro, la distance d entre les numéros sortis est égale à : d (différence entre le plus grand numéro sorti et le plus petit ou encore valeur absolue de la différence des deux numéros). Plus généralement, si le premier dé sort le numéro a et le deuxième dé sort le numéro b, la distance d entre les numéros sortis est égale à : d = a b (ou d = b a ).
3 ) Comment simuler un lancer sur calculatrice? ) Le diagramme ci-dessous indique la distribution des fréquences obtenue lors de la simulation sur des échantillons de plus en plus grands. Quelle conjecture peut-on émettre sur leur distribution? ) Recopier et compléter le tableau à double entrée ci-dessous donnant les valeurs possibles de d. dé dé Pour ce tableau, calculer les probabilités de chaque valeur. Les résultats de la simulation sont-ils en accord avec ce calcul?
4 Réponses ) La somme est égale à ce qui est conforme au résultat de cours qui dit que la somme des probabilité P B 0,6 (remarque : B est l événement contraire de A donc est égale à. ) P A 0,4 ; P B P A 0, 6) ; P C 0,8 A 0 8 P P A ; P B ; P C ; P D ; E 4 4 0,9 ; 0, ; 0,06 ) P 6 ) Il faut faire un arbre de possibilités. Il y a 0 résultats possibles. 6 P A ; P B ; C P ; D P A 4 6 ) P a ) P P A C. P E 9a 8 P A ; P B ; P C ; P A B 0 ; P B C ; P A C porte un numéro pair ; P A B ; P B C ; (une seule boule noire 4 A ) Il faut faire un arbre de possibilités. Il y a 6 résultats possibles ) P ; P B 6 4 Pour B, les résultats possibles sont : R R ; R R ; R N ; R N ; R R ; R R ; R N ; R N ; N R ; N R ; N R ; N R. 0 Il faut faire un arbre de possibilités. Il y a 0 résultats possibles 6 P F ; P F ; P F On donne d abord le résultat sous la forme de 6 par rapport à la lecture et on réduit ensuite. 0 F est l événement contraire de F F : on écrit : F F F (la barre surmonte la totalité). 0 P E ) Calculons P() + P() + P() + P(4) +P() + P(6). Solutions détaillées P() + P() + P() + P(4) +P() + P(6) = 0, + 0, + 0, + 0, + 0, + 0, = Commentons le résultat obtenu. Ce résultat est en accord avec le résultat du cours sur la somme des probabilités de tous les résultats d une expérience aléatoire. ) Calculs de probabilités Attention : dans les réponses, on ne parle pas de chance. A : «obtenir un numéro pair» D après le cours, P A P P 4 P 6 = 0, + 0, + 0, = 0,4 La probabilité de l événement A est égale à 0,4. Inutile d écrire une phrase du genre «On a 40 % de chances d obtenir un numéro pair.» (car on ne parle pas de chance). Attention, on ne peut pas écrire P A. 6 En effet, comme on n est pas dans une situation d équiprobabilité, on ne peut pas appliquer la formule de Laplace. B : «obtenir un numéro impair» D après le cours, P B P P P = 0, + 0, + 0, = 0,6 La probabilité de l événement B est égale à 0,6. Autre méthode : B est l événement contraire de A (c est-à-dire B A ) On utilise la formule du cours qui donne la probabilité d un événement contraire. P B P A P A 0,4 0,6
5 C : «obtenir un numéro supérieur ou égal à» D après le cours, P C P P 4 P P 6 = 0, + 0, + 0, + 0, = 0,8 La probabilité de l événement C est égale à 0,8. Nous sommes dans un cas d équiprobabilité c est-à-dire que l expérience aléatoire peut être modélisée par une loi d équiprobabilité P. Le nombre de résultats possibles pour l expérience aléatoire est égal à 00. Le nombre de résultats possibles pour l événement A est égal à 0 (car il y a 0 nombres entre et 00 qui se terminent par, un par dizaine : ////4//6//8/9/0////4//6//8/9). Évidemment, s il y a billets on n écrirait pas la liste! 0 Donc d après la formule de Laplace, on a : P A Tirage d une carte au hasard dans un jeu de cartes Nous sommes dans un cas d équiprobabilité c est-à-dire que l expérience aléatoire peut être modélisée par une loi d équiprobabilité P. Il y a résultats possibles pour l expérience aléatoire. On calcule chaque probabilité en utilisant la formule de Laplace. A : «obtenir un roi» Il y a 4 rois (roi de cœur, roi de carreau, roi de pique, roi de trèfle). 4 P A 8 B : «obtenir un trèfle» Il y a 8 trèfles. 8 PB 4 C : «obtenir le roi de trèfle» P C D : «obtenir un roi ou un trèfle» ère méthode de calcul : Les résultats possibles pour D sont : - roi de carreau ; - roi de pique ; - roi de cœur ; - roi de trèfle ; - de trèfle ; - 8 de trèfle ; - 9 de trèfle ; - 0 de trèfle ; - valet de trèfle ; - dame de trèfle ; - as de trèfle. Attention : ne pas compter deux fois le roi de trèfle. Il y a résultats possibles pour l événement D. P D e méthode de calcul : L événement D est la réunion des événements A et B. On écrit : D A B. D après la formule du cours donnant la probabilité de la réunion de deux événements, on a : 4 8 P D P A B P A P B P A B L événement A B, intersection des événements A et B, est l événement C : «obtenir le roi de trèfle» donc P. A B P C E : «obtenir ni un roi ni un trèfle» E A B A B D (rappel : les barres signifient «événement contraire») Loi de Morgan Autrement dit, E est l événement contraire de D (puisque D désigne l événement contraire de D). P E P D P D On retiendra que la négation d un «ou» donne un «ni ni».
6 4 On utilise une représentation en «patatoïde» (ou diagramme de Venn). On fait un «schéma à bulles». Les «ronds» ne sont pas proportionnels aux cardinaux des événements. lot (00) présentent le défaut A (6) 8 (= 6 8) 8 4 (= 8) 80 présentent le défaut A et le défaut B présentent le défaut B () Nous sommes dans un cas d équiprobabilité c est-à-dire que l expérience aléatoire peut être modélisée par une loi d équiprobabilité P. Il y a 00 résultats possibles pour l expérience aléatoire. On applique la formule de Laplace pour calculer chaque probabilité. ) Calculons la probabilité du numéro 6. On sait que la somme des probabilités de tous les résultats est égale à donc P() + P() + P() + P(4) +P() + P(6) = *. Par suite, on a successivement : P 6 P 6 P6 P 6 * Remarque : Quand on a une somme avec beaucoup de termes, on utilise des petits points (en écrivant P() + P() + + P(6) = ) ou le symbole (vu en physique) dont l utilisation en mathématiques sera expliquée plus tard. ) Calculons la probabilité de l événement A : «obtenir un numéro inférieur ou égal à 4». 4 A 4 4. D après le cours, P P P P P E : «l objet ne présente aucun défaut» On calcule le nombre d objets ne présentant aucun défaut : P E 0,9 00 F : «l objet présente au moins un défaut» On calcule le nombre d objets qui présentent au moins un défaut : = 0 (ou + 8 = 0 directement). La probabilité de l événement A est égale à 4. 6 ) Calculons a. On sait que la somme des probabilités de tous les résultats est égale à donc P() + P() + P() + P(4) +P() + P(6) =. 0 P F 0, 00 G : «l objet présente un seul défaut» On calcule le nombre d objets qui présentent un seul défaut : = P G 0, (ou plus compliqué). Par suite, on a successivement : a + a + a + 4a + 6a = a a ) Calculons la probabilité de l événement E : «obtenir un numéro pair». P E P P 4 P 6 a a 6a 9a 9. D après le cours, La probabilité de l événement E est égale à.
7 Tirages successifs de boules sans remise urne boules blanches ( B, B, B ) boules noires ( N et N ) ) Arbre de possibilités à faire à la règle. On fait un arbre de possibilités car il y a deux tirages à chaque fois. On peut faire un arbre de possibilités verticalement ou horizontalement. C est un arbre à deux «étages». On ne continue pas après. er tirage e tirage B ) Calculs de probabilités Nous sommes dans un cas d équiprobabilité c est-à-dire que l expérience aléatoire peut être modélisée par une loi d équiprobabilité P. On applique la formule de Laplace pour calculer chaque probabilité. A : «les deux boules sont blanches» D après l arbre, il y a 6 résultats possibles pour A : (B B ) ; (B B ) ; (B B ) ; (B B ) ; (B B ) ; (B B ). 6 P A 0 0 B : «les deux boules sont noires» B B B N N Il y a 0 résultats possibles pour l expérience aléatoire. B N N B B N N B B N N B B B N B B B N D après l arbre, il y a résultats possibles pour B : (N N ) ; (N N ). P B 0 0 C : «les deux boules sont de la même couleur» Il y a 8 résultats possibles pour C : (B B ) ; (B B ) ; (B B ) ; (B B ) ; (B B ) ; (B B ) ; (N N ) ; (N N ). 8 P C 0 Autre méthode : On peut aussi dire que l événement C est la réunion des événements A et B. En effet, si les deux boules tirées sont de la même couleur, soit elles sont toutes les deux blanches, soit elles sont toutes les deux noires. C A B Or les événements A et B sont incompatibles donc : 4 P C P A B P A P B (calculs en colonnes) D : «les deux boules sont de couleurs différentes» Il y a résultats possibles pour D. P D 0
8 Autre méthode : D est l événement contraire de C (c est-à-dire D C ). On utilise la formule du cours qui donne la probabilité d un événement contraire. P D P C P C 8 Nous sommes dans un cas d équiprobabilité c est-à-dire que l expérience aléatoire peut être modélisée par une loi d équiprobabilité P. Le nombre total de résultats possibles pour l expérience aléatoire est égal à. A, B, C A C P A C P A P C P A C 9 Tirages dans une urne boules rouges (R et R ) Urne boules noires (N et N ) Tirages successifs de deux boules avec remise ) Arbre de possibilités D après la formule de Laplace : 4 P A ; P B ; P C A B On tire seulement une boule dans l urne ; elle ne peut pas être de deux couleurs différentes. A B est l événement impossible (on peut écrire : A B = qui est une égalité d ensembles) donc P A B 0. er tirage e tirage R R R N N R B C B C est l événement «la boule est rouge et porte un numéro pair». Il y a deux résultats possibles pour cet événement : la boule rouge portant le numéro et la boule rouge portant le numéro 4. Donc P B C. A C R N R N N R R N A C est l événement «la boule est noire et porte un numéro pair». Il y a un seul résultat possible pour cet événement : la boule noire portant le numéro. Donc P A C. A B A B A B A B D après la formule du cours, on a : P P P P Même principe pour les deux autres. B C PB C PB PC PB C ) Calculs de probabilités N Nous sommes dans un cas d équiprobabilité c est-à-dire que l expérience aléatoire peut être modélisée par une loi d équiprobabilité P. N R R N N
9 A : «obtenir deux fois la même boule» Attention pour l événement «obtenir deux fois la même boule» cela ne signifie pas «obtenir deux boules de même couleur» (mais le texte prête à interprétation). 4 PA 6 4 M A R I E B : «obtenir au moins une boule rouge» Grâce à l arbre, on lit les résultats qui réalisent l événement B : R ; R, R ; R, R ; N, R ; R, R ; R, R ; N, R ; N, N ; R, N ; R, N ; R, N ; R. P B 6 4 R ; N, A R I E M R I E M A I E M A R E M A R I Il y a 0 résultats possibles. Calculs de probabilités. Nous sommes dans un cas d équiprobabilité c est-à-dire que l expérience aléatoire peut être modélisée par une loi d équiprobabilité P. 0 Tirages successifs sans remise Arbre de possibilités F : «obtenir deux voyelles» 6 PF 0 0 M A R I E A R I E M R I E M A I E M A R E M A R I On donne d abord le résultat sous la forme de F : «obtenir deux consonnes» P F par rapport à la lecture et on réduit ensuite. 0 F : «obtenir une voyelle et une consonne (dans n importe quel ordre)» ère méthode : On utilise l arbre de possibilités. P F 0
10 e méthode : F est l événement contraire de F F : on écrit : F F F (la barre surmonte la totalité). P F PF F P P P ( P F F P F P F F F F F 0 0 * Événements incompatibles : événements dont l intersection est vide. Lancer d un dé cubique truqué vérifiant : P() = P() = P() = P(4) P() = P(6) = P() Calculons la probabilité d obtenir un numéro pair. On pose a = P(). On a : P() + P() + P() + P(4) +P() + P(6) = (). () est successivement équivalente à : 4a + a + = a = a = Soit E l événement : «obtenir un numéro pair». P(E) = P() + P(4) + P(6) 0 car les événements F et F sont incompatibles * ) On peut ne pas donner de nom à P () et présenter les calculs sous la forme suivante. P() + P() + P() + P(4) +P() + P(6) = (). () donne successivement : 4 P() P() P() P() P() Donc P(A) P() P(4) P(6) = idem auparavant Simulations et probabilités Les exercices à 6 portent sur le lien entre probabilités et statistiques avec la notion de simulation (simuler = «faire comme si»). Simulations de lancers d une pièce non truquée Dans cet exercice, les fréquences seront d abord exprimées en fractions irréductibles (pas en pourcentage). ) Les résultats des 4 premiers lancers sont : P ; F ; F ; F ; P ; F ; P ; P ; P ; F ; P ; F ; F ; P ; F ; F ; F ; F ; P ; P ; P ; F ; F ; F. À l issue des 4 premiers lancers, il y a 0 s et 4 s. 0 La fréquence de est donc f. 4 Grâce à la calculatrice, on trouve f 0, donc f 0,4 (valeur arrondie au centième). ) À l issue des premiers lancers, il y a 9 s et s. 9 La fréquence de est donc f. 4 f 0, f 0,4 (valeur arrondie au centième) ) À l issue des 44 premiers lancers, il y a 4 s et 0 s. 4 La fréquence de est donc f. 44 f 0, f 0, (valeur arrondie au centième)
11 4 ) Plus le nombre de lancers augmente, plus les fréquences se rapprochent de la probabilité de avec le modèle d équiprobabilité («fréquence théorique» de, mais cette expression est mise entre guillemets car elle n a pas grand sens) : 0,. Partie B : Probabilités ) a) Arbre de possibilités : er lancer e lancer e lancer Simulations de lancers de deux pièces non truquées ) Le nombre d issues où l on obtient deux fois est 6. Le nombre d issues où l on obtient deux fois est 4. Le nombre d issues où l on obtient une seule fois est 4. ) La fréquence de l événement «obtenir une seule fois» est égale à f 8, % (valeur arrondie au dixième) ) Il y a quatre résultats possibles : PF ; FF ; FP ; PP. P F 4 f. Arbre binaire P P F F La probabilité d obtenir une seule fois est de. Cette probabilité est proche de la fréquence trouvée au ). b) Il s agit d'une situation d'équiprobabilité car la pièce est non truquée ; tous les résultats ont la même probabilité 8. ) D après l arbre, il y a 8 résultats possibles. La probabilité de l événement «on obtient exactement une fois» est égale à 8. 0, 8 On observe que cette probabilité est «proche» de la fréquence calculée lors de la simulation. 4 Simulations et probabilités Partie A : Simulation Proche, ça va jusqu à combien? On répondra plus tard à cette question dans le chapitre sur l échantillonnage. On s intéresse à des triplets. ) Le nombre de simulations où on obtient une seule fois est égal à 9. ) On a 48 triplets parmi lesquels 9 triplets correspondent à une seule fois. Donc la fréquence de l'événement : «on obtient exactement une fois» est égale à f 0,98... f 0, 4 (valeur arrondie au dixième) 9 f. 48 Simulations de lancers d un dé cubique équilibré Commentaire pour le graphique On constate que la distribution des fréquences pour les échantillons et sont différentes (ou fluctuent). C est ce que l on appelle la fluctuation d échantillonnage (c est le nom que l on donne à ce phénomène). Commentaire pour le graphique On constate que lorsque la taille des échantillons augmente, les fréquences se stabilisent autour d une valeur «proche» de 6 (probabilité de chaque numéro ave le modèle d équiprobabilité).
12 6 Simulation avec deux dés ) Si les numéros sortis sont a et b, alors d = a b. TI - 8 Plus Pour simuler le lancer d un dé cubique non truqué math NUM : PartEnt( math PRB : NbrAléat * 6 ) + Donne chaque fois un chiffre différent entre et 6 (compris). On peut aussi faire : «entaléat(, 6)» ou «randint(, 6)» qui donne directement un entier compris entre et 6 au sens large. Pour simuler l expérience aléatoire avec la distance entre les numéros sortis par les deux dés : math NUM : Abs( mathnum : PartEnt( math PRB : NbrAléat * 6 ) math PRB : NbrAléat * 6 ) ) ) Conjectures : d = est la plus fréquente ; d = la moins fréquente ; les distances 0 et semblent avoir des fréquences très proches. ) Tableau des distances Nous sommes dans un cas d équiprobabilité. P (0) = P () = P () = P () = 6 P (4) = 9 P () = 8 Tableau de probabilité d 0 4 Probabilité dé dé Les fréquences données sur le graphique sont «proches» des probabilités calculées. 8 Les fréquences obtenues par simulation semblent en accord avec ce tableau, notamment pour l échantillon de grande taille (0 000)
Les probabilités. Chapitre 18. Tester ses connaissances
Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
CALCUL DES PROBABILITES
CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.
Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
Exercices de dénombrement
Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.
Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.
Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir
Probabilités (méthodes et objectifs)
Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
Coefficients binomiaux
Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant
PROBABILITÉS CONDITIONNELLES
PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
Probabilité 2 Ω = { P, F } Lancer un sou deux fois. Ω = { PP, PF, FP, FF} Ω = { 2, 3, 4,..., as }
. Définitions préliminaires Probabilité. Définitions préliminaires La théorie des probabilités utilise un langage emprunté à la théorie des ensembles. Il sera nécessaire de définir les éléments de ce langage
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau
GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
Andrey Nikolaevich Kolmogorov
PROBABILITÉS La théorie des probabilités est née de l étude par les mathématiciens des jeux de hasard. D'ailleurs, le mot hasard provient du mot arabe «az-zahr» signifiant dé à jouer. On attribue au mathématicien
P1 : Corrigés des exercices
P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à
Mesure de probabilité, indépendance.
MATHEMATIQUES TD N 2 : PROBABILITES ELEMENTAIRES. R&T Saint-Malo - 2nde année - 2011/2012 Mesure de probabilité, indépendance. I. Des boules et des cartes - encore - 1. On tire simultanément 5 cartes d
Exo7. Probabilité conditionnelle. Exercices : Martine Quinio
Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle
Arbre de probabilité(afrique) Univers - Evénement
Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer
POKER ET PROBABILITÉ
POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main
Plus petit, plus grand, ranger et comparer
Unité 11 Plus petit, plus grand, ranger et comparer Combien y a-t-il de boules sur la tige A? Sur la tige B? A B Le nombre de boules sur la tige A est plus grand que sur la tige B. On écrit : > 2 On lit
S initier aux probabilités simples «Question de chance!»
«Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif
S initier aux probabilités simples «Question de chance!»
«Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Probabilités. I - Expérience aléatoire. II - Evénements
Probabilités Voici le premier cours de probabilités de votre vie. N avez-vous jamais eut envie de comprendre les règles des grands joueurs de poker et de les battre en calculant les probabilités d avoir
Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles
Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention
9 5 2 5 Espaces probabilisés
BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire
Probabilités conditionnelles Loi binomiale
Fiche BAC ES 05 Terminale ES Probabilités conditionnelles Loi binomiale Cette fiche sera complétée au fur et à mesure Exercice n 1. BAC ES. Centres étrangers 2012. [RÉSOLU] Un sondage a été effectué auprès
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année
DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES
BTS GPN ERE ANNEE-MATHEMATIQUES-DENOMBREMENT-COMBINATOIRE-EXERCICE DE SYNTHESE EXERCICE RECAPITULATIF (DE SYNTHESE) CORRIGE Le jeu au poker fermé DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES On joue
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,
Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.
Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110
Glossaire des nombres
Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour
La simulation probabiliste avec Excel
La simulation probabiliste avec Ecel (2 e version) Emmanuel Grenier [email protected] Relu par Kathy Chapelain et Henry P. Aubert Incontournable lorsqu il s agit de gérer des phénomènes aléatoires
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
Le chiffre est le signe, le nombre est la valeur.
Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Calculs de probabilités conditionelles
Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile
Factorisation Factoriser en utilisant un facteur commun Fiche méthode
Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
COMBINATOIRES ET PROBABILITÉS
COMBINATOIRES ET PROBABILITÉS ème année. Analyse combinatoire.. Outils.. Principe de décomposition.. Permutations.. Arrangements..5 Combinaisons 8.. Développement du binôme 9..7 Ce qu il faut absolument
4. Exercices et corrigés
4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Chaînes de Markov au lycée
Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat
Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch
Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels
TEST 17 FORCE 2. gums. chewing gums. Russie : badge. rouge. trompé.
TEST 17 éclencher lee chronomètree pour 20 minutes FORCE 2 3 Lire le texte et répondre aux questions. 1 GLOP et GLUP collectionnent les chaussettes trouées et en possènt ensemble 216. Si GLUP donnait 3
REGLEMENT DES JEUX PARTOUCHE IMAGES (Serveur vocal et Internet)
REGLEMENT DES JEUX PARTOUCHE IMAGES (Serveur vocal et Internet) Le présent règlement remplacent, à compter du 24 juillet 2013, le précédent règlement Jeux PARTOUCHE IMAGES déposées en l étude de Maître
Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France
Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes
Statistiques II. Alexandre Caboussat [email protected]. Classe : Mardi 11h15-13h00 Salle : C110. http://campus.hesge.
Statistiques II Alexandre Caboussat [email protected] Classe : Mardi 11h15-13h00 Salle : C110 http://campus.hesge.ch/caboussata 1 mars 2011 A. Caboussat, HEG STAT II, 2011 1 / 23 Exercice 1.1
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
YANN ROUDAUT - Professeur de l Ecole Française de Poker - [email protected] - 06 28 76 48 93
MODULE LES MATHEMATIQUES DU POKER Probabilités et Notions de Cotes - Partie 1 YANN ROUDAUT - Professeur de l Ecole Française de Poker - [email protected] - 06 28 76 48 93 A/ POKER ET MATHEMATIQUES
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
MATHÉMATIQUES APPLIQUÉES S4 Exercices
Unité D Probabilité Exercice 1 : Chemins 1. Aline habite la maison illustrée ci-dessous. Le diagramme illustre les murs et les portes. a) Combien existe-t-il de chemins possibles entre la pièce A et la
Les nombres entiers. Durée suggérée: 3 semaines
Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Objets Combinatoires élementaires
Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que
Calculs de probabilités
Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail
La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES Suites géométriques, fonction exponentielle Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence L objectif de cet exercice
L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun
9 L E Ç O N Marches aléatoires Niveau : Terminale S Prérequis : aucun 1 Chaînes de Markov Définition 9.1 Chaîne de Markov I Une chaîne de Markov est une suite de variables aléatoires (X n, n N) qui permet
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
LES DECIMALES DE π BERNARD EGGER
LES DECIMALES DE π BERNARD EGGER La génération de suites de nombres pseudo aléatoires est un enjeu essentiel pour la simulation. Si comme le dit B Ycard dans le cours écrit pour le logiciel SEL, «Paradoxalement,
Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.
Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée
Formation tableur niveau 1 (Excel 2013)
Formation tableur niveau 1 (Excel 2013) L objectif général de cette formation est de repérer les différents éléments de la fenêtre Excel, de réaliser et de mettre en forme un tableau simple en utilisant
INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies
INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH
Calculs de probabilités avec la loi normale
Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer
THEME : CLES DE CONTROLE. Division euclidienne
THEME : CLES DE CONTROLE Division euclidienne Soit à diviser 12 par 3. Nous pouvons écrire : 12 12 : 3 = 4 ou 12 3 = 4 ou = 4 3 Si par contre, il est demandé de calculer le quotient de 12 par 7, la division
Conversion d un entier. Méthode par soustraction
Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut
Baccalauréat technique de la musique et de la danse Métropole septembre 2008
Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3
8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant
S initier aux probabilités simples «Un jeu de cartes inédit»
«Un jeu de cartes inédit» 29-31 Niveau 3 Entraînement 1 Objectifs S entraîner à estimer une probabilité par déduction. Applications (exemples) En classe : tout ce qui réclame une lecture attentive d une
I- Définitions des signaux.
101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais
UN CAFÉ STOCHASTIQUE DANS UNE VOITURE EN MÉTAL
UN CAFÉ STOCHASTIQUE DANS UNE VOITURE EN MÉTAL Jeremy Askhenas, créateur du langage de programmation CoffeeScript, est connu dans le monde des programmeurs en Ruby 1 pour avoir porté en JavaScript les
EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG
Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : [email protected] La maquette
Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7
Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,
Jeux mathématiques en maternelle. Activités clés. Jeu des maisons et des jardins (Yvette Denny PEMF)
Activités clés NIVEAU : PS/MS Jeu des maisons et des jardins (Yvette Denny PEMF) Compétences Construire les premiers nombres dans leur aspect cardinal Construire des collections équipotentes Situation
BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL
BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par
