2 )- Que peut-on en conclure dans chaque cas. 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "2 )- Que peut-on en conclure dans chaque cas. 2"

Transcription

1 F(N) L.M.D-ST Eercice 1 : Une particule de masse m=10 kg se déplaçant sur une trajectoire rectiligne, sans frottement, est soumise à la force F() représentée sur la figure ci-dessous (m) ) alculer le travail de la force, quand la particule se déplace depuis l origine jusqu à la position = 8 m. ) Sachant que la vitesse de la particule à l origine V 0 = 4 m/s. alculer la vitesse de la particule au point d abscisse = 8 m. Eercice : Un corps de masse m, soumis à une force décrit la trajectoire fermée OO formée d un arc de parabole et d un segment de droite, dans le sens indiquer par la flèche (voir figure) 1 )- alculer le travail effectuée par F n dans les deu cas suivants : a)- F yi j b)- F i yj 1 )- Que peut-on en conclure dans chaque cas. Fn 1 0 y(m) y= 1 y= / (m) Eercice 3 : On considère un point matériel de masse m situé à une distance r du centre 0 de la terre. Soient R le rayon de la terre et g 0 l accélération de la pesanteur à la surface de la terre. 1 )- Montrer que l énergie potentielle E P du point matériel peut s écrire sous la forme : E p = - mg 0 R² r -Préciser l origine des énergies potentielles. )- On désire mettre sur orbite un satellite que l on assimilera à un point matériel. -3-

2 a)- Déterminer le rayon «a» de l orbite du satellite en fonction de 0, g 0 et R ( 0 étant la vitesse angulaire du satellite). b)- Déterminer l énergie cinétique du satellite en fonction de m, g 0 et «a». En déduire l énergie mécanique totale en fonction des mêmes paramètres. 3 )- u cours de sa mise en orbite, le satellite possède au point D une vitesse V 1 perpendiculaire à OD. Il atteint son orbite finale au point avec une vitesse V perpendiculaire à O (figure). En supposant que la force résultante qui s eerce sur le satellite est centrale (a voisin de d) trouver une relation entre V 1, V,a et d. V a V 1 terre D d Eercice 4 : Soit un satellite de masse m tournant autour de la terre de masse M à distance r du centre de la terre. En supposant que sa trajectoire est circulaire : 1- Donner l epression de l énergie potentielle correspondant à la force de gravitation entre le satellite et la terre, préciser l origine choisie pour l énergie potentielle. - Donner l énergie mécanique totale en fonction de G, M, m et r 3- Montrer que les trajectoires circulaires vérifient la troisième loi de 3 Kepler r GM, où est la vitesse angulaire. 4- Si un satellite parait immobile dans le ciel, calculer sa hauteur, sa vitesse et son énergie totale. On donne : M = kg, R T = 6400 km, m = 68 kg et G = N m kg - Eercice 5: -Un corps de masse 0kg est lancé verticalement vers le haut avec une vitesse initiale de 30m/s. alculer : a)- Les valeurs initiales de E,E P,et E T. b)- Les valeurs de E et E P au bout de 3s, au bout de 5s, et 8s. c)- Les valeurs de E et E P à 100m d altitude ; à 150m. d)- L altitude du corps quand E est réduite à 80 % de sa valeur initiale. Utiliser des graphiques en négligeant la résistance de l air. Résoudre le même problème dans le cas où le corps est lancé dans une direction faisant un angle de 70 avec l horizontale. Quelles sont les valeurs de E et de E P au sommet de la trajectoire? -4-

3 Eercice 6 : Une particule de masse m tombe du point au point puis des marches d un escalier. La dénivellation de chaque marche est égale à h=0cm. On donne m=100g. 1 )- alculer son énergie potentielle en, et dans les différents cas : h a)- Origine des énergies potentielles au niveau. b)- Origine des énergies potentielles au niveau. c)- Origine des énergies potentielles au niveau. )- Quelle est la grandeur qui reste constante? h Eercice 7: Nous considérons une piste contenue dans un plan verticale.elle est constituée d une partie D en quart de cercle et d une partie horizontale linéaire DEF. u point E se trouve un ressort linéaire de constante de raideur k, dont une etrémité est fiée au mur (figure ci-dessous). 1 )- Les frottements étant négligeables, on lâche sans vitesse initiale, du point, un cube de masse m et de dimensions négligeables. u point situé au milieu de la partie circulaire, on demande de : a)- alculer la vitesse V b du cube et la force de contact qu eerce le sol sur le cube. b)- Représenter à l échelle : 1N cm, les forces eercées sur le cube. c)- alculer son accélération. )- alculer la compression maimale du ressort lorsque le cube vient le percuter. O R 45 R=1m m=0.kg k=10 4 N/m k m F E D -5-

4 Eercice 8 : Une particule de masse m=40g décrit un mouvement rectiligne suivant un ae o. Elle est soumise à une force conservative F F i. L énergie potentielle E p () varie en fonction de la position comme le montre le graphe ci-dessous E p (J) (m) 1 )- ette particule passe par l origine O avec une quantité de mouvement P 0 =0.8kg.m/s en se dirigeant vers les abscisses positives. a)- alculer son énergie mécanique totale. b)- Quel est le travail de la force F lorsque la masse se déplace de l origine O au point d abscisse =1m. c)- Tracer la courbe F () pour compris entre 0 et 1m. En utilisant le graphe de F (), retrouver le résultat de la question b). d)- Quelle est la vitesse de la masse m quand elle passe par le point d abscisse =3m. En quel autre point a-t-elle la même vitesse? )- Quelle est la quantité de mouvement P min qu elle doit avoir à l origine pour qu elle puisse atteindre le point d abscisse =1m. Eercice 9 : Une particule de masse m se déplace suivant l ae o sous l effet d une force qui dérive d un potentiel. La courbe de son énergie potentielle en fonction de est donnée sur la figure. 1- Déterminer les positions d équilibre en précisant leur nature. Justifier - En supposant que l énergie mécanique totale est égale à Joules, représenter le graphe de l énergie cinétique en fonction de. 3- Discuter le mouvement de la particule dans les différentes régions possibles de. -6-

5 16 E p ( j ) X( m ) Eercice 10: La figure ci-dessous représente une piste () de longueur =m, inclinée d un angle =5 par rapport à un tronçon horizontal D=0.m qui se termine par une piste demi-circulaire DE de rayon R=0.m. On donne :sin()= 0.4 et cos() =0.90. Une masse m=500g, assimilée à un point matériel, est placée en contact avec l etrémité libre d un ressort de constante de raideur k=15n/m et de longueur à vide l 0. On supposera dans tout le problème que les frottements entre la masse m et la piste (D) sont caractérisés par des coefficients µ s =0.6 et µ g =0.4. Par contre les frottements sont négligeables sur la partie demi-circulaire DE. 1 )- Déterminer la compression maimale Xo du ressort pour rompre l équilibre de la masse. )- Le ressort étant comprimé de 1 =10cm : a)- Déterminer la vitesse de la masse au point D. b)- Trouver l epression de la vitesse V M de la masse au point de la figure caractérisée par l angle =(OD,OM). c)- En déduire l angle de remontée ma atteint par la masse m. 3 )- Quelle doit-être la valeur minimale de la vitesse au point D pour qu elle arrive en E sans décoller. E O R M D -7-

6 Eercice 11 : Une boule de masse m, accrochée à un fil inetensible de longueur l, est écartée de sa position d équilibre d un angle et est abandonnée sans vitesse initiale. son passage par la position verticale, la boule percute un corps de même masse et s arrête. Le corps glisse sur une piste OD de la figure 1. La partie O = d est un plan horizontal rugueu de coefficient de frottement dynamique d. La portion D = L, parfaitement lisse, est inclinée d un angle = 30 par rapport à l horizontale. l On donne : m = 00 g, d = 1 m, l = 10 cm, L = 1 m, d = 0.1, g = 10 m/s et k = 140 N/m. O Figure 1 L D 1- Dessiner les forces eercées sur le corps en une position entre O et. - alculer l accélération du corps entre O et. Déduire la nature du mouvement. 3- Donner l epression de la vitesse de la boule juste avant de toucher le corps 4- En utilisant la conservation de la quantité de mouvement du système, déterminer la vitesse du corps après l interaction. 5- Eprimer la vitesse du corps au point en fonction de g, l, d, et d 6- De quel angle m doit on écarter la boule pour que le corps arrive en avec une vitesse nulle. 7- partir du point, le corps aborde la partie D avec une vitesse nulle. Il arrive sur un ressort parfait de longueur à vide l 0 et de constante de raideur k. - Représenter les forces eercées sur au cours de la compression du ressort. - Quelle est la valeur de la compression maimale du ressort. -8-

7 Eercice 1 : Un skieur que l on assimilera à un point matériel M, de masse m = 80 kg, part avec une vitesse nulle du point S, situé à une hauteur h s = 1540 m, pour arriver au point O, situé à une hauteur h o = 1440 m. 1 Sachant que le long de la piste SO, de longueur 150m, les frottements entre la piste est les skis sont caractérisés par une force = 400 N, dans la direction // de la vitesse : a Donner l epression de l énergie totale au points S et O, b - Déduire la vitesse V 0 du skieur au point O. - En O, le skieur quitte la piste avec une vitesse horizontalev O. En supposant les frottements dus à l air négligeables, déterminer l équation de la trajectoire suivie par le skieur. 3- quelle distance de O le skieur touchera- t - il le plan incliné, faisant un angle = 45 ave l horizontale? 4- Quelle est sa vitesse à cet endroit? S y h S O O=5 m h O -9-

8 Solution de quelques eercices type Eercice 4 : G M m La force entre la terre et le satellite s écrit : F u r 1- F est force qui dérive d un potentiel donc G M m dr G M m W F. dl u. dl G M m et W E E ( r ) E ( ) p p p r r r r r G M m En posant E ( ) 0 E ( r ) p p r GM m v GM m 1 GM m - Energie totale : omme F m mv E c r r r r 1 G M m donc: E E E T c p r G M m v 3 3- on a : F m m r r G M r r 4- Si le satellite ne bouge pas il a la même période que la terre T = 4 h = s 1 / 3 GM m 4 T ( ) T Or F mr mr r R h GM r T h m v r m / s T E T 1 G M m 3.10 r 8 J 4 = m -30-

9 E p ( j ) L.M.D-ST Eercice 9 : 1- Positions d équilibre : - Stable = 0 m car minimum de E p () - Instable = m car maimum de E p () - Si E T = Joules, l énergie cinétique E c = E T E p E (J) 4 E T (J) 0 X( m ) Discussion de la courbe, nn traçant le graphe de E () on constate que: - Si la particule se trouve dans le domaine m : elle oscille entre ces deu positions - Si elle se trouve en.8 m il ya deu cas : - si elle se déplace vers les positifs elle part vers l infini - si elle va vers les négatifs elle arrive jusqu à =.8 m et elle rebrousse chemin pour aller vers l infini. -31-

10 Eercice 11 : 1- Forces P o : ma - ccélération : P ma a g 1 m / s d oy : mg y 3- Pas de frottements : E ti =E tf 1 m v m gl (1 cos ) v gl (1 cos ) 4- onservation de la quantité de mvt : m v 0 0 m v v v gl (1 cos ) 5- Vitesse au point : 1 1 E W T m v m v O m gd c d donc : v gl (1 cos ) gd c d d 6- v 0 cos 1 c m m l 7- a- Forces d T b- compression maimale E mgh mg ( L ) sin et T 1 E T 1 k P Pas de frottements donc : E T1 = E T alors : 1 k m g sin m gl sin cm -3-

11 Eercice 1 : 1- a- au point S : E E E mgh ; au point O : TS c p S 1 E E E m v m gh TS c p o o 1 b- E W m v m g ( h h ) SO T // o s o // v ( mgh SO o //.36 m / s m // P - trajectoire : o : v v ( t ) v t o o g 1 1 y oy : v gt y ( t ) gt y v 100 y 0 o y v o g 3- Il touche le sol lorsque l équation du mouvement est égale à celle de la droite représentant le sol. Pour la droite on a : y a b 5.Elles se coupent si m OI y m y 109.8m 4- Sa vitesse à cet instant est : on a t 4.69 s v.36 m / s et v 46.9 m / s v m / s y -33-

Exercice 1: Exercice2:

Exercice 1: Exercice2: Exercice 1: Un corps de masse m 1 = 3,2 kg se déplace vers l ouest à la vitesse de 6,0 m/s. Un autre corps différent, de masse m 2 = 1,6 kg, se déplace vers le nord à la vitesse de 5,0 m/s. Les deux corps

Plus en détail

LYCEE GALANDOU DIOUF Année scolaire 05 / 06 Classe 1 er S2 ENERGIE POTENTIELLE- ENERGIE MECANIQUE

LYCEE GALANDOU DIOUF Année scolaire 05 / 06 Classe 1 er S2 ENERGIE POTENTIELLE- ENERGIE MECANIQUE LYEE GLNDOU DIOUF nnée scolaire 05 / 06 lasse 1 er S2 ellule de Sciences Physiques Série P 3 : Exercice 1 ENERGIE POTENTIELLE- ENERGIE MENIQUE Un solide de masse m = 800g glisse sans frottement sur la

Plus en détail

SERIE 3 / ENERGIE POTENTIELLE ET MECANIQUE ANNEE :

SERIE 3 / ENERGIE POTENTIELLE ET MECANIQUE ANNEE : SERIE 3 : ENERGIES POTENTIELLE ET MECANIQUE Remarque : Dans cette série, il est possible de résoudre certains exercices avec le théorème de l énergie cinétique, seulement il est clair que le but est de

Plus en détail

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES EXERCICE 1 Dans cet eercice, les réponses attendues doivent être rédigées de façon succincte. Le modèle d'oscillateur étudié est décrit ci-contre, et les

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Questions de cours 1. Rappeler la définition du travail et de la puissance d une force. Citer des cas de nullité

Plus en détail

Professeur : Mohamed lemine ould Hasnat

Professeur : Mohamed lemine ould Hasnat Énoncé de l exercice 1 Un solide C, de dimensions négligeables, de masse m =100 g, pouvant glisser sans frottement sur une table horizontale, est fixée à l extrémité d un ressort à spires non jointives,

Plus en détail

Travail, énergie potentielle, énergie cinétique et énergie mécanique

Travail, énergie potentielle, énergie cinétique et énergie mécanique Cf log 2011-2012 Eercices Mécanique PTSI Travail, énergie potentielle, énergie cinétique et énergie mécanique ien regarder les fiches Méthodes M2/M3 E-M3.1 Chute verticale avec frottement : Une masse ponctuelle

Plus en détail

TD 6 Moment cinétique

TD 6 Moment cinétique PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 6 Moment cinétique 1. Force centrale 1. Définir une force centrale. 2. Donner les propriétés du moment cinétique d une masse ponctuelle uniquement

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Energie cinétique et théorème de l énergie cinétique (cours) 1. Donner la définition de l énergie cinétique d un

Plus en détail

est possible de résoudre certains avec le théorème de l énergie cinétique, l énergie mécanique Remarque : Dans ces exercices, il Exercice 38

est possible de résoudre certains avec le théorème de l énergie cinétique, l énergie mécanique Remarque : Dans ces exercices, il Exercice 38 Mécanique & Électricité http://membres.lycos.fr/wphysiquechimie Premières S Énergie mécanique : Théorème de l énergie mécanique Remarque : Dans ces exercices, il seulement il est clair que le but est Exercice

Plus en détail

FACULTE DE PHYSIQUE POLYCOPIE DE TRAVAUX DIRIGES DE MECANIQUE DU POINT MATERIEL SYSTEME L.M.D: S.T.

FACULTE DE PHYSIQUE POLYCOPIE DE TRAVAUX DIRIGES DE MECANIQUE DU POINT MATERIEL SYSTEME L.M.D: S.T. UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE HOUARI BOUMEDIENE FACULTE DE PHYSIQUE POLYCOPIE DE TRAVAUX DIRIGES DE MECANIQUE DU POINT MATERIEL SYSTEME L.M.D: S.T. - A. CHAFA - A.DIB - F.CHAFA MEKIDECHE

Plus en détail

Professeur : Mohamed lemine ould Hasnat

Professeur : Mohamed lemine ould Hasnat Énoncé de l exercice 1 On étudie le mouvement d un solide ponctuel S dans le référentiel terrestre supposé galiléen. Ce solide, de masse m, est initialement au repos en A. On le lance sur la piste ACD,

Plus en détail

Les oscillations libres d un pendule élastique Oscillations libres non amorties Série d exercices corrigés

Les oscillations libres d un pendule élastique Oscillations libres non amorties Série d exercices corrigés Les oscillations libres d un pendule élastique Oscillations libres non amorties Série d exercices corrigés Exercice 1 : On considère l'oscillateur horizontal (Figure 1) constitué par un ressort de raideur

Plus en détail

Matière : Physique Classe : SG.

Matière : Physique Classe : SG. Matière : Physique Classe : SG. Premier exercice (7pts) : étude énergétique Un jouet d'enfant est formé d'un rail placé dans un plan vertical comme indique la figure ci-dessous. La partie ABC est un trajet

Plus en détail

Mouvement Rectiligne

Mouvement Rectiligne Mouvement Rectiligne Etude cinématique dynamique Enoncés Exercice 1 (Etude du mouvement rectiligne d un point matériel) Un mobile M effectue un mouvement dans le plan (O, x, y) muni d un repère R (O, i,

Plus en détail

ENERGIE CINETIQUE ENERGIE POTENTIELLE

ENERGIE CINETIQUE ENERGIE POTENTIELLE ENERGIE CINETIQUE ENERGIE POTENTIELLE EXERCICE I : ENERGIE CINETIQUE Un disque homogène de centre O et de rayon r = 10cm, a une masse M = 1,3kg. Dans une première expérience, le disque roule sans glisser

Plus en détail

Exercices et Problèmes de renforcement en Mécanique

Exercices et Problèmes de renforcement en Mécanique Exercices et Problèmes de renforcement en Mécanique I Un ressort de raideur k = 9 N/m et de longueur à vide L = 4 cm, fixé par une de ces deux extrémités en un point O, d un plan, incliné de 3 sur l horizontal,

Plus en détail

Travail et énergie cinétique ( ) ELfarissi Hammadi Exercice 1 Une bille masse m=15,0g est en chute libre sans vitesse initiale.

Travail et énergie cinétique ( ) ELfarissi Hammadi Exercice 1 Une bille masse m=15,0g est en chute libre sans vitesse initiale. Travail et énergie cinétique (2012-2013) ELfarissi Hammadi Exercice 1 Une bille masse m=15,0g est en chute libre sans vitesse initiale. Elle a été lâchée d'un balcon au 6 ème étage situé à une hauteur

Plus en détail

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son Physique TC 1 Correction 1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son centre. 2. Proposer une expression

Plus en détail

LYCEE MOURATH NDAW ANNEE SCOLAIRE PROF;NJAAGA JOOB TERMINALE S 1

LYCEE MOURATH NDAW ANNEE SCOLAIRE PROF;NJAAGA JOOB TERMINALE S 1 --------------------------------------------------------------------------------------------------------------- EXERCICE N 1 : Oscillation d un pendule simple Un pendule simple est constitué d un objet

Plus en détail

Dynamique newtonienne

Dynamique newtonienne Dynamique newtonienne Contrairement à la cinématique, qui se limite à la description du mouvement, la dynamique a pour but l interprétation des causes du mouvement. Aspect historique Entre les années 1600

Plus en détail

SOMMAIRE. Chapitre correspondant dans le livre

SOMMAIRE. Chapitre correspondant dans le livre Devoir commun EXERCICES DE RÉVISIONS PARTIE PHYSIQUE 1S SOMMAIRE tableau de synthèse des révisions exercices supplémentaires corrigés des exercices supplémentaires TABLEAU DE SYNTHÈSE Chapitre du cours

Plus en détail

Exercices de dynamique

Exercices de dynamique Exercices de dynamique Exercice 1 : 1) Une automobile assimilable à un solide de masse m=1200 kg, gravite une route rectiligne de pente 10 % (la route s élève de 10 m pour un parcours de 100m) à la vitesse

Plus en détail

MINESTRE DE L EDUCATION ET DE LAFORMATION SERIE N 8 SEANCE N 16 SCIENCE-TECHNIQUE-EXP-MATHS

MINESTRE DE L EDUCATION ET DE LAFORMATION SERIE N 8 SEANCE N 16 SCIENCE-TECHNIQUE-EXP-MATHS REPUBLIQUETUNISIENNE PROF/ MABROUKI SALAH MINESTRE DE L EDUCATION ET DE LAFORMATION SERIE N 8 SEANCE N 16 SECTION / SCIENCE-TECHNIQUE-EXP-MATHS Osc ~ Libre ~. ~ 2 EXERCICEN 1 On dispose d un pendule élastique

Plus en détail

Devoir n 3 de sciences physiques (2 heures)

Devoir n 3 de sciences physiques (2 heures) Lycée de Bambey erminale Sa Année: 7/8 Devoir n 3 de sciences physiques ( heures) 1 Exercice 1: Réaction entre un acide fort et une base forte (8 points) Les parties I et II sont indépendantes. Partie

Plus en détail

EXAMEN #2 PHYSIQUE MÉCANIQUE 25% de la note finale

EXAMEN #2 PHYSIQUE MÉCANIQUE 25% de la note finale EXAMEN #2 PHYSIQUE MÉCANIQUE 25% de la note finale Hiver 2012 Nom : Chaque question à choix multiples vaut 3 points 1. Dans quelle direction doit accélérer un objet pour que son poids apparent soit inférieur

Plus en détail

EXAMEN #2 PHYSIQUE MÉCANIQUE 20% de la note finale

EXAMEN #2 PHYSIQUE MÉCANIQUE 20% de la note finale EXAMEN #2 PHYSIQUE MÉCANIQUE 20% de la note finale Hiver 2013 Nom : Chaque question à choix multiples vaut 3 points 1. On appuie horizontalement sur un bloc placé le long d un mur de telle sorte que le

Plus en détail

CINEMATIQUE. EXERCICE II Les équations paramétriques du mouvement d un point matériel lancé dans l espace

CINEMATIQUE. EXERCICE II Les équations paramétriques du mouvement d un point matériel lancé dans l espace CINEMATIQUE EXERCICE I Un obus arrive dans une plaque à la vitesse 600m/s. il traverse cette plaque d épaisseur 5c m et continue sa course à 400m/s. a) Quelle est la durée de traversée de la plaque? b)

Plus en détail

SERIE 2 : ENERGIE CINETIQUE

SERIE 2 : ENERGIE CINETIQUE SERIE 2 : ENERGIE CINETIQUE EXERCICE 1: CONNAISSANCES DU COURS 1 ) L énergie cinétique est-elle une grandeur vectorielle ou une grandeur scalaire algébrique ou une grandeur scalaire positive? Dépend-elle

Plus en détail

ANALYSE. 1. Déterminer, en justifiant vos réponses, les limites suivantes : a) lim. b) lim. e x e x. tan(2x 2 ) x sin x. c) lim

ANALYSE. 1. Déterminer, en justifiant vos réponses, les limites suivantes : a) lim. b) lim. e x e x. tan(2x 2 ) x sin x. c) lim Voici une liste de quelques exercices destinés à donner un aperçu du contenu de l épreuve écrite d admission sur titre et d admission d apprentis. Cette liste n est qu indicative et il est rappelé aux

Plus en détail

La conservation de l énergie

La conservation de l énergie Chapitre 8 La conservation de l énergie 8.0 Introduction Les interrogations sur le mouvement d un pendule avec Galilée, marque le début de l emploi du concept de l énergie pour expliquer et surtout prédire

Plus en détail

Travaux Dirigés de M 3

Travaux Dirigés de M 3 Travau Dirigés 3 Correction PCSI 2 203 204 Travau Dirigés de 3 Eercice : Tir vertical Un obus est lancé depuis le sol, selon la verticale ascendante avec une vitesse initial v 0 = v 0. e. Quelle altitude

Plus en détail

a) Le stroboscope peut être réglé sur une fréquence de 20 Hz pour obtenir l immobilité apparente de la surface de l eau.

a) Le stroboscope peut être réglé sur une fréquence de 20 Hz pour obtenir l immobilité apparente de la surface de l eau. 6 concours FESIC 2011 Physique Sujet Exercice 1 On a schématisé, en coupe dans un plan vertical, une partie de la surface de l eau sur une cuve à onde à un instant t. Le point M, indiquant la position

Plus en détail

Fiche n 2 sur la projection de vecteurs

Fiche n 2 sur la projection de vecteurs Fiche n sur la projection de vecteurs I. Eléments de cours à connaître I.1 Définition du produit scalaire I. Conséquences / propriétés I.3 pplication : formule d l Kashi I.4 Projection d un vecteur I.5

Plus en détail

Mécanique du point. Contrôle final. Sans documents - calculatrice autorisée LES NUMEROS DE GROUPE ET DE PROMO DEVRONT ETRE ECRITS SUR LES COPIES

Mécanique du point. Contrôle final. Sans documents - calculatrice autorisée LES NUMEROS DE GROUPE ET DE PROMO DEVRONT ETRE ECRITS SUR LES COPIES E. S. I. E. E. Année 2013/2014 Mécanique du point SFP-1003 Contrôle final Temps : 3h Mercredi 15/01/2014 Sans documents - calculatrice autorisée E. Algré LES NUMEROS DE GROUPE ET DE PROMO DEVRONT ETRE

Plus en détail

On constate que l accélération est positive et donc le système monte bien.

On constate que l accélération est positive et donc le système monte bien. Université Cadi Ayyad Année Universitaire 05/06 Faculté des Sciences Semlalia-Marrakech Département de Physique Module de Mécanique du Point Matériel Corrigé de la série N 3 Filières SMA Corrigé : Peintre

Plus en détail

Term S Chap 06 - Applications des lois de Newton et des lois de Kepler

Term S Chap 06 - Applications des lois de Newton et des lois de Kepler TS 1 / 6 Term S Chap 06 - Applications des lois de Newton et des lois de Kepler I ) Mouvement d un projectile dans un champ de pesanteur uniforme : 1) Poids et champ de pesanteur terrestre: Le poids d'un

Plus en détail

Les dominos (4 points)

Les dominos (4 points) Les dominos (4 points) On souhaite préparer le départ d'une bille pour un «dominos-cascade». La bille lancée doit aller percuter le premier domino pour déclencher les chutes en cascade. Les dominos étant

Plus en détail

Systèmes oscillants. I. Présentation de quelques systèmes oscillants mécaniques. 1. Les oscillateurs vus en terminale S.

Systèmes oscillants. I. Présentation de quelques systèmes oscillants mécaniques. 1. Les oscillateurs vus en terminale S. Systèmes oscillants I. Présentation de quelques systèmes oscillants mécaniques. 1. Les oscillateurs vus en terminale S. Les oscillateurs étudiés en terminale S sont : - le pendule pesant (simple) - le

Plus en détail

Travail d'une force. Une force est constante si sa valeur, sa direction et son sens ne varient pas au cours du temps.

Travail d'une force. Une force est constante si sa valeur, sa direction et son sens ne varient pas au cours du temps. Travail d'une force Lorsque la force exercée sur un mobile a un effet sur la valeur de la vitesse du mobile, on dit qu elle travaille. Une force travaille, si son point d application se déplace dans une

Plus en détail

Travail et énergie potentielle Électrostatique

Travail et énergie potentielle Électrostatique Travail et énergie potentielle Électrostatique Exercice 90 Une charge q = 10-7 C se déplace en ligne droite, de A vers B, dans un champ électrique uniforme E r, d intensité E = 600 V/m, tel que (,E) AB

Plus en détail

1 Exercices d introduction

1 Exercices d introduction TD 4 : Mouvement accéléré 1 Exercices d introduction Exercice 1 Evolution de la population mondiale Année (1er janvier) 1500 1600 1700 1800 1900 2000 2013 Population (10 9 ) 0,500 0,560 0,640 0,900 1,650

Plus en détail

Travail et Puissance d une force

Travail et Puissance d une force Travail et Puissance d une force Exercice 1 On pousse une caisse de poids P = 400 N, de A vers D, selon le trajet ABCD (voir figure ci-contre). Le parcours horizontal CD a pour longueur l = 4 La caisse

Plus en détail

Lycée Viette TSI 1. DS h 50. Problème 01 Trajectoire d une particule

Lycée Viette TSI 1. DS h 50. Problème 01 Trajectoire d une particule DS 03 02 12 2011 1 h 50 Problème 01 Trajectoire d une particule On considère un point matériel en mouvement dans un référentiel. L équation en polaire de la trajectoire en polaire s écrit : =.. avec =.,

Plus en détail

Etude énergétique des systèmes mécaniques

Etude énergétique des systèmes mécaniques Etude énergétique des systèmes mécaniques I) TRAVAIL D UNE FORCE CONSTANTE 1) Expression du travail (rappel) 2) Travail du poids d un corps II) TRAVAIL D UNE FORCE QUELCONQUE 1) Travail élémentaire a)

Plus en détail

Énergie cinétique : Théorème de l énergie cinétique

Énergie cinétique : Théorème de l énergie cinétique Énergie cinétique : Théorème de l énergie cinétique Exercice 18 Un mobile A de masse 100 g pouvant glisser sur une règle à coussin d air incliné d un angle α = 30 sur l horizontale est abandonné sans vitesse

Plus en détail

TRAVAUX DIRIGÉS DE S 1

TRAVAUX DIRIGÉS DE S 1 Travau Dirigés S 1 Correction PCSI 2016 2017 TRAVAUX DIRIGÉS DE S 1 Eercice 1 : Homogénéité 1. ontrer que l epression obtenue en cours ω = k est homogène. m 2. n trouve epérimentalement ω = 250 /min, convertir

Plus en détail

Cours n 4 : La chute

Cours n 4 : La chute Cours n 4 : La chute 1) Le champ de pesanteur terrestre Il est possible de caractériser en tout point de l espace la capacité d attraction de la terre sur un objet par la définition de la notion de champ

Plus en détail

TD 16 Loi de la quantité de mouvement

TD 16 Loi de la quantité de mouvement Mécanique I TPC TD 6 Loi de la quantité de mouvement Eercice Mouvement sur un plan incliné Un solide de masse m=5kg glisse sans frottement sur un plan incliné d'angle α =5 par rapport à l'horiontale. Il

Plus en détail

repose sur le sol. Lorsque le sol est localement mis en mouvement O sous l effet de secousses sismiques, le référentiel du boîtier est animé,

repose sur le sol. Lorsque le sol est localement mis en mouvement O sous l effet de secousses sismiques, le référentiel du boîtier est animé, FICHE TD PREMIER PRINCIPE DE LA MECANIQUE CLASSIQUE EXERCICE N 1 Un sismographe est un appareil destiné à enregistrer les vibrations de la surface terrestre sous l action d un séisme. Son S g principe

Plus en détail

PHY-144 : Introduction à la physique du génie

PHY-144 : Introduction à la physique du génie PHY-144 : Introduction à la phsique du génie Chapitre 2 : Statique: équilibre de translation. 2.1 Introduction Le cours PHY-144 est un cours qui traite de la «mécanique». La mécanique est la science qui

Plus en détail

Série physique: oscillation mécanique libre. Exercice N 1. 4 éme M-S.exp

Série physique: oscillation mécanique libre. Exercice N 1. 4 éme M-S.exp Exercice N 1 Un solide ponctuel (S), de masse m, est attaché à l une des extrémités d un ressort (R), à spires non jointives, de raideur K et de masse négligeable. L autre extrémité du ressort est fixe.

Plus en détail

Dynamique du point en référentiel

Dynamique du point en référentiel MPSI - Mécanique I - Dynamique du point en référentiel galiléen page 1/6 Dynamique du point en référentiel galiléen Il faut bien comprendre que la e loi de Newton rappelée dans le chapitre d introduction

Plus en détail

Changement de référentiels

Changement de référentiels 1 MP*1-2015/2016 Changement de référentiels Une horloge est constituée d un pendule de longueur L, le fil étant sans masse, attaché en O au bout duquel est attachée en M une masse ponctuelle m. Il oscille

Plus en détail

Chapitre 2. Le plan incliné

Chapitre 2. Le plan incliné Chapitre 2 Le plan incliné Lorsqu un corps glisse le long d un plan incliné, il n est pas en chute libre. Ce corps est contraint de se déplacer le long du plan. Le corps ne chute donc plus verticalement,

Plus en détail

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités Énergie cinétique et travail : activités Application 1 a. Calculer l énergie cinétique : d une voiture de masse 1, 0tonnes roulant à 90km/h d un camion de masse 30tonnes roulant à 90km/h b. Calculer la

Plus en détail

EXAMEN #3 PHYSIQUE MÉCANIQUE 40% de la note finale

EXAMEN #3 PHYSIQUE MÉCANIQUE 40% de la note finale EXAMEN #3 PHYSIQUE MÉCANIQUE 40% de la note finale Hiver 2015 Nom : Chaque question à choix multiples vaut 2 points 1. Deux projectiles ont la même portée, mais le projectile A monte plus haut que le projectile

Plus en détail

Valider la réponse Les réponses sont des valeurs positives puisqu on cherche des modules.

Valider la réponse Les réponses sont des valeurs positives puisqu on cherche des modules. Phsique 1 Mécanique - 1 re édition Chapitre 05 Les forces et la deuième loi de Newton E6 Illustrer la situation Comme la boîte est en contact avec le sol, il a deu forces de contact : la normale et le

Plus en détail

c) Tracer qualitativement l allure du graphe si on opérait en présence du catalyseur Fe 2+? (Définir un catalyseur).

c) Tracer qualitativement l allure du graphe si on opérait en présence du catalyseur Fe 2+? (Définir un catalyseur). COMPOSITION DU 1 er SEMESTRE DE SCIENCES PHYSIQUES Exercice 1 : (03 points) On dispose d'un alcool A de formule C4H100 1) A peut donner un corps B pouvant réduire la liqueur de Fehling et donner une réaction

Plus en détail

THEOREME DE L'ENERGIE CINETIQUE

THEOREME DE L'ENERGIE CINETIQUE THEOREME DE L'ENERGIE CINETIQUE I MOUVEMENT DE TRANSLATION : LA CHUTE LIBRE 1 Expérience et référentiel L'origine des temps(t = 0) se situe lorsque la bille quitte l'électro-aimant et l'origine des abscisses

Plus en détail

L.E.I.D/G.S.A DEVOIR DE PC N 2 TS2A 2013/

L.E.I.D/G.S.A DEVOIR DE PC N 2 TS2A 2013/ DUREE :03heures EXERCICE N 1 :06 points Lorsque les pommes murissent, leurs membranes cellulaires s oxydent, engendrant la dégradation des acides gras à longues chaines qu elles contiennent. Il en résulte

Plus en détail

OSCILLATIONS LIBRES D UN PENDULE ELASTIQUE

OSCILLATIONS LIBRES D UN PENDULE ELASTIQUE Prérequis OSCILLATIONS LIBRES D UN PENDULE ELASTIQUE * Encadrer l expression de l énergie cinétique m v v m Ec = Ec = Ec = mv * Cocher les facteurs dont dé pond l énergie potentielle élastique d un système

Plus en détail

Examen de Mécanique Analytique. Professeur: P. De Los Rios. Epreuve du 20 février Durée: 4 heures - Sans document

Examen de Mécanique Analytique. Professeur: P. De Los Rios. Epreuve du 20 février Durée: 4 heures - Sans document Examen de Mécanique Analytique Professeur: P. De Los Rios Epreuve du 2 février 27 - Durée: 4 heures - Sans document Exercice 1 Plan incliné (6 points On considère une masse m glissant sans frottement sur

Plus en détail

Sujet. I. Pas de frottements. G.P. DNS Octobre Ressort et frottement

Sujet. I. Pas de frottements. G.P. DNS Octobre Ressort et frottement DNS Sujet Ressort et frottement...1 I.Pas de frottements... 1 II.Frottement fluide...2 III.Frottement solide... 2 A.Plage d équilibre... 2 B.Mouvement...3 Ressort et frottement Un mobile ponctuel B de

Plus en détail

= df dx (x 0). Nous voyons donc que la dérivée d une fonction f en un point x 0 correspond à la pente de la tangente à f en x 0.

= df dx (x 0). Nous voyons donc que la dérivée d une fonction f en un point x 0 correspond à la pente de la tangente à f en x 0. Phsique générale I Mécanique EXERCICES Série 1 (6 7 Eercice 1.1 On considère une pierre de masse m à une hauteur h du sol, tombant sous la seule action de la gravitation. Eprimer son temps de chute T et

Plus en détail

PENDULE DE TORSION. PENDULE PESANT.

PENDULE DE TORSION. PENDULE PESANT. PENDULE SIMPLE PENDULE DE TORSION. Il est constitué d un disque de masse m et de rayon R suspendu en son centre par un fil de torsion de masse négligeable. L autre extrémité du fil est fixe. PENDULE PESANT.

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa - Chapitre 10 : Oscillateurs mécaniques (II) 5. Oscillateur mécanique libre amorti : En présence de frottements, il n y a plus

Plus en détail

Travail et énergie mécanique

Travail et énergie mécanique Travail et énergie mécanique Si le chapitre 5 donnait les lois de la mécanique permettant de connaître position, vitesse et accélération d un système soumis à un ensemble de forces extérieures, nous prenons

Plus en détail

Exercices Mécanique du solide

Exercices Mécanique du solide Exercices Mécanique du solide Exo 1 Balançoire Un enfant sur une balançoire est schématisé par un pendule oscillant autour d un axe horizontal grâce à une liaison parfaite. L angle avec la verticale est

Plus en détail

Chapitre 5 : Application - Forces Centrales

Chapitre 5 : Application - Forces Centrales Cours de Mécanique du Point matériel Chapitre 5: Application - Forces Centrales SMPC Chapitre 5 : Application - Forces Centrales I Force Centrale I.)- Définition Un point matériel est soumis à une force

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Chapitre 5 : Energie potentielle Energie mécanique Systèmes conservatifs Introduction : L

Plus en détail

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales.

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales. TP - N : LA LOI DE NEWTON But de l expérience : - Vérifier le principe fondamental de la dynamique pour un mouvement de translation uniformément accéléré. - Déterminer expérimentalement la valeur de g.

Plus en détail

PHYSIQUE La mécanique

PHYSIQUE La mécanique PHYSIQUE La mécanique Manuel de l élève Exercices : corrigé Chapitre 7 Le travail et la puissance 7.1 Le concept de travail 1. Les situations A, C et D. 2. W 1 = F 1 x 1 = 120 N 4 m = 480 J W 2 = F 2 x

Plus en détail

Mouvement dans un champ de forces centrales conservatives

Mouvement dans un champ de forces centrales conservatives Mouvement dans un champ de forces centrales conservatives Cadre de l étude : Le mouvement du point matériel M de masse m sera étudié dans un référentiel R galiléen. I. Forces centrales conservatives 1)

Plus en détail

Université Joseph Fourier. UE PHY114 et PHY115 Examen terminal : mécanique du point. Mercredi 17 décembre 2014 durée : 1 heure 30 minutes

Université Joseph Fourier. UE PHY114 et PHY115 Examen terminal : mécanique du point. Mercredi 17 décembre 2014 durée : 1 heure 30 minutes Université Joseph Fourier UE PHY114 et PHY115 Examen terminal : mécanique du point Mercredi 17 décembre 2014 durée : 1 heure 30 minutes Numéro d anonymat : documents non autorisés calculatrices autorisées

Plus en détail

Etalonnage d un ressort Comment déterminer la constante de raideur d un ressort

Etalonnage d un ressort Comment déterminer la constante de raideur d un ressort Statique - 7 - - 8 - T.P. Etalonnage d un ressort Comment déterminer la constante de raideur d un ressort Niveau : 10 (étude des forces) Durée Pré requis : Loi de proportionnalité, connaître la notion

Plus en détail

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I Page1 CHAPITRE I Oscillations libres non amorties : Système à un degré de liberté I.1 Généralités sur les vibrations I.1.1 Mouvement périodique : Définition : C est un mouvement qui se répète à intervalles

Plus en détail

TD: Référentiel non galiléen : Forces d inerties Relation fondamentale de la dynamique, Energie

TD: Référentiel non galiléen : Forces d inerties Relation fondamentale de la dynamique, Energie TD: Référentiel non galiléen : Forces d inerties Relation fondamentale de la dynamique, Energie Exercice 1: Pendule dans une voiture Un fil de plomb de longueur l, de masse m100g (figure 1) est suspendu

Plus en détail

Oscillateur harmonique (CORRIGES)

Oscillateur harmonique (CORRIGES) Oscillateur harmonique (CORRIGES) 1. Mesure de masse en apesanteur : a) Système ; chaise, de masse m o représentée par un point matériel M de masse m o. Actions : poids et rappel du ressort. La RFD (ou

Plus en détail

TRAVAUX DIRIGÉS DE M 3

TRAVAUX DIRIGÉS DE M 3 Travau Dirigés 3 Correction PCSI 1 2014 2015 TRVUX DIRIGÉS DE 3 Eercice 1 : Tir vertical Un obus est lancé depuis le sol, selon la verticale ascendante avec une vitesse initial v 0 = v 0. e. Quelle altitude

Plus en détail

EXAMEN #2 PHYSIQUE MÉCANIQUE 15% de la note finale

EXAMEN #2 PHYSIQUE MÉCANIQUE 15% de la note finale EXMEN #2 PHYSIQUE MÉNIQUE 15% de la note finale Hiver 2015 Nom : haque question à choix multiples vaut 3 points 1. Un objet initialement au repos est accéléré par une force. Si la puissance de cette force

Plus en détail

1 Définitions : Dynamique de translation : Dynamique de rotation :

1 Définitions : Dynamique de translation : Dynamique de rotation : M 2 Dynamique Bac pro - Faire l inventaire des forces agissant sur un système - Appliquer la relation fondamentale de la dynamique à un solide en translation, à un solide en rotation. - Calculer un moment

Plus en détail

Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155)

Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155) PARTIE 2 - COMPRENDRE : LOIS ET MODÈLES Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155) Compétences exigibles : Connaître et exploiter les trois lois de Newton ; les mettre en

Plus en détail

EXAMEN #3. PHYSIQUE MÉCANIQUE 40% de la note finale. Nom : Hiver Chaque question à choix multiples vaut 2 points

EXAMEN #3. PHYSIQUE MÉCANIQUE 40% de la note finale. Nom : Hiver Chaque question à choix multiples vaut 2 points EXAMEN #3 PHYSIQUE MÉCANIQUE 40% de la note finale Hiver 2013 Nom : Chaque question à choix multiples vaut 2 points 1. Les trois graphiques suivants montrent la force exercée sur trois particules identiques.

Plus en détail

Chapitre 7 : Travail et énergie (p. 183)

Chapitre 7 : Travail et énergie (p. 183) PRTIE 2 - COMPRENDRE : LOIS ET MODÈLES Chapitre 7 : Travail et énergie (p. 183) Compétences exigibles : Extraire et exploiter des informations relatives à la mesure du temps pour justifier l évolution

Plus en détail

Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie

Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie Chapitre 7 : Temps, mouvement et évolution Notions et contenus Travail d une force. Force conservative ; énergie potentielle. Forces

Plus en détail

PHYSIQUE. (Révisions vacances d hiver 2013)

PHYSIQUE. (Révisions vacances d hiver 2013) PHYSIQUE (Révisions vacances d hiver 013) Séance 1 MECANIQUE : LOIS DE NEWTON ET QUANTITE DE MOUVEMENT Exercices de Cinématique Exercice Type 1 : Mouvements rectiligne uniforme et uniformément varié Exercice

Plus en détail

EXAMEN #2 PHYSIQUE MÉCANIQUE 15% de la note finale

EXAMEN #2 PHYSIQUE MÉCANIQUE 15% de la note finale EXAMEN #2 PHYSIQUE MÉCANIQUE 15% de la note finale Hiver 2016 Nom : Chaque question à choix multiples vaut 3 points 1. Quand un objet descend en chute libre vers le sol, la puissance instantanée de la

Plus en détail

Polynésie 09/2009 EXERCICE I. RECORD DE SAUT EN LONGUEUR À MOTO (6 points)

Polynésie 09/2009 EXERCICE I. RECORD DE SAUT EN LONGUEUR À MOTO (6 points) Polynésie 9/29 EXERCICE I. RECORD DE SAUT EN LONGUEUR À MOTO (6 points) http://labolycee.org Le 31 mars 28, l Australien Robbie Maddison a battu son propre record de saut en longueur à moto à Melbourne.

Plus en détail

BTS AVA 1 DS: Energie Travail des forces

BTS AVA 1 DS: Energie Travail des forces Exercice 1 : chute libre Une bille masse m=15,0g est en chute libre sans vitesse initiale. Elle a été lâchée d'un balcon au 6ème étage situé à une hauteur h=18,0m. 1. Représenter les forces s'exerçant

Plus en détail

LE SYSTÈME SOLAIRE, LA GRAVITATION UNIVERSELLE

LE SYSTÈME SOLAIRE, LA GRAVITATION UNIVERSELLE LE SYSTÈME SOLAIRE, LA GRAVITATION UNIVERSELLE I Action mécanique et modélisation 1. Notion d action mécanique Lorsqu un objet agit sur un autre objet, on parle d action mécanique. Une action mécanique

Plus en détail

Application des lois de Newton et Lois de Kepler

Application des lois de Newton et Lois de Kepler sa dérivée donne : Constante k a t + b a t 2 + b t + c une primitive donne : 1. Mouvement dans un champ de pesanteur uniforme 1.1. Champ de pesanteur La pesanteur se faisant ressentir dans tout l espace

Plus en détail

Interaction newtonienne ; champ 1/r 2

Interaction newtonienne ; champ 1/r 2 Interaction newtonienne ; champ 1/r Exercice 1: Utilisation de la 3 ème loi de Kepler Un satellite terrestre a son périgé à 350km d'altitude, et une période de 5843s. 1. Calculer le demi-grand axe de sa

Plus en détail

Bien que la notion d énergie soit omniprésente, même dans la vie de tous les jours, il s avère très difficile de la définir de façon précise.

Bien que la notion d énergie soit omniprésente, même dans la vie de tous les jours, il s avère très difficile de la définir de façon précise. Chapitre 5 Énergie mécanique 5.1 Notion d énergie 5.1.1 Définition Bien que la notion d énergie soit omniprésente, même dans la vie de tous les jours, il s avère très difficile de la définir de façon précise.

Plus en détail

Travail - Puissance. Travail moteur, travail résistant

Travail - Puissance. Travail moteur, travail résistant Travail - Puissance -Travail : Le «travail» est la grandeur l action d une force qui déplace son point d application. Travail moteur, travail résistant travail résistant travail moteur si la force favorise

Plus en détail

G.P. DNS02 Septembre 2011

G.P. DNS02 Septembre 2011 DNS Sujet Satellites d'observation terrestre...1 I.Satellites sur orbite circulaire...1 A.Caractéristiques des orbites de SPOT...1 B.Stabilisation de l orbite d un satellite...2 II.Observation de la Terre

Plus en détail

Collège Saint-Lambert (Herstal) Décembre BILAN DE MATHEMATIQUE (math 4h/sem) Consigne : calculatrice non-autorisée pour les 2 premières parties

Collège Saint-Lambert (Herstal) Décembre BILAN DE MATHEMATIQUE (math 4h/sem) Consigne : calculatrice non-autorisée pour les 2 premières parties Collège Saint-Lambert (Herstal) Décembre 0 Professeur : H.-M. Nguen NOM : Prénom : Classes : GTB BILAN DE MATHEMATIQUE (math h/sem) Consigne : calculatrice non-autorisée pour les premières parties ère

Plus en détail

G.S.AIGUILLON EXAMEN BLANC 2013/2014 EPREUVE DE SCIENCES PHYSIQUES DUREE :04H

G.S.AIGUILLON EXAMEN BLANC 2013/2014 EPREUVE DE SCIENCES PHYSIQUES DUREE :04H EXERCICE N 1 : 04 points Données : Masses molaires en g.mol-1 : M(H) = 1,0 ; M(C) = 12,0 ; M(O) = 16,0 On étudie l évolution d un mélange constitué par 50 ml d une solution S1 d acide éthanedioïque (H2C2O4)

Plus en détail

Loi du moment cinétique

Loi du moment cinétique Loi du moment cinétique Cas d un point matériel, d un système de points matériels et d un solide en rotation autour d un axe fixe Introduction...3 I Quelques rappels sur la mécanique du solide...4 1 Les

Plus en détail

PHYS-F-104. Physique 1. Examen du 20 août I. Théorie (20 points 1 heure)

PHYS-F-104. Physique 1. Examen du 20 août I. Théorie (20 points 1 heure) NOM, PRENOM (en majuscules)..... SECTION (barrer les mentions inutiles) Biologie Géographie Géologie PHYS-F-104 Physique 1 Examen du 0 août 013 I. Théorie (0 points 1 heure) Justifiez toujours vos réponses.

Plus en détail