Devoir 1 pour le 12 Mars Corrigé
|
|
|
- Jean-Sébastien Cloutier
- il y a 9 ans
- Total affichages :
Transcription
1 Université Claude Bernard Lon 27-2 L2 MASS4 Algèbre Devoir pour le 2 Mars Corrigé Eercice Soit B (e, e 2, e 3 ) une base de R 3. Soit f L(R 3 ) tel que mat B (f). Déterminons Kerf Soit X R X Kerf AX A ( ) 2 9( ) /2 Donc on a Kerf V ect /2 Déterminons donc la dimension et une base de Kerf. En posant u /2, on a vu que Kerf V ect (u). Comme u est non nul, il est donc libre dans R 3 : (u) est une base de Kerf et on en déduit que : dim (Kerf) 2. Quel est le rang de f (i.e. la dimension de Imf)? Puisque f est un endomorphisme de R 3 espace vectoriel de dimension nie, on peut appliquer le théorème du rang : dim(r 3 ) dim (Kerf) + dim (Imf) Donc on en déduit que rg(f) dim (Imf) dim(r 3 ) dim (Kerf) 3 2.
2 Cherchons une base de Imf. Soit X R 3. X Imf α, β, γ R / On a ainsi que Imf V ect α, β, γ R / α, β, γ R / 9, rg(f) 2 α, α β 2γ α 2γ 9α + β + 3γ 9. + β α β γ + γ Or, on a vu que dim(imf) 2. Donc la famille précédente est bien génératrice mais est forcément liée. Cherchons donc une sous-famille de deu vecteurs qui, elle, soit libre. Choisissons U et V 9. Ces deu vecteurs ne sont pas colinéaires (à cause du dans V ), donc forment une famille libre. On a alors que Imf V ect (U, V ), avec (U, V ) libre : c'est ainsi une base de Imf. Imf V ect 3. Montrons que R 3 Imf Kerf. { Imf Kerf {} Il s'agit ici de montrer que R 3 Imf + Kerf Déterminons Imf Kerf. Soit X Imf Kerf. 9, On a écrit que Kerf V ect(u), donc ici : X Kerf a R / De plus, X Imf α, β, γ R / α β 2γ α 2γ 9α + β + 3γ Donc si X vérie les deu équations précédentes, on a nécessairement : α β 2γ a α 2γ 9α + β + 3γ a/2 a On obtient alors le sstème suivant : 2 a 3 /2
3 α β 2γ a α 2γ a/2 9α + β + 3γ a L 3 L 3 +L α β 2γ a α 2γ a/2 α + γ Les deu dernières équations du sstème fournissent bien que a. On en tire que X et on a ainsi montré que Imf Kerf {}. Mais la réciproque est claire. En eet, comme Imf et Kerf sont des sev de R 3, ils contiennent l'élément neutre : on a toujours {} Imf Kerf. Donc on a bien l'égalité cherchée : Imf Kerf {}. Montrons à présent que Imf + Kerf R 3. On a déjà une inclusion : Imf + Kerf R 3 car la somme de deu sev de R 3 est toujours incluse dans R 3. Regardons donc les dimensions. On a la formule suivante : dim (Imf + Kerf) dim (Imf) + dim (Kerf) dim (Imf Kerf) Or, ici on a Imf Kerf {} donc dim (Imf Kerf). On a donc : dim (Imf + Kerf) dim (Imf) + dim (Kerf) dim(r 3 ) { Imf + Kerf R 3 En conclusion, on a dim (Imf + Kerf) dim(r 3 ). D'où Imf + Kerf R3. Comme on a montré précédemment que Imf Kerf {}, on peut bien écrire que la somme est directe : R 3 Imf Kerf 4. On considère les vecteurs v e e 3, v 2 6e 2 + 3e 3 et v 3 2e + e 2 2e 3. Montrons que B (v, v 2, v 3 ) est une base de R 3. Vérions déjà que B est bien libre dans R 3. Regardons donc det(v, v 2, v 3 ). Pour cela, écrivons v, v 2, v 3 en vecteurs : 2 v, v 2 6, v 3 3 Le déterminant vaut alors : det(v, v 2, v 3 ) Donc (v, v 2, v 3 ) est une famille libre dans R 3 qui est de dimension 3, c'est donc bien une base de R Calculons f(w) pour w 4e 6e 2 + 7e 3. Donc f(w) f( 4e 6e 2 + 7e 3 ) 4f(e ) 6f(e 2 ) + 7f(e 3 ) 4(e 2e 2 + 9e 3 ) 6(e + e 3 ) + 7(e 2e 2 + 3e 3 ) 32e + e 2 36e 3 + 4e 4e 3 4e 4e 2 + 9e 3 4e 6e 2 + 7e 3 w f(w) w 3
4 6. Calculons f(v ), f(v 2 ) et f(v 3 ). f(v ) f(e e 3 ) f(e ) f(e 3 ) (e 2e 2 + 9e 3 ) (e 2e 2 + 3e 3 ) 4e 4e 3 4(e e 3 ) 4v f(v 2 ) f( 6e 2 + 3e 3 ) 6f(e 2 ) + 3f(e 3 ) 6(e + e 3 ) + 3(e 2e 2 + 3e 3 ) 2e 6e 2 9e 3 2(e e 3 ) + ( 6e 2 + 3e 3 ) 2v + v 2 Donc f(v 3 ) f(2e + e 2 2e 3 ) 2f(e ) + f(e 2 ) 2f(e 3 ) 2(e 2e 2 + 9e 3 ) + (e + e 3 ) 2(e 2e 2 + 3e 3 ) ( )e + ( 4 + 4)e 2 + ( + 26)e 3 f(v ) 4v, f(v 2 ) 2v + v 2, f(v 3 ) Ecrivons à présent la matrice de f dans la base B : A mat B (f) Ecrivons la matrice de passage P de la base B à la base B. P P B B Calculons P. On a montré à la question 4 que det(p ) 3. Donc P est bien inversible. On peut par eemple calculer P avec la formule de la comatrice : On a donc P det(p ) t com(p ) 3 t P /3 / Retrouver A en utilisant P et P. Comme A et A représentent le même endomorphisme f respectivement dans les bases B et B, on a la relation suivante : A P B B.A.P B B P A P A P B B.A.P B B P AP 4
5 Donc en principe, en calculant P AP, on devrait retrouver l'epression de A trouvée précédemment : P AP /3 / /3 / On retrouve bien la matrice obtenue dans la question Eercice 2 Soit B une base de R 3. Soit f un endomorphisme de R 3 tel que 4 mat B (f) 2 A Déterminons le polnôme caractéristique de f. Le polnôme caractéristique de f est déni par χ(λ) det(f λid) det(a λi 3 ). Donc χ(λ) λ 4 λ λ ( λ)( λ)(6 λ) ( λ) + 4( λ) 4(6 λ) (λ 2 )(6 λ) λ 4 4λ λ ( λ 3 + 6λ 2 + λ 6) + 2 2λ λ 3 + 6λ 2 λ + 6 ( est racine évidente...) (λ )( λ 2 + 5λ 6) (λ )(λ 2)(λ 3) 2. Déterminons les valeurs propres de f. χ(λ) (λ )(λ 2)(λ 3) On sait que les valeurs propres de f sont eactement les racines du polnôme caractéristique. Les valeurs propres de f sont donc eactement, 2 et 3. Déterminons les espaces propres de f. Sp(f) {, 2, 3} 5
6 λ. Soit X R 3. X E (f) AX.X Donc on a E (f) V ect λ 2. Soit X R 3.. X E 2 (f) AX 2.X Donc on a E 2 (f) V ect () () (L ) + 2 (L 2 ) (L 3 ) (L 2L 2 )
7 λ 3. Soit X R 3. X E 2 (f) AX 3.X (L ) (L 2 ) (L 3 ) (L ) + 2 (L L 2 ) + (L L 3 ) { Donc on a E 3 (f) V ect. 3. Montrons que f est diagonalisable. On a trouvé 3 valeurs propres pour un endomorphisme de R 3 de dimension 3, donc f est bien diagonalisable. Comme argument, on peut utiliser également le fait que le polnôme était scindé simple, qui est une condition susante de diagonalisabilité. 4. Déterminons une base B dans laquelle la matrice de f est diagonale. On pose u, u 2 2 On a donc vu précédemment que, u 3. f(u ) u, f(u 2 ) 2u 2, f(u 3 ) 3u 3 Vérions que B (u, u 2, u 3 ) est bien une base de R 3. Montrons déjà que B est libre dans R 3. det(u, u 2, u 3 ) Donc (u, u 2, u 3 ) est libre dans R 3, de dimension 3 : c'est donc une base de R 3. Si on note A la matrice de l'endomorphisme f dans la nouvelle base B, on a : A mat B (f) 5. Ecrivons la matrice de passage P de la base B à B
8 P représente la matrice qui eprime les nouveau vecteurs (ceu de B ) dans l'ancienne base (ceu de B) : Calculons P. P 2 Le déterminant de P a été calculé à la question précédente : det(p ), donc P est bien inversible. On a alors : t 2 2 P t com(p ) det(p ) Calcul de A n pour tout n. P On a vu que A P A P. D'où, pour tout n, : 2 2 Comme A n 2 n 3 n A n P A P.P A P.....P A P P ( A ) n P, on a : A n P (A ) n P n 3 n 2 n 2 n 3 n 3 n 2.3 n n 3 n n 2 2 n+ + 2 n+ 2 2 n 3 n 3 n + 2 n n Ainsi, n, A n 2 3 n 3 n n 2 2 n+ + 2 n+ 2 2 n 3 n 3 n + 2 n n
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1
[http://mpcpgedupuydelomefr] édité le 3 avril 215 Enoncés 1 Exercice 1 [ 265 ] [correction] On note V l ensemble des matrices à coefficients entiers du type a b c d d a b c c d a b b c d a et G l ensemble
Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E
Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Algorithmes pour la planification de mouvements en robotique non-holonome
Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2
33 Corrigé Corrigé Problème Théorème de Motzkin-Taussky Partie I I-A : Le sens direct et le cas n= 2 1-a Stabilité des sous-espaces propres Soit λ une valeur propre de v et E λ (v) le sous-espace propre
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
NOTATIONS PRÉLIMINAIRES
Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
Déterminants. Marc SAGE 9 août 2008. 2 Inverses et polynômes 3
Déterminants Marc SAGE 9 août 28 Table des matières Quid des formes n-linéaires alternées? 2 2 Inverses et polynômes 3 3 Formule de Miller pour calculer un déterminant (ou comment illustrer une idée géniale)
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Construction de l'intégrale de Lebesgue
Université d'artois Faculté des ciences Jean Perrin Mesure et Intégration (Licence 3 Mathématiques-Informatique) Daniel Li Construction de l'intégrale de Lebesgue 10 février 2011 La construction de l'intégrale
Algèbre binaire et Circuits logiques (2007-2008)
Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Cours arithmétique et groupes. Licence première année, premier semestre
Cours arithmétique et groupes. Licence première année, premier semestre Raphaël Danchin, Rejeb Hadiji, Stéphane Jaffard, Eva Löcherbach, Jacques Printems, Stéphane Seuret Année 2006-2007 2 Table des matières
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions
Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
VI. COMPLÉMENTS SUR LES MODULES, THÉORÈME CHINOIS, FACTEURS INVARIANTS SÉANCES DU 15, 16 ET 22 OCTOBRE
VI. COMPLÉMENTS SUR LES MODULES, THÉORÈME CHINOIS, FACTEURS INVARIANTS SÉANCES DU 15, 16 ET 22 OCTOBRE 12. Compléments sur les modules 12.1. Théorème de Zorn et conséquences. Soient A un anneau commutatif
Le produit semi-direct
Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Chapitre 2 : Vecteurs
1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
2 Division dans l anneau des polynômes à plusieurs variables
MA 2 2011-2012 M2 Algèbre formelle 1 Introduction 1.1 Référence Ideals, varieties and algorithms, D. Cox, J. Little, D. O Shea, Undergraduate texts in Mathematics, Springer 1997. Using algebraic geometry,
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
Premiers exercices d Algèbre. Anne-Marie Simon
Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
IV- Equations, inéquations dans R, Systèmes d équations
IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
Extrait du poly de Stage de Grésillon 1, août 2010
MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Introduction a l'algorithmique des objets partages. Robert Cori. Antoine Petit. Lifac, ENS Cachan, 94235 Cachan Cedex. Resume
Introduction a l'algorithmique des objets partages Bernadette Charron{Bost Robert Cori Lix, Ecole Polytechnique, 91128 Palaiseau Cedex, France, [email protected] [email protected] Antoine
Étudier si une famille est une base
Base raisonnée d exercices de mathématiqes (Braise) Méthodes et techniqes des exercices Étdier si ne famille est ne base Soit E n K-espace vectoriel. Comment décider si ne famille donnée de vecters de
La transformée de Fourier sur un groupe fini et quelques-unes de ses applications. Elise Raphael Semestre d automne 2009-2010
La transformée de Fourier sur un groupe fini et quelques-unes de ses applications Elise Raphael Semestre d automne 009-010 1 Contents 1 Transformée de Fourier sur un groupe fini 3 1.1 Dual d un groupe
Equations cartésiennes d une droite
Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2
CNAM UE MVA 210 Ph. Duran Algèbre et analyse tensorielle Cours 4: Calcul ierentiel 2 Jeui 26 octobre 2006 1 Formes iérentielles e egrés 1 Dès l'introuction es bases u calcul iérentiel, nous avons mis en
16 Chapitre 16. Autour des générateurs pseudoaléatoires
Chapitre 16 Chapitre 16. Autour des générateurs pseudoaléatoires Hasard et informatique peuvent paraître antinomiques. Car enfin, comment le circuit imprimé d un ordinateur ou d une calculatrice, parfaitement
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
1 Systèmes triphasés symétriques
1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système
6 Equations du première ordre
6 Equations u première orre 6.1 Equations linéaires Consiérons l équation a k (x) k u = b(x), (6.1) où a 1,...,a n,b sont es fonctions continûment ifférentiables sur R. Soit D un ouvert e R et u : D R
Les indices à surplus constant
Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté
UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1
UNIVERSITE IBN ZOHR Faculté des sciences Agadir Filière SMA & SMI Semestre 1 Module : Algèbre 1 Année universitaire : 011-01 A. Redouani & E. Elqorachi 1 Contenu du Module : Chapitre 1 : Introduction Logique
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie
Cours de mathématiques Première année. Exo7
Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Résumé du cours d algèbre 1, 2013-2014. Sandra Rozensztajn. UMPA, ENS de Lyon, [email protected]
Résumé du cours d algèbre 1, 2013-2014 Sandra Rozensztajn UMPA, ENS de Lyon, [email protected] CHAPITRE 0 Relations d équivalence et classes d équivalence 1. Relation d équivalence Définition
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
Mais comment on fait pour...
Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition
Plan du cours : électricité 1
Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)
www.h-k.fr/publications/objectif-agregation
«Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se
L ALGORITHMIQUE. Algorithme
L ALGORITHMIQUE Inspirée par l informatique, cette démarche permet de résoudre beaucoup de problèmes. Quelques algorithmes ont été vus en 3 ième et cette année, au cours de leçons, nous verrons quelques
