Synthèse d images. Chapitre I Modélisation Géométrique

Dimension: px
Commencer à balayer dès la page:

Download "Synthèse d images. Chapitre I Modélisation Géométrique"

Transcription

1 Synthèse d images Chapitre I Modélisation Géométrique contact : Caroline Essert, Maître de conférence en informatique UFR de Math / Info Laboratoire LSIIT (UMR 7005) essert@unistra.fr slides sur :

2 PLAN Dimensions géométriques et topologiques Espace Euclidien et Interpolations Maillages en B-Rep (border representation) Modélisation volumique Acquisition et génération de modèles Conclusion

3 INTRODUCTION Modélisation des courbes et surfaces Modélisation des solides B-Rep : représentation par les bords = surfacique CSG : constructive solid geometry = volumique Que signifie surfacique et volumique? - 3 -

4 Dimension géométrique versus Dimension topologique Il faut distinguer la dimension de l espace de l objet de celui dans lequel il est plongé! Sphère Boule Dimension topologique: 2D 3D Dimension de plongement: 3D 3D - 4 -

5 Dimension géométrique versus Dimension topologique Plongement: 2D 3D Topologie (x,y) (x,y,z) 1D Ligne brisée / courbe Ligne brisée / courbe gauche 2D 3D Polygone / forme 2D Surface / Polyèdre volume - 5 -

6 Types de modélisation 3D Topologie 2D Continu Surface paramétrée Surface polynomiale (Splines, Bézier, NURBS) Discret Polyèdre (triangulation) Splat 3D Constructive Solid Geometry (CSG) Surface implicite (squelette) Volume paramétré Voxels (cubes), Polyèdres connectés (tétraèdres) Systèmes de particules Conversion très facile Conversion possible Conversion très difficile, voire impossible - 6 -

7 Rappels: Espace Euclidien de dimension 3 Géométrie Euclidienne - 7 -

8 Points et vecteurs POINT: c est un triplet (x,y,z) de coordonnées indiquant une position dans un espace Euclidien par rapport à une origine. Le nombre de coordonnées indique la dimension de l espace. VECTEUR: c est également un triplet (v x,v y,v z ) de coordonnées, mais indiquant une direction dans un espace. La taille (longueur ou élongation) du vecteur s appelle la norme (elle est mesurée en mètres). y x z Elle est calculée par: V = vx 2+ v2 y+ v z 2 Exemple: pour V(1,1,1), V =1,

9 Points et vecteurs VECTEUR et POINT Deux points A et B définissent un vecteur V. Les coordonnées de ce vecteur V sont obtenues par calcul de différences: V x =B x -A x, V y =B y -A y, V z =B z -A z A B Si la norme du vecteur vaut 0, alors toutes les coordonnées sont nulles, et le vecteur est dit NUL. Si la norme d un vecteur vaut 1, on dit que le vecteur est normalisé. Pour normaliser un vecteur il suffit de diviser toutes ses coordonnées par sa norme

10 Angle entre deux vecteurs VECTEUR Deux vecteurs non nuls V et W définissent un angle α qui est mesuré en degrés ou radians. Si l angle formé par les deux vecteurs vaut 0 ou 180 degrés, on dit que les vecteurs sont colinéaires (ils ont alignés). Si l angle formé par les deux vecteurs vaut 90 degrés on dit que les vecteurs sont orthogonaux. α V W

11 Produit scalaire VECTEUR Le produit scalaire entre deux vecteurs V et W est défini par: V W = V W + V W + V x x Si le produit scalaire vaut 0 alors les vecteurs sont orthogonaux (ou bien l un au moins est nul). y y z W z α V W Si les vecteurs V et W sont normalisés tous les deux, alors le produit scalaire est égal au cosinus de l angle entre ces vecteurs. V W =cos(α)

12 Droite et plan DROITE: une droite est définie par un point et un vecteur, dit directeur. PLAN: un plan est défini par un point et deux vecteurs, qui ne doivent pas être colinéaires, ni nuls. Une droite est soit parallèle à un plan, soit complètement incluse dans le plan, soit elle le traverse en un unique point (l intersection)

13 Normale au plan PLAN: Pour tout plan il n existe que deux vecteurs normalisés tel que ces deux vecteurs soient toujours orthogonaux à tout autre vecteur pris dans ce plan. Ces deux vecteurs sont colinéaires et sont appelés normale au plan. Un vecteur N orthogonal à un plan défini par les vecteurs non nuls V et W peut être calculé par : N N N x y z = VyWz VzWy Ce calcul s appelle produit en croix = V W z = V W x x y V W x V W y z x ou produit vectoriel

14 Plan, Droites et Points PLAN: Deux plans sont soit confondus, soit parallèles, soit ils ont une intersection qui est une droite. Soit un ensemble de points. Ces points sont dits coplanaires, s il existe un plan contenant tous les points. Trois points sont forcément coplanaires. En effet trois points définissent un plan. Un plan divise l espace 3D en trois zones. Tout point de l espace se trouve soit sur le plan, soit d un coté du plan, soit de l autre. Pour déterminer si un point P est d un coté ou de l autre, il suffit de choisir un point A sur le plan. Le signe du produit scalaire entre la normale et le vecteur AP donne le coté

15 MODELISATION DISCRETE de SURFACES

16 Modèle combinatoire Décomposition en cellules + liens entre les cellules : Sommets (0-cellule)

17 Modèle combinatoire Décomposition en cellules + liens entre les cellules : Sommets (0-cellule) Arêtes (1-cellule)

18 Modèle combinatoire Décomposition en cellules + liens entre les cellules : Sommets (0-cellule) Arêtes (1-cellule) Facette (2-cellule)

19 Modèle combinatoire Décomposition en cellules + liens entre les cellules : Sommets (0-cellule) Arêtes (1-cellule) Facette (2-cellule) Surface (3-cellule) C est la topologie

20 Plongement géométrique Pour représenter un objet géométrique discret, on complète la représentation combinatoire de sa topologie par un modèle de plongement en associant à chaque cellule un ensemble de points géométriques. Sommet Arête Facette Point Segment Surface polygonale

21 Modélisation Objet à représenter = + Représentation combinatoire de sa topologie Plongement

22 POLYGONES Avec une représentation discrète, un objet géométrique est codé sous la forme d un ensemble fini de points (sommets) de l espace avec des interconnections sémantiques entre ces points ; On parle de relation d adjacence: Deux arêtes sont adjacentes si elles partagent un même sommet; Deux facettes sont adjacentes si elles partagent une même arête; Une arête est dite incidente en un sommet si celui-ci représente une des deux extrémités de l arête; Une facette est dite incidente en un sommet si celui-ci est incident à une des arêtes de la facette

23 POLYGONES Ces relations d adjacence peuvent se limiter dans les cas simples à un ordre sur les points. S1 S2 S7 S8 S1 S2 S3 S3 S7 Ligne brisée S4 S5 S6 S6 S5 S4 Polygone = ligne brisée fermée

24 Notion d orientation Orienter un polygone revient à choisir un sens de parcours des sommets du polygone. Il existe deux sens possibles de parcours

25 Notion de convexité Un polygone est dit convexe, si pour tout couple de points P1 et P2 pris dans ce polygone, le segment de droite P1P2 se trouve à l intérieur du polygone. Un polygone est dit concave s il n est pas convexe

26 Notion de dégénérescence Un polygone est dit dégénéré, s il n est pas planaire, si son aire est nulle, ou s il a des sommets confondus, ou une arête pendante, ou s il a des arêtes qui se croisent (intersection non nulle). dégénérés : non dégénérés :

27 Appartenance d un point à un polygone Lorsqu un polygone n est pas dégénéré, il divise le plan en deux régions distinctes qui sont appelés intérieur et extérieur. En synthèse d images, on peut être amené à vouloir déterminer si un point V quelconque du plan se trouve à l intérieur ou à l extérieur d un polygone P=(P 0, P 1,, P n-1 ). dedans ou dehors?

28 Appartenance d un point V à un polygone P L algorithme est le suivant : Soit D une des deux demi-droites issue de V et parallèle à l axe Ox. Soit n r le nombre d intersections de D avec les arêtes de P et n q le nombre de sommets P i de P situés sur D tels que : soit les sommets P i-1 et P i+1 sont de part et d autre de la droite qui porte D ; soit P i P i+1 est inclus dans D et les sommets P i-1 et P i+2 sont de part et d autre de la droite qui porte D. Si n r +n q est impair alors V est à l intérieur sinon à l extérieur

29 Appartenance d un point V à un polygone P P V n r =4 n r =1-29 -

30 Triangulation d un polygone L algorithme de triangulation le plus simple consiste à découper les creux d oreille d un polygone. Un creux d oreille P i peut être triangulé facilement en joignant les sommets P i-1 et P i+1. Pi+1 Pi Pi Pi-1 Pi

31 Vecteur Normal Le vecteur normal à un polygone est le vecteur normal au plan du polygone. Il peut être dirigé dans deux directions selon le sens de l orientation du polygone: Ce vecteur normal se calcule en utilisant un produit en croix

32 POLYEDRE Définition (intuitive): surface de R 3 subdivisée en sommets, arêtes rectilignes, et faces polygonales simples (planes). Toute surface fermée continue délimitant un volume peut être approchée par un polyèdre

33 Exemples

34 Intérieur soit D une demi-droite issue d un point M non sur le polyèdre P, ne coupant ni une arête, ni un sommet de P : alors M est à l intérieur de P si le nombre d intersections est impair

35 Orientabilité Orienter un polyèdre c est orienter chaque polygone de façon à ce que deux polygones voisins aient la même orientation :

36 Orientabilité Certaines surfaces ne sont pas orientables :

37 Définition: 2-Variété On définit une 2-variété comme suit: c est une surface (dimension deux), pour laquelle toute intersection d une boule avec la surface se déplie en un disque: En anglais: variété = manifold

38 MODELISATION VOLUMIQUE

39 Surface vs. Volume Les techniques de modélisation que nous avons vues jusqu ici permettent de construire des volumes par leur bord: on ne s intéresse donc pas «à leur intérieur». Mais qu en est-il d objets qui sont semitransparents ou translucides comme le brouillard, la fumée, la peau humaine, etc.? De même on peut vouloir modéliser le soussol d un terrain, l intérieur du corps humain, etc

40 Association de polyèdres Idée : un objet est défini par un ensemble de petits polyèdres accolés les uns aux autres. Les polyèdres possibles: tétraèdres, cubes, hexaèdres,

41 Modèle combinatoire Décomposition en cellules + liens entre les cellules : Sommets (0-cellule) Arêtes (1-cellule) Facette (2-cellule) Surface (3-cellule) Volume (4-cellule)

42 Appartenance d'un point à une cellule Pour une cellule convexe : Vérifier que le point est du même coté du plan de chaque face de la cellule

43 Reconstruire une iso-surface Définition: une iso-surface est une surface pour laquelle la densité de l objet volumique est la même. Il existe l équivalent en 2D (iso-courbe) pour les cartes géographiques

44 Reconstruire une iso-courbe Pour une carte 2D il suffit de: Placer l objet dans une grille et de tester les configurations possibles

45 Cas 2D: iso-contour Segmentation binaire Parcourir tous les nœuds

46 Cas 2D: iso-contour Segmentation binaire Parcourir tous les nœuds

47 Cas 2D: iso-contour Segmentation binaire Parcourir tous les nœuds

48 Cas 2D: iso-contour Segmentation binaire Parcourir tous les nœuds

49 Cas 2D: iso-contour Segmentation binaire Parcourir tous les nœuds

50 Cas 2D: iso-contour Segmentation binaire Parcourir tous les nœuds

51 Reconstruire une iso-surface 3D Pour une surface 3D il suffit de: Placer l objet dans une grille 3D et de tester les configurations possibles

52 Exemple sur un modèle d IRM (source IPB, Strasbourg)

Introduction au maillage pour le calcul scientifique

Introduction au maillage pour le calcul scientifique Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel franck.ledoux@cea.fr Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point

Plus en détail

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Patrick Ciarlet et Vivette Girault ciarlet@ensta.fr & girault@ann.jussieu.fr ENSTA & Laboratoire Jacques-Louis Lions, Paris 6 Condition

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR

Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Mickaël Bergem 25 juin 2014 Maillages et applications 1 Table des matières Introduction 3 1 La modélisation numérique de milieux urbains

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

On ne peut pas entendre la forme d un tambour

On ne peut pas entendre la forme d un tambour On ne peut pas entendre la forme d un tambour Pierre Bérard Institut Fourier Laboratoire de Mathématiques Unité Mixte de Recherche 5582 CNRS UJF Université Joseph Fourier, Grenoble 1 Introduction 1.1 Position

Plus en détail

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La Synthèse d'images I Venceslas BIRI IGM Université de Marne La La synthèse d'images II. Rendu & Affichage 1. Introduction Venceslas BIRI IGM Université de Marne La Introduction Objectif Réaliser une image

Plus en détail

Conception architecturale et modélisation déclarative

Conception architecturale et modélisation déclarative Conception architecturale et modélisation déclarative Gérard HEGRON CERMA UMR CNRS 1563 École d Architecture de Nantes Rue Massenet, BP 81931 44 319 Nantes cedex 3 gerard.hegron@cerma.archi.fr Résumé Les

Plus en détail

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez

Plus en détail

Géométrie Algorithmique Plan du cours

Géométrie Algorithmique Plan du cours Plan du cours Introduction Triangulation de polygones Recherche/localisation Diagrammes de Voronoï Triangulation de Delaunay Arbres de partition binaire 1 Intersection de segments de droite Intersection

Plus en détail

Plan du cours : électricité 1

Plan du cours : électricité 1 Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)

Plus en détail

A Isabelle, à mes parents.

A Isabelle, à mes parents. i ii A Isabelle, à mes parents. iii iv Remerciements ======================= Rien n aurait été possible sans la présence de mon directeur de thèse Jean- Laurent Mallet qui m a épaulé tout au long et qui

Plus en détail

CARTE DE VOEUX À L ASSOCIAEDRE

CARTE DE VOEUX À L ASSOCIAEDRE CARTE DE VOEUX À L ASSOCIAEDRE JEAN-LOUIS LODAY Il y a cinq ans le Centre International de Rencontres Mathématiques de Luminy a envoyé ses voeux avec la carte ci-dessus. L illustration choisie par Robert

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

Géométrie discrète Chapitre V

Géométrie discrète Chapitre V Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

05/09/2015. M Ponctualité : CM TD TP & Projet Æ En cas d absence : récupérer!!! 3 05/09/2015

05/09/2015. M Ponctualité : CM TD TP & Projet Æ En cas d absence : récupérer!!! 3 05/09/2015 Synthèse d images L3 Présentation du module Sandrine LANQUETIN Bureau G08 sandrine.lanquetin@u-bourgogne.fr Qui? Quand? Mode d emploi M Intervenants : Æ S. Lanquetin sandrine.lanquetin@u-bourgogne.fr M

Plus en détail

SIMULATION HYBRIDE EN TEMPOREL D UNE CHAMBRE REVERBERANTE

SIMULATION HYBRIDE EN TEMPOREL D UNE CHAMBRE REVERBERANTE SIMULATION HYBRIDE EN TEMPOREL D UNE CHAMBRE REVERBERANTE Sébastien LALLECHERE - Pierre BONNET - Fatou DIOUF - Françoise PALADIAN LASMEA / UMR6602, 24 avenue des landais, 63177 Aubière pierre.bonnet@lasmea.univ-bpclermont.fr

Plus en détail

Parallélisme et Répartition

Parallélisme et Répartition Parallélisme et Répartition Master Info Françoise Baude Université de Nice Sophia-Antipolis UFR Sciences Département Informatique baude@unice.fr web du cours : deptinfo.unice.fr/~baude Septembre 2009 Chapitre

Plus en détail

MABioVis. Bio-informatique et la

MABioVis. Bio-informatique et la MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (INP Toulouse) Discipline ou spécialité : Image, Information et Hypermédia Présentée

Plus en détail

ANALYSE CATIA V5. 14/02/2011 Daniel Geffroy IUT GMP Le Mans

ANALYSE CATIA V5. 14/02/2011 Daniel Geffroy IUT GMP Le Mans ANALYSE CATIA V5 1 GSA Generative Structural Analysis 2 Modèle géométrique volumique Post traitement Pré traitement Maillage Conditions aux limites 3 Ouverture du module Choix du type d analyse 4 Calcul

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Visualisation Scientifique 3D

Visualisation Scientifique 3D Cours ENSIMAG Visualisation Scientifique 3D Stefanie Hahmann Laboratoire LMC-IMAG e-mail: hahmann@imagfr 1

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Laboratoire d informatique Gaspard-Monge UMR 8049. Journée Labex Bézout- ANSES

Laboratoire d informatique Gaspard-Monge UMR 8049. Journée Labex Bézout- ANSES Laboratoire d informatique Gaspard-Monge UMR 8049 Journée Labex Bézout- ANSES Présentation du laboratoire 150 membres, 71 chercheurs et enseignants-chercheurs, 60 doctorants 4 tutelles : CNRS, École des

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables UNIVERSITÉ DE POITIERS Parcours Renforcé Première Année 2009/2010 Paul Broussous Fonctions de plusieurs variables Seconde version corrigée Table des matières 1. Un peu de topologie. 1.1. Distance euclidienne,

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Plan. Synthèse d'images et animation. Plan 08/04/2011 1. Introduction- La synthèse d'images au service du cinéma

Plan. Synthèse d'images et animation. Plan 08/04/2011 1. Introduction- La synthèse d'images au service du cinéma Plan Synthèse d'images et animation Modèles géométriques et leurs utilisations Gilles Gesquière Laboratoire LSIS Gilles.Gesquiere@lsis.org 08/04/20 Modélisation géométrique Partie : De l'acquisition à

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Sujet 1 : Diagnostique du Syndrome de l apnée du sommeil par des techniques d analyse discriminante.

Sujet 1 : Diagnostique du Syndrome de l apnée du sommeil par des techniques d analyse discriminante. Sujet 1 : Diagnostique du Syndrome de l apnée du sommeil par des techniques d analyse discriminante. Objectifs et formulation du sujet Le syndrome de l apnée du sommeil (SAS) est un problème de santé publique

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003 Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Nomination persistante dans un modèle paramétrique. Identification non-ambiguë et appariement générique d entités topologiques.

Nomination persistante dans un modèle paramétrique. Identification non-ambiguë et appariement générique d entités topologiques. E cole N ationale S upérieure de M écanique et d A érotechnique Ecole Doctorale des Sciences Pour l Ingénieur Université de Poitiers THESE pour l obtention du grade de DOCTEUR DE L UNIVERSITE DE POITIERS

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Licence STS mention Mathématiques Parcours Ingénieur Télécom Bretagne (ITB)

Licence STS mention Mathématiques Parcours Ingénieur Télécom Bretagne (ITB) Licence STS mention Mathématiques Parcours Ingénieur Télécom Bretagne (ITB) FICHE D IDENTITE DE LA FORMATION Domaine de formation : Sciences, Technologies, Santé Intitulé : Licence Sciences, Technologies,

Plus en détail

REALISATION D UN MAILLAGE

REALISATION D UN MAILLAGE MODE D EMPLOI REALISATION D UN MAILLAGE AVEC ICEM 4.08 Hervé Neau Août 2000 Version 1.0 SOMMAIRE 1 : INTRODUCTION... 2 2 : PRINCIPE DE FONCTIONNEMENT... 2 3 : INSTALLATION D ICEM 4.08... 3 4 : LANCEMENT

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015 et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech david.madore@enst.fr 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Optimisation, traitement d image et éclipse de Soleil

Optimisation, traitement d image et éclipse de Soleil Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

Formats d images. 1 Introduction

Formats d images. 1 Introduction Formats d images 1 Introduction Lorsque nous utilisons un ordinateur ou un smartphone l écran constitue un élément principal de l interaction avec la machine. Les images sont donc au cœur de l utilisation

Plus en détail

Ce cours introduit l'électrodynamique classique. Les chapitres principaux sont :

Ce cours introduit l'électrodynamique classique. Les chapitres principaux sont : 11P001 ELECTRDYNAMIQUE I Automne 4 crédits BACHELR 1ère ANNEE MASTER BIDISCIPLINAIRE MINEURE PHYSIQUE CURS BLIGATIRES Enseignant(s) G. Iacobucci P Automne (A) Horaire A C2 E2 LU 1113 EPA JE 810 EPA = obligatoire

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Programme scientifique Majeure INTELLIGENCE NUMERIQUE. Mentions Image et Réalité Virtuelle Intelligence Artificielle et Robotique

Programme scientifique Majeure INTELLIGENCE NUMERIQUE. Mentions Image et Réalité Virtuelle Intelligence Artificielle et Robotique É C O L E D I N G É N I E U R D E S T E C H N O L O G I E S D E L I N F O R M A T I O N E T D E L A C O M M U N I C A T I O N Programme scientifique Majeure INTELLIGENCE NUMERIQUE Langage Java Mentions

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

GMEC1311 Dessin d ingénierie. Chapitre 1: Introduction

GMEC1311 Dessin d ingénierie. Chapitre 1: Introduction GMEC1311 Dessin d ingénierie Chapitre 1: Introduction Contenu du chapitre Introduction au dessin technique Normes Vues Traits Échelle Encadrement 2 Introduction Les dessins ou graphiques sont utilisés

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Extraction et reconstruction de bâtiments en 3D à partir de relevés lidar aéroportés

Extraction et reconstruction de bâtiments en 3D à partir de relevés lidar aéroportés Thèse présentée pour obtenir le grade de Docteur de l Université Louis Pasteur Strasbourg I Discipline : Sciences pour l Ingénieur Spécialité : Topographie-Géomatique Par : Fayez TARSHA KURDI Extraction

Plus en détail

ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA

ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA ENSEA - ABIDJAN ENSAE - DAKAR ISSEA - YAOUNDÉ BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA CENTRE D APPUI AUX

Plus en détail

Programme détaillé des enseignements

Programme détaillé des enseignements Programme détaillé des enseignements SEMESTRE S1 commun aux spécialités (MSIR, IDL, TechMed) Type d'u.e. (1) OP Intitulé et descriptif des U.E. GENIE LOGICIEL AVANCE Gestion de projets. Qualité logicielle.

Plus en détail

Chapitre 10 Arithmétique réelle

Chapitre 10 Arithmétique réelle Chapitre 10 Arithmétique réelle Jean Privat Université du Québec à Montréal INF2170 Organisation des ordinateurs et assembleur Automne 2013 Jean Privat (UQAM) 10 Arithmétique réelle INF2170 Automne 2013

Plus en détail

Introduction à la théorie des graphes. Solutions des exercices

Introduction à la théorie des graphes. Solutions des exercices CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation

Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation Laboratoire Vision & Robotique Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation Emilie KOENIG, Benjamin ALBOUY, Sylvie TREUILLET, Yves Lucas Contact : Sylvie Treuillet Polytech'Orléans

Plus en détail