La régression linéaire simple
|
|
|
- Corinne Gamache
- il y a 8 ans
- Total affichages :
Transcription
1 La régression Equipe d Accueil 4275 "Biostatistique, recherche clinique et mesures subjectives en santé", Université de Nantes Odontologie - Cours #7 1 / 31
2 Plan / 31
3 Plan / 31
4 Les acquis Variable catégorielle à expliquer en fonction d une autre variable catégorielle explicative (comparaison de deux pourcentages). Test de comparaison de deux fréquences (approximation normale). Test du Chi-deux (plus de deux groupes) Test du Chi-deux exact de Fisher (test non-paramétrique). Test du Chi-deux de Mac Nehmar (données appariées). Variable continue à expliquer en fonction d une autre variable catégorielle explicative à deux modalités (comparaison de deux moyennes). Test de Student : comparaison de deux moyennes. Test de Student sur différence (données appariées). Test de Mann-Withney (test non-paramétrique). Test de Wilcoxon (données appariées, test non-paramétrique). Comment étudier le lien entre deux variables continues? 4 / 31
5 Exemple fonction rénale (Y ) selon l âge (X). Sujet Y X Sujet Y X / 31
6 Exemple Clairance à la créatinine en ml/min Age en années 6 / 31
7 Deux méthodes 1 : Interprétation limitée des résultats. 2 : Interprétation plus riche des résultats. Généralisation à plusieurs facteurs explicatifs (variables continues ou catégorielles). 7 / 31
8 Plan / 31
9 Calcul et interprétation Echantillon composé de n individus (i = 1,..., n) Observation des couples (y i, x i ) Indépendance des observations (les Y i x i sont indépendantes). i y i i x i n i x iy i r = (( i x i) 2 n i x 2 i )( ( i y i) 2 n i y 2 i ) Interprétation du coefficient de linéaire : r = 1 : lien linéaire parfait dans le même sens r = 1 : lien linéaire parfait dans le sens inverse r > 0.5 : lien linéaire fort 0.3 < r < 0.5 : lien linéaire moyen 0.1 < r < 0.3 : lien linéaire faible r = 0 : pas de liaison linéaire 9 / 31
10 Application à notre exemple fonction rénale (Y ) en fonction de l âge (X) i y i = 3196, 3 ; i y i 2 = , 7 ; i x i = 1334, 3 ; i x i 2 = 62626, 5 ; i x iy i = , 0 r = 0, 53 Forte : Il semble que la fonction du rein diminue avec l âge du patient. 10 / 31
11 Application à notre exemple fonction rénale (Y ) en fonction de l âge (X) i y i = 3196, 3 ; i y i 2 = , 7 ; i x i = 1334, 3 ; i x i 2 = 62626, 5 ; i x iy i = , 0 r = 0, 53 Forte : Il semble que la fonction du rein diminue avec l âge du patient. Problème Peut-on conclure que le coefficient de linéaire ρ de la population est significativement différent de 0? 10 / 31
12 Test de Définition des hypothèses : H 0 : ρ = 0 H 1 : ρ 0 Statistique de test : T = R n 2 1 R 2 T n 2 ddl n = 30 ; ddl = 28 ; α = 5% Région non-critique (test bilatéral) : [ 2, 048; 2, 048] t = 0,53 28 = 3, 21 Région critique 1 0,532 On rejette l hypothèse nulle selon laquelle le coefficient de régression linéaire est nul (p < 5%). Il semble qu il y ait un lien entre la clairance à la créatinine et l âge. 11 / 31
13 Table de la loi de Student LOI DE STUDENT On connaît α et on cherche t vérifiant P(T>t) ν \ α / 3163
14 Table de la loi de Student ν \ α / 31
15 Limites Limites Attention aux conclusions non-valides pour une relation non-linéaire. Plusieurs relations possibles pour un même coefficient de. Aucune quantification de la relation. 14 / 31
16 Plan / 31
17 Définition du modèle Le modèle s écrit : Y i = β 0 + β 1 x i + ɛ i β 0 est l ordonnée à l origine (moyenne de Y i quand x i = 0). β 1 est la pente (changement moyen de Y i quand x i augmente d une unité). ɛ i est le résidu (différence entre la valeur prédite et celle observée). Les résidus sont distribués selon une loi normale de moyenne nulle et de variance σ 2 (variance résiduelle). 16 / 31
18 Estimation de la droite de régression Objectf : Trouver la meilleure droite pour un nuage de points. Minimisation des valeurs des résidus. Critère des Moindres Carrés : CMC = (y i ŷ i ) 2 = (y i β 0 β 1 x i ) 2 i i Calcul des dérivées partielles de CMC : CMC/ β 0 = 1 2 CMC/ β 1 = x i 2 CMC/ β 0 = 2 i CMC/ β 1 = 2 i n (y i β 0 β 1 x i ) i=1 n (y i β 0 β 1 x i ) i=1 y i + 2nβ 0 + 2β 1 i x i y i x i + 2β 0 x i + 2β 1 i i x 2 i 17 / 31
19 Estimation de la droite de régression Les valeurs optimales, ˆβ 0 et ˆβ 1, minimisent le CMC : y i n ˆβ 0 ˆβ 1 x i = 0 i i y i x i ˆβ 0 x i ˆβ 1 xi 2 = 0 i i i Le CMC est minimum pour : ˆβ 1 = i x iy i ( i x i)( i y i)/n i x i 2 ( i x i) 2 /n ˆβ 0 = ( ) ( ) y i /n ˆβ 1 y i /n i i 18 / 31
20 Estimation des autres paramètres importants On peut alors simplement déduire la variance résiduelle des estimations précédentes. i ˆσ 2 = (y i ŷ i ) 2 i = (y i ˆβ 0 ˆβ 1 x i ) 2 n 2 n 2 Si ˆβ 1 représente la pente de Y en fonction de X et que ˆβ 1 représente la pente de X en fonction de Y, alors on montre que : ˆr 2 = ˆβ 1 ˆβ 1 r 2 représente la proportion de variation de Y expliquée par X. Rappelons que r est le coefficient de linéaire. 19 / 31
21 Application à notre exemple fonction rénale (Y ) en fonction de l âge (X) n = 30 ; i y i = 3196, 3 ; i y i 2 = , 7 ; i x i = 1334, 3 ; i x i 2 = 62626, 5 ; i x iy i = , 0 ; ˆβ0 = 123, 0 : La fonction rénale d un nouveau né (x = 0) est estimée à 123,0 ml/min en moyenne. Attention : cette valeur n est pas fiable (aucun enfant dans l étude). ˆβ 1 = 0, 37 : La fonction rénale chute en moyenne de 3,7 ml/min tous les 10 ans. ˆσ 2 = 6, 35. ˆr 2 = 0, 29 : 29% de la variation de Y est expliquée par X. 20 / 31
22 Application à notre exemple Clairance à la créatinine en ml/min Age en années 21 / 31
23 Application à notre exemple Clairance à la créatinine en ml/min β 1 = Age en années 22 / 31
24 Application à notre exemple Clairance à la créatinine en ml/min β Age en années 23 / 31
25 Intervalle de confiance de β 1 [ IC (1 α) = ˆβ1 ± t α,n 2 s( ˆβ 1 )] t α,n 2 : fractile de la loi de Student à n 2 ddl (lue dans la table). s( ˆβ 1 ) : écart-type estimé de la pente Remarque : s( ˆβ 1 ) = ˆσ/(ˆσ x n 1), où ˆσx est l écart-type de X. Si l intervalle de confiance comprend la valeur 0, on conclura que la pente n est pas significativement différente de 0. Si l intervalle de confiance ne comprend pas la valeur 0, on conclura que la pente est significativement différente de / 31
26 Test de β 1 (méthode 1 : Test de Student) Définition des htypothèses H 0 : β 1 = 0 H 1 : β 1 0 Statistique de test : T = β 1 /s(β 1 ) T n 2 ddl Définition de la région critique. Si t appartient à la région critique, on rejette H 0, sinon on ne peut pas rejeter H / 31
27 Application à notre exemple fonction rénale (Y ) en fonction de l âge (X) Intervalle de confiance à 95% de β 1 (t 5%;28 = 2, 048) : IC 95% = [ 0, 37 ± 2, 048 0, 11] = [ 0, 48; 0, 26] L intervalle de confiance ne comprend pas la valeur 0, il semble donc que la pente soit significativement différente de zéro. Test H 0 : β 1 = 0 contre H 1 : β 1 0 α = 0, 05, t 5%;28 = 2, 048 t = 0, 37/0, 11 = 3, 35 t > 2, 048, on rejette H / 31
28 Hypothèses du modèle : linéarité Clairance à la créatinine en ml/min β 1 = Age en années 27 / 31
29 Hypothèses du modèle : linéarité x1 y x2 y2 28 / 31
30 Hypothèses du modèle : linéarité x1 y x2 y2 29 / 31
31 Hypothèses du modèle : normalité des résidus Effective residus 30 / 31
32 Hypothèses du modèle : homoscédasticité des résidus Valeurs prédites residus 31 / 31
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE
Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE
UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Cours 3 : Python, les conditions
Cours 3 : Python, les conditions Conditions Permet d'exécuter des ordres dans certaines conditions : if condition1: code exécuté si condition1 est vraie code exécuté si condition1 est vraie... elif condition2:
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 [email protected] Plan Données Générales : Définition des statistiques Principe de l
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
T de Student Khi-deux Corrélation
Les tests d inférence statistiques permettent d estimer le risque d inférer un résultat d un échantillon à une population et de décider si on «prend le risque» (si 0.05 ou 5 %) Une différence de moyennes
Ordonnance collective
Centre de Santé et de Services sociaux de Québec-Nord NUMÉRO DE L ORDONNANCE: OC-31 Ordonnance collective Nom de l ordonnance: Initier des analyses de laboratoire pour le suivi de la clientèle présentant
Régression linéaire. Nicolas Turenne INRA [email protected]
Régression linéaire Nicolas Turenne INRA [email protected] 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R
Théorie des sondages : cours 5
Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : [email protected] Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur
Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants)
CIVILITE-SES.doc - 1 - Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants) 1 PRÉSENTATION DU DOSSIER CIVILITE On s intéresse
Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011
Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte [email protected]
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
23. Interprétation clinique des mesures de l effet traitement
23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Professeur Diane GODIN-RIBUOT
UE3-2 - Physiologie rénale Chapitre 5 : Mesure de la fonction rénale : la clairance rénale Professeur Diane GODIN-RIBUOT Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
Document d orientation sur les allégations issues d essais de non-infériorité
Document d orientation sur les allégations issues d essais de non-infériorité Février 2013 1 Liste de contrôle des essais de non-infériorité N o Liste de contrôle (les clients peuvent se servir de cette
TRACER LE GRAPHE D'UNE FONCTION
TRACER LE GRAPHE D'UNE FONCTION Sommaire 1. Méthodologie : comment tracer le graphe d'une fonction... 1 En combinant les concepts de dérivée première et seconde, il est maintenant possible de tracer le
Chapitre 2/ La fonction de consommation et la fonction d épargne
hapitre 2/ La fonction de consommation et la fonction d épargne I : La fonction de consommation keynésienne II : Validations et limites de la fonction de consommation keynésienne III : Le choix de consommation
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
1 Définition de la non stationnarité
Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles
Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected]
Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected] Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888
Lecture critique d article Rappels Bio statistiques Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Plan du cours Rappels fondamentaux Statistiques descriptives Notions de tests statistiques
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Équivalence et Non-infériorité
Équivalence et Non-infériorité Éléments d Introduction Lionel RIOU FRANÇA INSERM U669 Mars 2009 Essais cliniques de supériorité Exemple d Introduction Données tirées de Brinkhaus B et al. Arch Intern Med.
Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1)
Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1) Modèles de régression logistique à réaliser Une explicative catégorielle
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015
Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
Comment bien régresser: La statistique peut-elle se passer d artefacts?
Comment bien régresser: La statistique peut-elle se passer d artefacts? Jean-Bernard Chatelain To cite this version: Jean-Bernard Chatelain. Comment bien régresser: La statistique peut-elle se passer d
Le risque Idiosyncrasique
Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
ASSOCIATION CANADIENNE DES PAIEMENTS RÈGLE 4 DU STPGV COMMENCEMENT DU CYCLE
ASSOCIATION CANADIENNE DES PAIEMENTS RÈGLE 4 DU STPGV STPGV Règle 4, décembre 1998: révisée le 30 juillet 2001, le 19 novembre 2001, le 6 octobre 2003, le 24 novembre 2003, le 29 mars 2007, le 13 décembre
Chapitre 4 : Régression linéaire
Exercice 1 Méthodes statistiques appliquées aux sciences sociales (STAT-D-203) Titulaire : Catherine Vermandele Chapitre 4 : Régression linéaire Le diplôme de Master of Business Administration ou MBA est
Lire ; Compter ; Tester... avec R
Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................
La survie nette actuelle à long terme Qualités de sept méthodes d estimation
La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg
Systèmes de transmission
Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
CAPTEURS - CHAINES DE MESURES
CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,
Correction du bac blanc CFE Mercatique
Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
OPTIMISATION À UNE VARIABLE
OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum
INFORMATION À DESTINATION DES PROFESSIONNELS DE SANTÉ LE DON DU VIVANT
INFORMATION À DESTINATION DES PROFESSIONNELS DE SANTÉ LE DON DU VIVANT QUELS RÉSULTATS POUR LE RECEVEUR? QUELS RISQUES POUR LE DONNEUR? DONNER UN REIN DE SON VIVANT PEUT CONCERNER CHACUN /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN
MOTO ELECTRIQUE MISE EN SITUATION La moto électrique STRADA EVO 1 est fabriquée par une société SUISSE, située à LUGANO. Moyen de transport alternatif, peut-être la solution pour concilier contraintes
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Les indices à surplus constant
Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
INTERET PRATIQUE DU MDRD AU CHU DE RENNES
INTERET PRATIQUE DU MDRD AU CHU DE RENNES QU EST-CE QUE LE MDRD? Il s agit d une formule permettant d estimer le débit de filtration glomérulaire et donc la fonction rénale La formule est la suivante :
Tests statistiques et régressions logistiques sous R, avec prise en compte des plans d échantillonnage complexes
, avec prise en compte des plans d échantillonnage complexes par Joseph LARMARANGE version du 29 mars 2007 Ce cours a été développé pour une formation niveau M2 et Doctorat des étudiants du laboratoire
Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI
1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES
J. sci. pharm. biol., Vol.9, n - 00, pp. 9-0 EDUCI 00 9 VALLEE POLNEAU S.* DIAINE C. COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES Notre étude visait à comparer les résultats obtenus
Les coûts de la production. Microéconomie, chapitre 7
Les coûts de la production Microéconomie, chapitre 7 1 Sujets à aborder Quels coûts faut-il considérer? Coûts à court terme Coûts à long terme Courbes de coûts de court et de long terme Rendements d échelle
Simulation d application des règles CNAV AGIRC ARRCO sur des carrières type de fonctionnaires d Etat
CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 10 avril 2014 à 9 h 30 «Carrières salariales et retraites dans les secteurs et public» Document N 9 Document de travail, n engage pas le Conseil Simulation
Essai Inter-groupe : FFCD UNICANCER FRENCH - GERCOR
CLIMAT - PRODIGE 30 Etude de phase III randomisée évaluant l Intérêt de la colectomie première chez les patients porteurs d un cancer colique asymptomatique avec métastases hépatiques synchrones non résécables
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
NON-LINEARITE ET RESEAUX NEURONAUX
NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail
Algorithme d utilisation des anti-inflammatoires non stéroïdiens (AINS)
Algorithme d utilisation des anti-inflammatoires non stéroïdiens (AINS) Édition Conseil du médicament www.cdm.gouv.qc.ca Coordination Anne Fortin, pharmacienne Élaboration Conseil du médicament Fédération
EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE
MICHÈLE PICARD FLIBOTTE EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE Essai-stage présenté à la Faculté des études supérieures de l Université Laval dans le cadre
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Mortalité observée et mortalité attendue au cours de la vague de chaleur de juillet 2006 en France métropolitaine
Mortalité observée et mortalité attendue au cours de la vague de chaleur de uillet en France métropolitaine FOUILLET A 1, REY G 1, JOUGLA E, HÉMON D 1 1 Inserm, U75, Villeuif, France. Inserm CépiDc, IFR9,
De nombreux composés comportant le squelette aryléthanolamine (Ar-CHOH-CH2-NHR) interfèrent avec le
[E1-2007S] pp75 (40 points) Chimie Thérapeutique - Pharmacologie De nombreux composés comportant le squelette aryléthanolamine (Ar-CHOH-CH2-NHR) interfèrent avec le système adrénergique. Leur profil d
! " # $ % & '! % & & # # # # % & (
! " # $ % & '! % & & # # # # % & ( ' # $ " # # ) * ( + %, ' " # # # $ " '. / # #! 0 " $ ' # " # # " 1 $ " 1 " 1 # " / " 2 3 # $ " 2 3 1 4 # Information des instances Communication auprès du personnel
FONCTION DE DEMANDE : REVENU ET PRIX
FONCTION DE DEMANDE : REVENU ET PRIX 1. L effet d une variation du revenu. Les lois d Engel a. Conditions du raisonnement : prix et goûts inchangés, variation du revenu (statique comparative) b. Partie
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Probabilité et Statistique pour le DEA de Biosciences. Avner Bar-Hen
Probabilité et Statistique pour le DEA de Biosciences Avner Bar-Hen Université Aix-Marseille III 2000 2001 Table des matières 1 Introduction 3 2 Introduction à l analyse statistique 5 1 Introduction.................................
RIVAROXABAN ET TESTS DE BIOLOGIE MEDICALE
RIVAROXABAN ET TESTS DE BIOLOGIE MEDICALE Ce texte est une mise au point d Octobre 2012, dont le contenu sera revu en fonction de l avancement des connaissances Rédacteurs : Isabelle Gouin-Thibault 1,
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
La théorie des anticipations de la structure par terme permet-elle de rendre compte de l évolution des taux d intérêt sur euro-devise?
ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 62 2001 La théorie des anticipations de la structure par terme permet-elle de rendre compte de l évolution des taux d intérêt sur euro-devise? Éric JONDEAU * RÉSUMÉ.
DOCUMENT DE TRAVAIL DES SERVICES DE LA COMMISSION RÉSUMÉ DE L'ANALYSE D'IMPACT. accompagnant le document:
COMMISSION EUROPÉENNE Bruxelles, le 22.4.2015 SWD(2015) 88 final DOCUMENT DE TRAVAIL DES SERVICES DE LA COMMISSION RÉSUMÉ DE L'ANALYSE D'IMPACT accompagnant le document: Rapport de la Commission au Parlement
Econométrie et applications
Econométrie et applications Ecole des Ponts ParisTech Département Sciences Economiques Gestion Finance Nicolas Jacquemet ([email protected]) Université Paris 1 & Ecole d Economie de Paris
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Focus. Lien entre rémunération du travail et allocation de chômage
Focus Lien entre rémunération du travail et allocation de chômage Introduction Le travailleur qui devient chômeur et qui est admissible sur base de prestations de travail se voit, en application du principe
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
Coûts, avantages et inconvénients des différents moyens de paiement
Coûts, avantages et inconvénients des différents moyens de paiement Présentation de l'étude de la Banque nationale de Belgique à la conférence de l'esta (Valence, le 15 mai 2006) Historique de l'étude
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
