Exercices sur le cours d Analyse de la Variance
|
|
|
- Lucille Pépin
- il y a 8 ans
- Total affichages :
Transcription
1 Exercices sur le cours d Analyse de la Variance Chapitre 4 - Validatation des hypothèses d une ANOVA à un facteur Exercice 1 Pour tester la normalité nécessaire pour qu une ANOVA soit valide, On peut utiliser le test de shapiro-wilk. Le code R est le suivant : > shapiro.test(delai) Shapiro-Wilk normality test data: delai W = , p-value = La probabilité critique est de 0,1654 et dépasse donc le seuil habituel de 5 %. On ne rejette pas significativement l hypothèse nulle de normalité. L hypothèse de normalité des délais de guérison en jours est acceptée. On peut aussi remarquer que l étude des résidus (faite dans le corrigé dans le fichier chap3c, exercice 2) apporte aussi des renseignements quant à la gaussianité des résidus. Des tests d égalité des variances peuvent aussi être menés. Par exemple, avec le test de Levene, le code R est le suivant : > library(car) > levenetest(delai~traitement, data=x) Levene s Test for Homogeneity of Variance (center = median) Df F value Pr(>F) group La probabilité critique est de 0,6763 et dépasse donc le seuil habituel de 5 %. On ne rejette pas significativement l hypothèse nulle d homogénéité des variances. L hypothèse d égalité des variances est donc acceptée. On aurait aussi pu faire le test de Bartlett, obtenu via la commande : > bartlett.test(delai~traitement) Le résultat du test est le suivant : 1
2 Bartlett test of homogeneity of variances data: delai by traitement Bartlett s K-squared = , df = 4, p-value = La probabilité critique est de 0,6591 et dépasse donc le seuil habituel de 5 %. On ne rejette pas significativement l hypothèse nulle d homogénéité des variances. L hypothèse d égalité des variances est donc une fois encore acceptée. Remarque 0.1 Si l hypothèse de normalité avait été violée, on aurait tout de même pu faire un test similaire au test F de l ANOVA dans ce cas. Il s agit du test de Kruskal et Wallis. Le code R est le suivant : > kruskal.test(delai~traitement,data=x) Kruskal-Wallis rank sum test data: delai by traitement Kruskal-Wallis chi-squared = 11.01, df = 4, p-value = La probabilité critique est de 0,02645 et ne dépasse pas donc le seuil habituel de 5 %. Cela permet de conclure là aussi (voir corrigé de l exercice 2 du chapitre 3) que les effets d au moij s deux traitements sont différents. Exercice 2 à Exercice 6 Les solutions ne sont pas écrites car il s agit de reproduire, mutatis mutandis, tout ce qui a été détaillé dans l exercice 1 ci-dessus. Exercice 7 1. Le code R pour tracer les boîtes à moustaches est le suivant : > carbu<-rep(1:4,c(6,6,6,6)) > conso<-c(21,24,25,20,34,17,23,23,32,23,32,15,18,19,28,19,24,14, + 20,21,25,15,29,9) > carbu<-factor(carbu) > don<-data.frame(carbu,conso) > moy<-tapply(don$conso,don$carbu,mean) > moy > ecart<-tapply(don$conso,don$carbu,sd) > ecart > ecart.g<-sd(don$conso) > ecart.g > plot(don$carbu,don$conso,col="green") > points(1:4,moy,pch="@") > abline(h=moy.g) 2
3 Figure 1 Boîtes à moustaches de consommation par carburateurs On obtient la figure ci-dessus. 2. La variable à expliquer, consommation, est une variable continue. La variable explicative que nous considérons, le type de carburateur, carburateur, est qualitative et contrôlée. Le plan qui a été utilisé pour réaliser l expérience comporte des répétitions, nous pouvons donc essayer de nous servir d un modèle d analyse de la variance à un facteur contrôlé. Nous introduisons le modèle suivant : Y i,j = µ + α i + ε i,j, i = 1,, 4, j = 1,, 6, avec la contrainte supplémentaire : 4 α i = 0, i=1 où la variable Y i,j est la consommation de la voiture équipée du carburateur i lors du j-ème essai. Nous postulons les hypothèses classiques suivantes pour les erreurs : ε i,j et ε k,l sont indépendants si (i, j) (k, l) avec 1 i, k 4, et 1 j, l 6, (i, j), 1 i 4, 1 j 6, L(ε i,j ) = N (0, σ 2 ). Ce modèle comporte 6 répétitions pour chaque niveau du facteur. Il s agit donc d un plan expérimental équilibré. 3. Effectuons un test d homogénéité des variances des erreurs : H 0 : σ 2 1 = σ 2 2 = σ 2 3 = σ 2 4 3
4 contre H 1 : Il existe au moins une variance différente des autres Ne connaissant pas la loi des erreurs, on peut effectuer un test de levene > library(car) > levenetest(conso~carbu, data=don) Cela donne : Levene s Test for Homogeneity of Variance (center = median) Df F value Pr(>F) group La probabilité critique valant 0,8992, on ne rejette pas l hypothèse H 0. On ne rejette pas significativement l hypothèse nulle d homogénéité des variances. L hypothèse d égalité des variances est donc acceptée. On s intéresse maintenant à la normalité de Y i,j. Un test de Shapiro-Wilk peut être mené : > shapiro.test(conso) Shapiro-Wilk normality test data: conso W = , p-value = La probabilité critique valant 0,9037, on ne rejette pas l hypothèse H 0. Le test n est donc pas significatif au niveau α = 5 %, et nous ne rejettons pas l hypothèse H 0. Comme l hypothèse de normalité des erreurs n a pas été rejetée (voir ci-dessus), on peut s intéresser à nouveau à l hypothèse d homogénéité des variances portant sur les erreurs : H 0 : σ 2 1 = σ 2 2 = σ 2 3 = σ 2 4 contre H 1 : Il existe au moins une variance différente des autres Il est maintenant possible d utiliser le test paramétrique de Bartlett puisque ses conditions d application, la normalité des erreurs, sont vérifiées. > bartlett.test(conso~carbu) Les résultats sont les suivants : Bartlett test of homogeneity of variances data: conso by carbu Bartlett s K-squared = , df = 3, p-value =
5 Le test n est pas significatif car 0,8848 est bien supérieur à α = 5 %. Nous ne pouvons rejeter l hypothèse nulle H 0 à ce seuil. Les résultats sont cohérents avec ceux obtenus précédemment. 4. Déterminons si le facteur carburateur a un effet sur la consommation. Nous testons donc les hypothèses : H 0 : α 1 = α 2 = α 3 = α 4 = 0 contre Le code R est le suivant : H 1 : Il existe i 0 {1, 2, 3, 4} tel que α i0 0. > modele<-aov(conso~carbu,data=don) > summary(modele) Le tableau d analyse de variance est le suivant : Df Sum Sq Mean Sq F value Pr(>F) carbu Residuals La probabilité critique associée à la statistique de Fisher est de 0,464. Elle est bien supérieure à α = 5 % ; le test n est donc pas significatif à ce seuil et on peut ne peut rejeter l hypothèse nulle H 0 d absence d effet du facteur carburateur sur la consommation. Donc, au niveau α = 5 %, le facteur carburateur n a pas d effet significatif sur la consommation. Les estimations des coefficients du modèle sont données via le code R suivant : > library(factominer) > AovSum(conso~carbu,data=don) On obtient alors directement via cette commande, et le tableau de l analyse de la variance et les estimations des coefficients : $Ftest SS df MS F value Pr(>F) carbu Residuals F test Estimate Std. Error t value Pr(> t ) (Intercept) e-13 carbu e-01 carbu e-01 carbu e-01 carbu e-01 Nous remarquons que le carburateur A 4 nous fait consommer le moins de carburant. Néanmoins, puisque nous n avons pu rejeter H 0 d absence d effet du facteur carburateur sur la consommation au seuil α = 5 %, ce comportement n est pas significativement différent des autres à ce seuil. 5
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
Lire ; Compter ; Tester... avec R
Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
Un exemple de régression logistique sous
Fiche TD avec le logiciel : tdr341 Un exemple de régression logistique sous A.B. Dufour & A. Viallefont Etude de l apparition ou non d une maladie cardiaque des coronaires 1 Présentation des données Les
Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011
Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte [email protected]
Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015
Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par
Étude des flux d individus et des modalités de recrutement chez Formica rufa
Étude des flux d individus et des modalités de recrutement chez Formica rufa Bruno Labelle Théophile Olivier Karl Lesiourd Charles Thevenin 07 Avril 2012 1 Sommaire Remerciements I) Introduction p3 Intérêt
MODELE A CORRECTION D ERREUR ET APPLICATIONS
MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
Données longitudinales et modèles de survie
ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan
Modèles pour données répétées
Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque
Densité de population et ingestion de nourriture chez un insecte vecteur de la maladie de Chagas
Fiche TD avec le logiciel : tdr335 Densité de population et ingestion de nourriture chez un insecte vecteur de la maladie de Chagas F. Menu, A.B. Dufour, E. Desouhant et I. Amat La fiche permet de se familiariser
distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position
Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
Exemple PLS avec SAS
Exemple PLS avec SAS This example, from Umetrics (1995), demonstrates different ways to examine a PLS model. The data come from the field of drug discovery. New drugs are developed from chemicals that
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9 L analyse de variance à un facteur permet de vérifier, moyennant certaines hypothèses, si un facteur (un critère de classification,
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Didacticiel - Études de cas. Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat.
1 Objectif Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat. Tout le monde l aura compris, je passe énormément de temps à analyser les logiciels
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected]
Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected] Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/
Imputation du salaire d ego dans TeO
Imputation du salaire d ego dans TeO Objet de la note : linéariser la réponse en tranche du salaire, et imputer le salaire en cas de non réponse Champ et principe de la méthode Les individus qui se sont
Exemples d Analyses de Variance avec R
Exemples d Analyses de Variance avec R Christophe Pallier 5 août 00 Résumé R est un logiciel d analyse statistique qui fournit toutes les procédures usuelles (t-tests, anova, tests non paramétriques...)
Introduction à la statistique non paramétrique
Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 [email protected] Plan Données Générales : Définition des statistiques Principe de l
Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE
UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Principe de symétrisation pour la construction d un test adaptatif
Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, [email protected] 2 Université
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
STRICTEMENT CONFIDENTIEL
MOIS / ANNEE ETUDE DE VALORISATION Société «EDIVAL» STRICTEMENT CONFIDENTIEL BUREAUX 31, Rue de Brest 69002 LYON Tél : +33 (0)8 71 55 11 98 SIÈGE SOCIAL 94, Rue Saint Lazare 75009 PARIS Tél : +33 (0)1
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
Cours 9 : Plans à plusieurs facteurs
Cours 9 : Plans à plusieurs facteurs Table des matières Section 1. Diviser pour regner, rassembler pour saisir... 3 Section 2. Définitions et notations... 3 2.1. Définitions... 3 2.2. Notations... 4 Section
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE
Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
Langage SQL : créer et interroger une base
Langage SQL : créer et interroger une base Dans ce chapitre, nous revenons sur les principales requêtes de création de table et d accès aux données. Nous verrons aussi quelques fonctions d agrégation (MAX,
IFT3245. Simulation et modèles
IFT 3245 Simulation et modèles DIRO Université de Montréal Automne 2012 Tests statistiques L étude des propriétés théoriques d un générateur ne suffit; il estindispensable de recourir à des tests statistiques
Evaluation de la variabilité d'un système de mesure
Evaluation de la variabilité d'un système de mesure Exemple 1: Diamètres des injecteurs de carburant Problème Un fabricant d'injecteurs de carburant installe un nouveau système de mesure numérique. Les
Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014
Tests du χ 2 Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014 A. Lourme http://alexandrelourme.free.fr Outline
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun
1 Définition de la non stationnarité
Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles
ITLB Indices du prix de revient au 1 er mars 2015
ITLB Indices du prix de revient au 1 er mars 2015 1. Indices du prix de revient du transport routier professionnel de marchandises : Base 100 fixée au 31 décembre 2003 Les indices reflètent l évolution
LE GRAND ÉCART L INÉGALITÉ DE LA REDISTRIBUTION DES BÉNÉFICES PROVENANT DU FRACTIONNEMENT DU REVENU
LE GRAND ÉCART L INÉGALITÉ DE LA REDISTRIBUTION DES BÉNÉFICES PROVENANT DU FRACTIONNEMENT DU REVENU RÉSUMÉ Une étude de Tristat Resources commandée par l Institut Broadbent démontre que la majorité des
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
INTRODUCTION À L'ENVIRONNEMENT DE PROGRAMMATION STATISTIQUE R
INTRODUCTION À L'ENVIRONNEMENT DE PROGRAMMATION STATISTIQUE R Y. BROSTAUX (1) RÉSUMÉ Cette note constitue une introduction au langage et à l'environnement de programmation 5 dans sa version 1.4.1 pour
Étude comparative sur les salaires et les échelles salariales des professeurs d université. Version finale. Présentée au
Étude comparative sur les salaires et les échelles salariales des professeurs d université Version finale Présentée au Syndicat général des professeurs et professeures de l Université de Montréal (SGPUM)
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
Modèle GARCH Application à la prévision de la volatilité
Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes
25/01/05 TD Entrepôt de données IHS / Master ICA
Une compagnie d assurance de biens (automobile, immobilier, responsabilité civile) possède une application transactionnelle de production permet de gérer les polices (contrats) de ses clients ainsi que
Modèles Estimés sur Données de Panel
Modèles Estimés sur Données de Panel Introduction Il est fréquent en économétrie qu on ait à composer avec des données à deux dimensions : - une dimension chronologique - une dimension spatiale Par exemple,
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
23. Interprétation clinique des mesures de l effet traitement
23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d
EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE
MICHÈLE PICARD FLIBOTTE EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE Essai-stage présenté à la Faculté des études supérieures de l Université Laval dans le cadre
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Statistiques descriptives
Statistiques descriptives L3 Maths-Eco Université de Nantes Frédéric Lavancier F. Lavancier (Univ. Nantes) Statistiques descriptives 1 1 Vocabulaire de base F. Lavancier (Univ. Nantes) Statistiques descriptives
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
ACP Voitures 1- Méthode
acp=princomp(voit,cor=t) ACP Voitures 1- Méthode Call: princomp(x = voit, cor = T) Standard deviations: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 2.1577815 0.9566721 0.4903373 0.3204833 0.2542759 0.1447788
Processus de compétitivité : Facteurs et évaluation
Processus de compétitivité : Facteurs et évaluation Application aux entreprises tunisiennes par Selma Katlane Ben Mlouka Selma Katlane Ben Mlouka Docteur en gestion, Assistante à la Faculté des Sciences
Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation
4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température
Application sur le Dispositif en Blocs Complètement Randomisés
Roger Vumilia. KIZUNGU Directeur de l Expérimentation Agricole à l INERA Professeur Associé Faculté des Sciences Agronomiques Université de Kinshasa Utilisation des Logiciels de base dans la Recherche
MATHS FINANCIERES. [email protected]. Projet OMEGA
MATHS FINANCIERES [email protected] Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option
Théorie des sondages : cours 5
Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : [email protected] Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
PRINCIPES DE LA CONSOLIDATION. CHAPITRE 4 : Méthodes de consolidation. Maître de conférences en Sciences de Gestion Diplômé d expertise comptable
PRINCIPES DE LA CONSOLIDATION CHAPITRE 4 : Méthodes de consolidation David Carassus Maître de conférences en Sciences de Gestion Diplômé d expertise comptable SOMMAIRE CHAPITRE I Les fondements de la consolidation
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Méthode : On raisonnera tjs graphiquement avec 2 biens.
Chapiittrre 1 : L uttiilliitté ((lles ménages)) Définitions > Utilité : Mesure le plaisir / la satisfaction d un individu compte tenu de ses goûts. (On s intéresse uniquement à un consommateur rationnel
T2- COMMENT PASSER DE LA VITESSE DES ROUES A CELLE DE LA VOITURE? L E T U N I N G
T2- COMMENT PASSER DE LA VITESSE DES ROUES A CELLE DE LA VOITURE? D É M A R C H E D I N V E S T I G A T I O N : L E T U N I N G Programme de seconde professionnelle Situation introductive problématique
FOAD COURS D ECONOMETRIE 1 CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 2012.
FOAD COURS D ECONOMETRIE CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 202. Christine Maurel Maître de conférences en Sciences Economiques Université de Toulouse - Capitole Toulouse School of Economics-ARQADE
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
108y= 1 où x et y sont des entiers
Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
COURS GESTION FINANCIERE A COURT TERME SEANCE 2 COUVERTURE DU BESOIN DE FINANCEMENT CHOIX DU NIVEAU DU FONDS DE ROULEMENT
COURS GESTION FINANCIERE A COURT TERME SEANCE 2 COUVERTURE DU BESOIN DE FINANCEMENT CHOIX DU NIVEAU DU FONDS DE ROULEMENT SEANCE 2 COUVERTURE DU BESOIN DE FINANCEMENT CHOIX DU NIVEAU DU FONDS DE ROULEMENT
véhicule hybride (première
La motorisation d un véhicule hybride (première HERVÉ DISCOURS [1] La cherté et la raréfaction du pétrole ainsi que la sensibilisation du public à l impact de son exploitation sur l environnement conduisent
Probabilité et Statistique pour le DEA de Biosciences. Avner Bar-Hen
Probabilité et Statistique pour le DEA de Biosciences Avner Bar-Hen Université Aix-Marseille III 2000 2001 Table des matières 1 Introduction 3 2 Introduction à l analyse statistique 5 1 Introduction.................................
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
à moyen Risque moyen Risq à élevé Risque élevé Risq e Risque faible à moyen Risq Risque moyen à élevé Risq
e élevé Risque faible Risq à moyen Risque moyen Risq à élevé Risque élevé Risq e Risque faible à moyen Risq Risque moyen à élevé Risq L e s I n d i c e s F u n d a t a é Risque Les Indices de faible risque
Comparaison de populations
Ricco Rakotomalala Comparaison de populations Tests paramétriques Version 1.2 Université Lumière Lyon 2 Page: 1 job: Comp_Pop_Tests_Parametriques macro: svmono.cls date/time: 11-Jun-2013/6:32 Page: 2 job:
Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1 Historique
Le modèle de régression linéaire
Chapitre 2 Le modèle de régression linéaire 2.1 Introduction L économétrie traite de la construction de modèles. Le premier point de l analyse consiste à se poser la question : «Quel est le modèle?». Le
Chapitre 2 Les ondes progressives périodiques
DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................
L Econométrie des Données de Panel
Ecole Doctorale Edocif Séminaire Méthodologique L Econométrie des Données de Panel Modèles Linéaires Simples Christophe HURLIN L Econométrie des Données de Panel 2 Figure.: Présentation Le but de ce séminaire
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS
Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence
Les réponses à vos questions
Vous trouverez ci-dessous les réponses aux questions les plus fréquentes. Si vous ne trouvez pas les informations que vous recherchez, n hésitez pas à nous contacter. IMPORTANT: les Champions de la Bourse
Calcul Stochastique pour la finance. Romuald ELIE
Calcul Stochastique pour la finance Romuald ELIE 2 Nota : Ces notes de cours sont librement inspirées de différentes manuels, polycopiés, notes de cours ou ouvrages. Citons en particulier ceux de Francis
