Dossier de révisions 4 ème : Pâques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Dossier de révisions 4 ème : Pâques"

Transcription

1 Dossier de révisions 4 ème : Pâques Pour t aider à préparer ton examen, voici un dossier de révisions. Tu as également à ta disposition les exercices se trouvant dans tes dossiers d exercices et sur le site internet, tous les exercices supplémentaires proposés durant le deuxième trimestre. N hésite pas à refaire tes interrogations et tes devoirs pour te préparer à l examen. 1. Donne la norme des vecteurs a. si (0; 0.5) et ( 2; 0.5) b. si 2. Soit les points ( 5; 1), (6; 4), ( 3; 1). a. Détermine les coordonnées du point pour que soit un parallélogramme b. Détermine les coordonnées du point pour que soit un parallélogramme c. Le point appartient-il à la droite? Justifie algébriquement d. Détermine l ordonnée de pour que celui-ci appartienne à la droite si l abscisse de vaut Dans le dessin ci-dessous, donne un vecteur égal à 4. Le point appartient-il à la droite? a. (1; 1), (0; 2) (2; 1) b. ( 1; 5), (0; 3) ( 3; 2) c. (2; 3), (6; 1) (8; 0) 5. Détermine les coordonnées du quatrième point pour que soit un parallélogramme : a. ( 3; 1), (1; 3) (2; 1) b. ( 1; 3), (3; 2) (1; 4) c. ( 1; 2), (3; 5) (3; 0) d. (4; 4), (5; 2) (2; 3) 6. Détermine, sans les dessiner, les composantes des vecteurs,, sachant que (5; 4), ( 2; 2), (3; 0) et (2; 3). Calcule ensuite leur norme. 4 ème ISJC - Révisions Pâques 2017 Page 1

2 7. Dans la figure ci-contre, les triangles sont équilatéraux. Les égalités sont-elles vraies ou fausses? a. = 2 b. = 2 c. = 2 d. = 2 8. Dans le dessin ci-dessous, détermine un vecteur égal à : 9. Dans le dessin ci-dessous, détermine un vecteur égal à : 10. Résous les triangles suivants et calcule leur aire : a = 123 = 24,3 = 17,3 b = 54 = 167 = 145 c = 67 = 100 = 125 d = 48 = 57 = 47 e = 103,4 = 27,2 = 38,84 f = 2 = 2 = g = 10 = 15 = 20 4 ème ISJC - Révisions Pâques 2017 Page 2

3 11. Connaissant le sinus ou le cosinus d un angle, calcule l autre nombre trigonométrique sans calculer la valeur de l angle. a. sin( ) = b. cos( ) = c. sin( ) = 1 13 ]90 ; 180 [ ] 180; 270[ ]270 ; 360 [ d. sin( ) = cos( ) > 0 e. cos( ) = 0.2 è f. sin( ) = è 12. Trouve le quadrant qui contient l angle vérifiant les conditions suivantes : a. cos( ) > 0 sin( ) > 0 b. sin( ) > 0 cos( ) < 0 c. cos( ) < 0 tan( ) > Dans quel quadrant se trouve, si on sait que a. sin( ) < 0 cos( ) > 0 b. sin( ) > 0 cos( ) > 0 c. sin( ) < 0 cos( ) < 0 d. sin( ) < 0 tan( ) > 0 e. sin( ) < 0 tan( ) <0 14. Sur un cercle trigonométrique, représente l angle ainsi que ses nombres trigonométriques. Donne ensuite une valeur approximative de ceux-ci. (Echelle : 1 = 5cm ) a. = 50 b. = 135 c. = 120 d. = En justifiant à l aide d un cercle trigonométrique, classe les nombres suivants par ordre croissant : a. 0 ;1 ;-1 ; cos(25 ) ; cos(134 ) ; cos (100 ) b. 0 ;1 ;-1 ; sin(35 ) ; sin(210 ) ; sin(320 ) c. 0 ;1 ;-1 ; tan(20 ) ; tan(150 ) ; tan (300 ) 4 ème ISJC - Révisions Pâques 2017 Page 3

4 16. Détermine les équations paramétriques de la droite d passant par les points (2; 3) et ( 2; 4). Donne des équations paramétriques de la droite parallèle à d passant par le point ( 5; 6) = Soit les équations paramétriques de la droite = a. Détermine les coordonnées du point A appartenant à la droite d sachant que = 0 b. Détermine les coordonnées du point B appartenant à la droite d sachant que = 1 c. Donne les composantes d un vecteur directeur de cette droite d. Détermine pour chacun des points de cette droite donnés ci-après, la coordonnée manquante : i. ( ; 4) ii. ; iii. E(2 ; ) e. Ecris l équation cartésienne de cette droite 18. d est la droite passant par (2; 4) admettant le vecteur comme vecteur directeur a. Détermine les équations paramétriques de la droite d b. Les points ( 4; 2) et (4; 3) appartiennent-ils à la droite d? c. Ecris l équation cartésienne de la droite d 19. Donne l équation de la droite a. passant par les points (1; 2) et ( 2; 5) b. passant par le point (1; 2) et de pente 2 c. passant par ( 2; 5) et parallèle à la droite = d. passant par (2; 1) et parallèle à la droite = 0 e. passant par (1; 3) et perpendiculaire à la droite = f. passant par (2; 4) et perpendiculaire à la droite = Dans un repère orthonormé, représente les droites suivantes : a. = b. = c. 4 = 0 d = 0 e = 0 f. 2 6 = 0 4 ème ISJC - Révisions Pâques 2017 Page 4

5 21. Dans un parallélogramme, soit = 30, = 20 et = 60. Calcule la longueur de la diagonale, l angle formé par celle-ci (arrondir au dixième près). 22. Dans une nouvelle station de ski, on a installé un téléphérique. Le câble fait avec le sol un angle de 35,4 et il est arrimé à 2 du pied de la montagne. Quelle est la longueur du câble, calculée au mètre près, si l on sait que la montagne forme ave le sol, un angle de 60? 23. Impossible de traverser une rivière infestée de crocodiles. Et pourtant, Arthur (A) voudrait connaître la distance le séparant d un point (B) se trouvant de l autre côté de la rivière. Il choisit un point X sur la même berge que lui tel que = 67,2 et il mesure les angles = 47,2 et = 32,9. Peux-tu l aider à connaître la distance? 24. Dans ma rue, le service de voirie a installé des poteaux électriques. Sachant que ma rue fait un angle de 12 avec l horizontale, que l angle d élévation du soleil est de 47 et que l ombre du poteau a une longueur de 22. Calcule la hauteur du poteau au dm près. 4 ème ISJC - Révisions Pâques 2017 Page 5

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6)

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 3D2 LMRL CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 1 Rappels - classe de quatrième Théorème de Pythagore : Dans un triangle rectangle, le carré de l hypoténuse est égal à la somme des

Plus en détail

Chapitre XII : Géométrie dans l espace

Chapitre XII : Géométrie dans l espace I - Positions relatives dans l espace 1) Positions relatives de droites et de plans Chapitre XII : Géométrie dans l espace Définition 1 : On dit que deux droites et de l espace sont coplanaires lorsqu

Plus en détail

Chapitre 1 - Repérage et configurations du plan

Chapitre 1 - Repérage et configurations du plan nde hapitre 1 - Repérage et configurations du plan 01-013 hapitre 1 - Repérage et configurations du plan ctivités d approche 1. (a) Deux points et ont pour abscisses 7 3 et. alculer la distance. et sur

Plus en détail

Exercices supplémentaires : Produit scalaire dans l espace

Exercices supplémentaires : Produit scalaire dans l espace Exercices supplémentaires : Produit scalaire dans l espace Dans tous les exercices, sauf quand cela est précisé, on considère un repère orthonormal de l espace ; ; ;. Partie A : Repère et vecteurs coplanaires

Plus en détail

Sujets de bac : Géométrie dans l espace 1

Sujets de bac : Géométrie dans l espace 1 Sujets de bac : Géométrie dans l espace Sujet n : La Réunion juin 23 On considère un cube d arête. Le nombre désigne un réel strictement positif. On considère le point de la demi-droite défini par. ) Déterminer

Plus en détail

( ) a pour représentation paramétrique

( ) a pour représentation paramétrique Pondichéry 13 Pour chacune des questions, quatre propositions de réponse sont données dont une seule est exacte. Pour chacune des questions indiquer, sans justification, la bonne réponse sur la copie.

Plus en détail

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice n 1 (sur 9,5 points)

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice n 1 (sur 9,5 points) 5 ème /6 ème année décembre 2015 durée : 4 x 60 mn DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1 Exercice n 1 (sur 9,5 points) Partie A. On considère la fonction définie sur l intervalle par (

Plus en détail

Dossier de révisions 4 ème : Noël

Dossier de révisions 4 ème : Noël Dossier de révisions 4 ème : Noël Pour t aider à préparer ton examen, voici un dossier de révisions. Tu as également à ta disposition les exercices se trouvant dans tes dossiers d exercices et sur le site

Plus en détail

MATHÉMATIQUES CARNET 1

MATHÉMATIQUES CARNET 1 S4 ÉVALUATION EXTERNE NON CERTIFICATIVE 2011 MATHÉMATIQUES 4 e ANNÉE DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL, TECHNIQUE ET ARTISTIQUE DE TRANSITION NOM BRE O C T O G O N E DÉNOMINATEUR PARALLÉLOGRAMME D I

Plus en détail

Repérage dans le plan (début)

Repérage dans le plan (début) Repérage dans le plan (début) I/ Repère Def: un repère du plan est la donnée de trois points non alignés O, I et J. Def: si les axes ( OI ) et ( OJ ) sont perpendiculaires et si les distances OI et OJ

Plus en détail

TRIGONOMÉTRIE. Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d une montre.

TRIGONOMÉTRIE. Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d une montre. 1 sur 8 TRIGONOMÉTRIE I. Le cercle trigonométrique Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d une montre. Définition : Dans

Plus en détail

Volume d une boule = 4 3 π r3

Volume d une boule = 4 3 π r3 Page 1 sur 5 Figure : Calcul d aires : exemple Parallélogramme Rectangle... Base hauteur Triangles base hauteur 2 Aire du parallélogramme ABCD = DC AE pour repérer la hauteur et la base, j ai repassé l

Plus en détail

Chapitre : Trigonométrie

Chapitre : Trigonométrie Chapitre : Trigonométrie Dans tout le chapitre, le plan est muni d un repère orthonormé ;, I. Cercle trigonométrique 1) Repérage sur le cercle trigonométrique Définition : Le cercle trigonométrique C est

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Aide mémoire Géométrie 3 è m e

Aide mémoire Géométrie 3 è m e Sinus d'un angle aigu: ide mémoire Géométrie è m e Sinus: est un triangle rectangle en. le sinus de l'angle, noté sin, est le rapport sin = longueur du côté opposé de l'angle longueur de 'hypoténuse côté

Plus en détail

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel)

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel) Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 80 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 La mesure principale de l angle A 1 π. B 1π est

Plus en détail

TRIGONOMETRIE. Maths APP 1S

TRIGONOMETRIE. Maths APP 1S Partie A : Cercle trigonométrique, cosinus et sinus Convertir en radians les mesures d angles exprimées en degrés : 60 ; 150 ; 10 ; 1 ; 198 ; 15 Exercice Dans chacun des cas suivant, donner trois autres

Plus en détail

REVISION JUIN 2012 ALGEBRE

REVISION JUIN 2012 ALGEBRE REVISION JUIN 01 ALGEBRE THEORIE ( en gras : à étudier en normal : à connaître pour résoudre les exercices ) CHAPITRE 4 : les inéquations Connaître les conventions d écriture, de lecture et de représentation

Plus en détail

Trigonométrie et angles orientés

Trigonométrie et angles orientés Trigonométrie et angles orientés A) Angles orientés. 1. Le radian. Le radian est une unité de mesure d un angle comme le degré. Il est défini comme la longueur de l arc entre deux points du cercle unité

Plus en détail

TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE

TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE TD TRIGNMETRIE DNS LE TRINGLE RETNGLE 1. Je me souviens 1. Dans le triangle TM rectangle en T : [T] est le côté adjacent à l angle TM? [M] est le côté adjacent à l angle TM? ou [T] est l hypoténuse? 2.

Plus en détail

I) Angle orienté formé par deux vecteurs du plan

I) Angle orienté formé par deux vecteurs du plan CHAPITRE Angles orientés, trigonométrie Capacités au programme : Utiliser le cercle trigonométrique, notamment pour : déterminer les cosinus et sinus d angles associés ; résoudre dans R les équations d

Plus en détail

TRIGONOMÉTRIE. Ph DEPRESLE. 27 juin Le radian : unité de mesure d angle 2. 2 Le cercle trigonométrique 2

TRIGONOMÉTRIE. Ph DEPRESLE. 27 juin Le radian : unité de mesure d angle 2. 2 Le cercle trigonométrique 2 TRIGNMÉTRIE Ph DEPRESLE 7 juin 015 Table des matières 1 Le radian : unité de mesure d angle Le cercle trigonométrique Cosinus et Sinus.1 Enrlement d une droite autr du cercle trigonométrique.............

Plus en détail

1 ère S Le plan muni d un repère orthonormé

1 ère S Le plan muni d un repère orthonormé ère S Le plan muni d un repère orthonormé I. Expression analytique du produit scalaire ) Remarque préliminaire Dans tout le chapitre, O, i, est un repère orthonormé du plan P c est-à-dire vérifiant les

Plus en détail

Les angles orientés ( En première S )

Les angles orientés ( En première S ) Les angles orientés ( En première S ) Dernière mise à jour : Mercredi 4 Septembre 008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble Lycée Stendhal, Grenoble ( Document de : Vincent Obaton )

Plus en détail

Angles orientés et coordonnées polaires

Angles orientés et coordonnées polaires 1 Angles orientés et coordonnées polaires Table des matières 1 Angles orientés 1.1 Définition................................. 1. Mesure d un angle orienté........................ 1. Propriétés.................................

Plus en détail

Préparation au bilan 3 de mathématiques (3TQ)

Préparation au bilan 3 de mathématiques (3TQ) Préparation au bilan 3 de mathématiques (3TQ) Voici des exemples de questions que tu pourrais retrouver le «jour j». Pour préparer le bilan, tu dois t entrainer sur ces exercices, ceux de ton cours et

Plus en détail

Chapitre 8 : Géométrie

Chapitre 8 : Géométrie Chapitre 8 : Géométrie I. Triangles rectangles.le théorème de Pythagore Le côté le plus long dans un triangle rectangle est l hypoténuse ; c est le côté où il n y a pas d angle droit. Le théorème de Pythagore

Plus en détail

Vecteurs et colinéarité. Angles orientés et trigonométrie

Vecteurs et colinéarité. Angles orientés et trigonométrie DERNIÈRE IMPRESSION LE février 07 à 0:5 Vecteurs et colinéarité. ngles orientés et trigonométrie Table des matières Rappels sur les vecteurs. Définition.................................. Opérations sur

Plus en détail

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE Lycée Privé Catholique Maintenon TERMINALE FASCICULE --------------- DE --------------- MATHEMATIQUES DEVOIRS MAISON Année 2010/2011 M. MAGNE Thème : Les Fonctions Devoir Maison à rendre le : Partie A

Plus en détail

I- Cercle trigonométrique, Radian

I- Cercle trigonométrique, Radian er S TRIGONOMETRIE Objectifs : Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Déterminer les cosinus et les sinus d angles associés. Résoudre dans les équations d inconnue

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Contenu: Radian; Cercle trigonométrique; Mesure d un angle orienté; Mesure principale. Mevel

Plus en détail

2 ) = 0 sin ( π 2 ) = 1. la fonction «tangente». a) Quel est l ensemble de définition de la fonction tangente?

2 ) = 0 sin ( π 2 ) = 1. la fonction «tangente». a) Quel est l ensemble de définition de la fonction tangente? Transition 1 ère S Terminale S 1] Trigonométrie Dans toute la suite on admettra que : cos ( π { 2 ) = 0 sin ( π 2 ) = 1 1) Déterminez la valeur de cos ( π 4 ), sin (π 4 ), cos (π 8 ) et sin (π 8 ). 2)

Plus en détail

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths Géométrie BAC MATHS δmaths M. Ezeddine ABDA DeltaMaths Nombres complexes * +. Si, alors il existe un unique couple tel que. est la forme algébrique du nombre complexe. : la partie réelle de. : la partie

Plus en détail

Trigonométrie. I] Cercle trigonométrique et radians

Trigonométrie. I] Cercle trigonométrique et radians I] Cercle trigonométrique et radians Dans le plan muni d un repère orthonormé, on appelle cercle trigonométrique le cercle de centre O et de rayon 1 sur lequel on définit un sens de parcours appelé sens

Plus en détail

Seconde sujets Année

Seconde sujets Année Seconde sujets Année 2016-2017 Ph DEPRESLE 0 avril 2017 Table des matières 1 Devoir n 1 Septembre 2016 2 heures 2 2 Devoir n 2 Octobre 2016 2 heures Devoir n Novembre 2016 2 heures 5 4 Devoir n 4 Novembre

Plus en détail

I Exercices I I I I I I I I I I-3

I Exercices I I I I I I I I I I-3 Chapitre 1 Trigonométrie TABLE DES MATÈRES page -1 Chapitre 1 Trigonométrie Table des matières Exercices -1 1................................................ -1................................................

Plus en détail

Triangles quelconques: théorème du Sinus et du Cosinus

Triangles quelconques: théorème du Sinus et du Cosinus Triangles quelconques: théorème de Sinus et du Cosinus 1 Triangles quelconques: théorème du Sinus et du Cosinus Introduction Tous les triangles quelconques peuvent être partagés en deux triangles rectangles.

Plus en détail

Produit scalaire dans l espace Types Bac

Produit scalaire dans l espace Types Bac Lycée Paul Doumer 2013/2014 TS 1 Exercices Produit scalaire dans l espace Types Bac Exercice 1 Pondichery avril 2012 Dans le repère orthonormé les plans P et P d équations : de l espace, on considère :

Plus en détail

Exercices supplémentaires Géométrie plane

Exercices supplémentaires Géométrie plane Exercices supplémentaires Géométrie plane Partie A : Coordonnées de vecteurs, colinéarité Exercice 1 Dans un repère, on considère 6; 1, ; 1, 15; 4 et ; 2. 1) Les points, et sont-ils alignés? Justifier.

Plus en détail

L espace est rapporté à un repère et l on considère les droites D1 et D2 qui admettent pour représentations paramétriques respectives

L espace est rapporté à un repère et l on considère les droites D1 et D2 qui admettent pour représentations paramétriques respectives NOM : TS- AC DS6 lundi 6 février 07 La présentation, la rédaction et la rigueur des résultats entreront pour une part significative dans l évaluation de la copie. Le sujet est composé de 5 eercices indépendants.

Plus en détail

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle Trigonométrie 1 Une nouvelle unité de mesure des angles On considère un cercle de centre O et de rayon r. B θ r A Exercice 1. 1. Quelle est la circonférence de ce cercle? L aire du disque associé? O. Exprimer,

Plus en détail

cosinus - mathématiques. 1 PRÉSENTATION

cosinus - mathématiques. 1 PRÉSENTATION cosinus - mathématiques. 1 PRÉSENTATION cosinus, fonction trigonométrique, complémentaire de la fonction sinus, introduites toutes deux dans la définition de la mesure d un angle en géométrie euclidienne.

Plus en détail

Exercice n o 24 : Relations entre l aire et le volume

Exercice n o 24 : Relations entre l aire et le volume Exercice n o 24 : Relations entre l aire et le volume dans des figures semblables E-2 1. Si l on double les dimensions d un cube, par quel facteur augmente-t-on son aire totale et son volume? 2. Un avion

Plus en détail

8 Fonctions trigonométriques

8 Fonctions trigonométriques 8 Fonctions trigonométriques Rappel Voici le grape de la fonction sinus : 6 3 On rappelle quelques propriétés de la fonction sinus démontrées aux exercices.6 et.9 : ) elle est définie sur l ensemble des

Plus en détail

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE.

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE. Seconde chap Géométrie plane /6 GEOMETRIE PLNE. I. Repère et coordonnées. oordonnées. Si O, I et J sont trois points non alignés du plan, alors (O I J) est un repère du plan d origine O. Si (OI) et (OJ)

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques I) Rappels 1) Repérage sur le cercle trigonométrique Sur un cercle trigonométrique : - à tout nombre réel t on associe un point M unique ; - si un point M est associé à un nombre

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle BCE rectangle et isocèle en C. Le point

Plus en détail

Chapitre 1 : Équations de la droite dans le plan

Chapitre 1 : Équations de la droite dans le plan EQUATIONS DE LA DROITE DANS LE PLAN 1 Chapitre 1 : Équations de la droite dans le plan 1.1 Introduction Exercice d introduction : On considère l équation vectorielle: x = 3 3 + k. y 2 2 Représenter, dans

Plus en détail

PROGRAMME DE TRAVAIL INTERNE

PROGRAMME DE TRAVAIL INTERNE Version 0.1 1/6 Semestre 1 31+342 412.103.01 ALGEBRE Ensembles et nombres C1-3 2 Puissances et racines C1-3 8 Monômes et polynômes C1-3 4 Fractions rationnelles C1-3 5 Numération et codage C1-3 10 Equations

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Trigonométrie dans le triangle rectangle.

Trigonométrie dans le triangle rectangle. Trigonométrie dans le triangle rectangle. 1. Rappel 4 ème : le cosinus d un angle dans un triangle rectangle. a Soit C un triangle rectangle en, d angle de sommet noté α. Les droites (DH, (EI, (FJ et (C

Plus en détail

Trigonométrie. I. Le cercle trigonométrique

Trigonométrie. I. Le cercle trigonométrique I. Le cercle trigonométrique Définition. Dans le plan rapporté à un repère orthonormal ( ), le cercle trigonométrique est le cercle de centre O et de raon sur lequel on choisit une orientation : le sens

Plus en détail

Trigonométrie. Mathématique. Sylvie Jancart. septembre 2015

Trigonométrie. Mathématique. Sylvie Jancart. septembre 2015 Mathématique Sylvie Jancart sylvie.jancart@ulg.ac.be septembre 2015 Equations trigonométriques élémentaires Exemple 1 : résoudre dans IR l équation sin x = 1 : 2 L examen du cercle trigonométrique montre

Plus en détail

Chapitre 9 Produit scalaire. Table des matières. Chapitre 9 Produit scalaire TABLE DES MATIÈRES page -1

Chapitre 9 Produit scalaire. Table des matières. Chapitre 9 Produit scalaire TABLE DES MATIÈRES page -1 hapitre 9 Produit scalaire TLE DES MTIÈRES page -1 hapitre 9 Produit scalaire Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

ACADEMIE DE MARTINIQUE Certificat d Aptitude Professionnelle : Opérateur Projectionniste de l Audiovisuel secteur 3

ACADEMIE DE MARTINIQUE Certificat d Aptitude Professionnelle : Opérateur Projectionniste de l Audiovisuel secteur 3 ACADEMIE DE MARTINIQUE Certificat d Aptitude Professionnelle : Opérateur Projectionniste de l Audiovisuel secteur 3 C.C.F de Mathématiques Durée : 20 minutes Date : 31 / 01 / 04 Thèmes : calcul numérique,

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation )

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation ) PRODUIT SCLIRE I Produit scalaire : définition Définition première expression du produit scalaire ( voir animation ) Soient et v deux vecteurs du plan. On considère trois points O, et tels que : O = u

Plus en détail

Chapitre 1. Géométrie

Chapitre 1. Géométrie Chapitre 1 Géométrie 1.1. On donne les points a = (1, ), b = (4, 4) et c = (4, 3) du plan. Déterminer a. les composantes des vecteurs ab et ba ; b. les coordonnées du milieu du segment ab ; c. les coordonnées

Plus en détail

Révisions de l'examen de Juin 2016

Révisions de l'examen de Juin 2016 Révisions de l'examen de Juin 016 Les inéquations Résous les inéquations suivantes, représente la solution sur la droite graduée et donne la solution sous forme d'intervalle. 1. x 4. x+ 5( 6

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 010 Enoncés On demandait de résoudre trois questions

Plus en détail

Vecteurs de l espace

Vecteurs de l espace Vecteurs de l espace Définitions règles de calcul On étend à l espace la notion de vecteur définie dans le plan, ainsi que les opérations associées : somme de vecteurs multiplication par un réel Définition-

Plus en détail

CERCLES ET ANGLES - Exercices

CERCLES ET ANGLES - Exercices D LMRL CERCLES ET ANGLES - Exercices Exercice 1 : Une route en ligne droite fait un angle de, 75 avec l horizontale. Quel chemin faut-il parcourir pour s élever de 100 m? Réponse : 158,98 m) Exercice :

Plus en détail

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b).

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b). Angles et Trigonométrie I º] Rappels : repérage d'un point sur le cercle trigonométrique Le sens direct est aussi appelé sens trigonométrique ou sens positif Un cercle trigonométrique est un cercle de

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

Partie A - bilan numérique

Partie A - bilan numérique Partie A - bilan numérique Exercice 1. Effectuer les calculs suivants. A = 1 3 1 3 4 7 ; B = 2 3 + 3 2 ; C = (5 3 1 5 ) (1 6 + 3 2 ) ; D = 1 + 1 3 3 4 1 ; E = 10 3 (10 2 1 10 ) ; 2 F = 114 3 2 5 6 5 7

Plus en détail

Triangles rectangles et trigonométrie

Triangles rectangles et trigonométrie Chapitre 6 Triangles rectangles et trigonométrie I] Rappels a) Définition Un triangle qui a un angle droit est un triangle rectangle. Le côté opposé à l angle droit est l hypoténuse, c est le plus grand

Plus en détail

Exercice n 1 : Mesure en degrés et en radians

Exercice n 1 : Mesure en degrés et en radians Exercice n : Mesure en degrés et en radians. Effectue la conversion en radians des valeurs d angle suivantes, mesurées en degrés, en exprimant ta réponse en termes de. a. 5 o b. 0 o c. 0 o d. 0 o. Effectue

Plus en détail

Chapitre 7 Angles orientés

Chapitre 7 Angles orientés hapitre 7 ngles orientés. ngles orientés. ercle trigonométrique Définition. Le plan est rapporté à un repère orthonormé ; i, Le cercle de et sur lequel on a choisi un sens sens inverse des aiguilles d

Plus en détail

DOCUMENT DE RÉVISION MAT-4103

DOCUMENT DE RÉVISION MAT-4103 CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4103 ÉLABORÉ PAR RICHARD POULIN, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 2005 DOCUMENT

Plus en détail

Chap 13 Application du produit scalaire.

Chap 13 Application du produit scalaire. Chap 13 Application du produit scalaire. Table des matières I. Projeté orthogonal d un vecteur sur un axe... 1 II. Equations cartésiennes dans un repère orthonormé... 1 1. Equation cartésienne d une droite...

Plus en détail

Chapitre 7 : Trigonométrie

Chapitre 7 : Trigonométrie Chapitre : Trigonométrie I. Longueur d arc de cercle Par cœur : Le périmètre d un cercle de rayon R : R L aire d un disque de rayon R : R Savoir-faire : calculer la longueur d un arc de cercle Le cercle

Plus en détail

EXERCICES : TRIGONOMÉTRIE

EXERCICES : TRIGONOMÉTRIE Chapitre wicky-math.fr.nf Trigonométrie EXERCICES : TRIGONOMÉTRIE Exercice 1. Sur le cercle trigonométrique C de centre O ci-dessous, les points A et B sont tels que : ÎOA=5 et ÎOB= 10 Donner une mesure

Plus en détail

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES Configurations du plan Le théorème de Pythagore s applique à un triangle rectangle ; le théorème de Thalès, à une figure qui comprend des droites parallèles

Plus en détail

ANGLES ORIENTÉS - TRIGONOMETRIE

ANGLES ORIENTÉS - TRIGONOMETRIE hapitre 04 Angles orientés - Trigonométrie ANGLES RIENTÉS - TRIGNETRIE I- esure d un angle en radians Soit, A, B trois points du plan distincts deux à deux. n considère le cercle de centre et de rayon

Plus en détail

Exercices Trigonométrie

Exercices Trigonométrie I Le cercle trigonométrique Savoir-faire 1 : Associer nombres réels et points du cercle trigonométrique Exercice 1 Tracer le cercle trigonométrique, puis placer les points A, B, C et D, images par enroulement

Plus en détail

Troisième - Objectifs de l année en mathématique

Troisième - Objectifs de l année en mathématique Troisième - Objectifs de l année en mathématique Chapitre 0 : Les nombres réels *Document téléchargeable sur http://www.cspu.be/~termollem dans «Documents» 1. Nommer les ensembles de nombres et donner

Plus en détail

Mathématique Pré-CAlcul 30S Revue pour l examen. Revue : Fonctions et Équations Quadratiques

Mathématique Pré-CAlcul 30S Revue pour l examen. Revue : Fonctions et Équations Quadratiques Revue : Fonctions et Équations Quadratiques Nom : Date : 1. Réponds aux questions par-rapport au graphique suivant: (5 points) a) Est-ce que ce graphique a un minimum ou un maximum? b) Les coordonnées

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Chapitre 6 Trigonométrie. Table des matières. Chapitre 6 Trigonométrie TABLE DES MATIÈRES page -1

Chapitre 6 Trigonométrie. Table des matières. Chapitre 6 Trigonométrie TABLE DES MATIÈRES page -1 Chapitre Trigonométrie TABLE DES MATÈRES page -1 Chapitre Trigonométrie Table des matières Exercices -1 1................................................ -1................................................

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

Exercices de révision de trigonométrie : correctif

Exercices de révision de trigonométrie : correctif Exercices de révision de trigonométrie : correctif Exercice. sin 7 +. cos -7 -. cos 5-4. tg 54 + 5. sin 5-6. cos (- ) - 7. cos(-8 ) - 8. sin(- ) - 9. sin π =. sin π =. cos π +. tg (- π 4 ) -. cotg 49 +

Plus en détail

I. Vecteur normal à une droite

I. Vecteur normal à une droite pplications du produit scalaire I. Vecteur normal à une droite 1. Définition : n D u Dire que n ( n ) est un vecteur normal à D de vecteur directeur u signifie que n est orthogonal à u.. Caractérisation

Plus en détail

TRIGONOMETRIE. I. Radian et cercle trigonométrique

TRIGONOMETRIE. I. Radian et cercle trigonométrique TRIGONOMETRIE I Radian et cercle trigonométrique ) Le radian Soit un cercle C de centre O et de rayon On appelle radian, noté rad, la mesure de l'angle au centre qui intercepte un arc de longueur du cercle

Plus en détail

TRIGONOMÉTRIE ET ANGLES ORIENTÉS

TRIGONOMÉTRIE ET ANGLES ORIENTÉS TRIGONOMÉTRIE ET ANGLES ORIENTÉS Première S - Chapitre 5 Table des matières I Le cercle trigonométrique et le radian 2 I 1 Le cercle trigonométrique..................................... 2 I 2 Le radian..............................................

Plus en détail

Équations de droites

Équations de droites Équations de droites I/ lignement, colinéarité II/ Coefficient directeur III/ Équations de droites 1/ Définition / Comment dire si un point appartient à une droite dont on connaît l équation 3/ Propriétés

Plus en détail

ANGLES ORIENTES+TRIGONOMETRIE

ANGLES ORIENTES+TRIGONOMETRIE ANGLES ORIENTES+TRIGONOMETRIE LISTE DES COMPETENCES CODE DENOMINATION T0 T0 T0 T0 T05 T0 T07 T08 T09 T0 T T T T T5 T T7 T8 T9 T0 T T T 99 Douala Mathematical Society : www.doualamaths.net : Workbook :

Plus en détail

PROGRESSION 3 EME 0) LE THEOREME DE PYTHAGORE COMPETENCES DU SOCLE : FIGURES PLANES

PROGRESSION 3 EME 0) LE THEOREME DE PYTHAGORE COMPETENCES DU SOCLE : FIGURES PLANES 1 PROGRESSION 3 EME 0) LE THEOREME DE PYTHAGORE FIGURES PLANES Triangle rectangle : Théorème de PYTHAGORE. Caractériser le triangle rectangle par l égalité de PYTHAGORE. Calculer la longueur d un côté

Plus en détail

Kooli Mohamed Hechmi

Kooli Mohamed Hechmi Equations à coefficients complexes 4 eme Sc Expérimentales Dans tous les exercices le plan complexe P est rapporté à un repère orthonormé direct,,. Exercice 1 Résoudre dans l ensemble C des nombres complexes

Plus en détail

Cahier de texte de Mathématiques (M.Bueno) SEMAINE 01 : du 6/9/10 au 12/9/10

Cahier de texte de Mathématiques (M.Bueno) SEMAINE 01 : du 6/9/10 au 12/9/10 SEMAINE 01 : du 6/9/10 au 12/9/10 CHAPITRE 1 : REPERAGE DANS LE PLAN I ] Repère 1 ) Définition d un repère Application dans un rectangle 2 ) Coordonnées d un point du plan Reprise du rectangle Cours :

Plus en détail

1 ère S Exercices de trigonométrie

1 ère S Exercices de trigonométrie ère S Exercices de trigonométrie Soit x un réel quelconque. Calculer cos x sin x cos x sin x 4 4 4 4 ; B cos x sin x cos x sin x ; C sin x cos x cos x. Dans chaque cas, donner le signe de cos x et sin

Plus en détail

1 Équations cartésiennes, équations polaires d un ensemble de points

1 Équations cartésiennes, équations polaires d un ensemble de points Plans, cercles, droites et sphères Ce chapitre aborde les objets fondamentaux utilisés en géométrie : droites et cercles dans le plan, plans, droites et sphères dans l espace. Les objectifs du chapitre

Plus en détail

COURS N 9 : GÉOMÉTRIE I- RAPPELS SUR LES VECTEURS. 1) Coordonnées. 2) Equation d une droite. 3) Norme d un vecteur.

COURS N 9 : GÉOMÉTRIE I- RAPPELS SUR LES VECTEURS. 1) Coordonnées. 2) Equation d une droite. 3) Norme d un vecteur. I- RAPPELS SUR LES VECTEURS ) Coordonnées ) Equation d une droite 3) Norme d un vecteur 4) Vecteurs colinéaires 5) Vecteurs orthogonaux 6) Angles de deux vecteurs Application : Activité page 94 II- VECTEURS

Plus en détail

GEOMETRIE ELEMENTAIRE DANS LE PLAN

GEOMETRIE ELEMENTAIRE DANS LE PLAN GEOETRE ELEENTRE DNS LE PLN. SES DE GEOETRE PLNE 1. Théorème de Thalès 1 1 1 1 1 3 D 3 3 D D D vec 1, et 3 parallèles : 1 1 1 1 vec 1, parallèles : 1 1 1 3 1 3 Les triangles 1 1 et sont homothétiques,

Plus en détail

CORRECTION DM8. = - sin x( 1 + cos x) car la fonction sinus est impaire et la fonction cosinus est paire. = - f(x)

CORRECTION DM8. = - sin x( 1 + cos x) car la fonction sinus est impaire et la fonction cosinus est paire. = - f(x) ORRETION DM8 EXERIE : Etude d une fonction trigonométrique f est la fonction définie sur R par : f(x) sin x ( + cosx) ) a) i) Pour tout x R, (x + ) R ii) Pour tout x R, f(x + ) sin(x + )( +cos(x + ) sin

Plus en détail

PRODUIT SCALAIRE. Première S - Chapitre 7

PRODUIT SCALAIRE. Première S - Chapitre 7 PRODUIT SCALAIRE Première S - Chapitre 7 Table des matières I Expressions du produit scalaire I 1 Exercice de motivation....................................... I Norme d un vecteur........................................

Plus en détail

Degré Radian. 2π 9. ACTIVITÉ 2 (Enroulement de la droite des réels)

Degré Radian. 2π 9. ACTIVITÉ 2 (Enroulement de la droite des réels) ACTIVITÉ 1 (Le radian L objectif de cette première activité est de définir une nouvelle unité de mesure d angle. 1. Soit C un cercle de centre O et de rayon cm. (a Calculer le périmètre de ce cercle. (b

Plus en détail

Trigonométrie. 360 =...rad 180 =...rad 90 =...rad 45 =...rad. Placer le point M correspondant aux angles précédents dans chaque cercle.

Trigonométrie. 360 =...rad 180 =...rad 90 =...rad 45 =...rad. Placer le point M correspondant aux angles précédents dans chaque cercle. Trigonométrie I) Le cercle trigonométrique ) Le radian n considère une piste d athlétisme circulaire de rayon km et un personnage parcourant à partir du repère I cette piste. La longueur ou le périmètre

Plus en détail

Retrouve les abscisses précisées dans les cas suivants après avoir déterminé le repère et orienté la droite.

Retrouve les abscisses précisées dans les cas suivants après avoir déterminé le repère et orienté la droite. Préparation Evaluation certificative Mathématique Quelques révisions - Juin Nom : Prénom : Classe : Date : Ce questionnaire comprend 11 pages Compétences évaluées C1 : EXPLICITER LES SAVOIRS ET LES PROCEDURES

Plus en détail