6 Tests d hypothèse (Klei 6.3, Lawless 10.2 et 10.3, Klugma 13.4) 6.1 Modèle multiplicatif de mortalité excédetaire (proportioal hazard) O veut comparer la mortalité d u groupe sous étude avec celle d u groupe de référece (tirée d ue publicatio basée sur l étude d u grad groupe). Soit θj (t) : le taux de pae de l idividu j au temps t selo le groupe de référece. h j (t) : la même valeur observée pour le groupe étudié. O suppose que h j (t) β(t)θ j (t) j, t. Doc β(t) est ue foctio du temps mais idépedate de l idividu (j). Si la mortalité du groupe étudié est la même que celle du groupe de référece, alors o devrait avoir β(t) 1 t. Doc, o va tester cette hypothèse ulle. Si o arrive à la rejeter, c est doc que la mortalité du groupe sous étude est pas la même que celle du groupe de référece. B(t) Q(t) t 0 β(u) du θ j (t)y j (t) i1 ˆB(t) i:t i t V ar ˆB(t)] ˆB(t) i:t i t L N d i Q(t i ) d i Q 2 (t i ) ( B(t), V ˆB(t)] ) mortalité excédetaire cumulative excédet cumulé covergece e loi de l estimateur où Y j (t) { 1 si l idividu est vivat au temps t, 0 sio 1
Pour le test d hypothèse, o défiit l I.C. Log suivat: ] B(t) ˆB(t)/φ, ˆB(t)φ } φ exp {Z 1 α/2 V ar ˆB(t)]/ ˆB(t) Et l hypothèse ulle est H0: B(t) t. Doc, si t / I.C., o rejette l hypothèse ulle et o cosidère qu il y a mortalité excédetaire. Exercice: I2004-Q8 6.2 Modèle additif de mortalité excédetaire Ici, o suppose que h j (u) α(u) + θ j (u). Avec des mortalités équivaletes, o devrait avoir, α(u) 0 u. Doc, pour l itervalle fii 0, t] qui ous itéresse, o voudra tester l hypothèse ulle H 0 selo laquelle la mortalité excédetaire cumulative est égale à zéro. Pour ce faire o calculera: A(t) t 0 α(u) du 1. Le taux de pae cumulatif espéré auquel le groupe a été exposé, e se basat sur la mortalité de référece: t j1 Θ(t) θ j(u)y j (u) du. Y (u) 0 Pour gager u peu d ituitio sur la valeur de Θ(t), cosidéros le cas θ j (t) θ(t) j c.-à-d. où tous les idividus sot sujets à la même mortalité de référece, alors o obtiet simplemet que Θ(t) t θ(u) du 0 est le taux de pae cumulatif de la mortalité de référece. Lorsque les idividus ot des mortalités distictes (par exemple, si la populatio est composée d hommes et femmes avec des tables distictes) alors la valeur de Θ(t) deviet ue moyee o triviale des mortalités des idividus présets das l étude. 2
Etre deux temps d évéemet, c.-à-d. t i 1 u < t i, la valeur de Y (u) est costate et égale à Y (t i ) Y i. O peut alors D ti j1 Θ(t) θ j(u)y ij du i1 D i1 t i 1 Y i ti Y ij /Y i j1 D (t i t i 1 ) i1 où θ ij (t i t i 1 ) 1 t i t i 1 θ j (u) du t i 1 θ j (u) du θ ij Y ij /Y i 2. La mortalité excédetaire est esuite estimée par la différece Â(t) etre l estimateur du taux de pae de Nelso-Aale H(t) et le taux de pae cumulatif espéré Θ(t): Â(t) d i Θ(t) Y i i:t i t 3. Le taux de pae Θ(t) est ue costate (cette valeur e déped pas des d i qui sot les variables aléatoires ici). Doc la variace de Â(t) est la même que celle de l estimateur de Nelso-Aale: V arâ(t)] d i Yi 2 j1 i:t i t 4. E supposat que otre estimateur coverge e loi (ou e distributio) vers ue ormale (gaussiee) ) L Â(t) N (A(t), V Â(t)], ous avos tous les élémets écessaire pour coduire le test qui ous itéresse. 5. O défiit l I.C. Liéaire suivat: ] A(t) Â(t) ± Z 1 α/2 V arâ(t)] Et l hypothèse ulle est H 0 : A(t) 0. Doc, si 0 / I.C., o rejette l hypothèse ulle et o cosidère qu il y a mortalité excédetaire. 3
6.3 Kolmogorov-Smirov Soit Ŝ(t), l estimateur de Kapla-Meier pour la foctio de survie et S(t), u modèle de référece (possiblemet paramétrique mais pas écessairemet). Pour u échatillo de taille, o calcule la statistique: D sup Ŝ(t) S(t) (1) t O choisit u iveau de sigificatio α. O cherche, das la table, la valeur seuil e foctio de et α. P.ex.: α D 10% 1, 22/ 5% 1, 36/ 1% 1, 63/ Si la statistique calculée D est supérieure à la valeur associée das la table, alors o rejette l hypothèse S(t) fourie pour la mortalité du groupe sous étude. Note: la statistique de KS est idépedate de la distributio sousjacete: quelle que soit la distributio de t, S(t) U(0, 1). Preuve: soit Y S(T ), S 0, 1], o a F Y (y) P (Y < y) P (S(T ) < y) P (T > S 1 (y)) 1 F T (S 1 (y)) 1 F T (t(y)). Doc, e dérivat par rapport à y pour obteir les desités, f Y (y) f T (t(y)) dt(y). Maiteat, puisque S(S 1 (y)) y, alors ds(s 1 (y)) f T (S 1 (y)) ds 1 (y) f T (t(y)) dt(y) 1. Doc dt(y) 1 f T (t(y)). Fialemet, f Y (y) f T (t(y)) 1 f T (t(y)) 1. Note: la foctio de survie estimée état costate par morceaux, il suffit de calculer la différece absolue Ŝ(t) S(t) aux bores des temps des évéemets, c.-à-d. pour les valeurs t {t i, t+ i }D i1. Preuve: cosidéros u tel que t i < u < t i+1. Si Ŝ(u) S(u), o a Ŝ(u) Ŝ(t i+1 ) et S(u) S(t i+1 ), alors Ŝ(u) S(u) Ŝ(t i+1 ) S(u) Ŝ(t i+1 ) 4
S(t i+1 ). De même, si Ŝ(u) < S(u), o a Ŝ(u) Ŝ(t+ i ) et S(u) S(t+ i ), alors Ŝ(u) S(u) Ŝ(t+ i ) S(u) Ŝ(t+ i ) S(t+ i ) (état doé otre défiitio de Ŝ avec cotiuité à droite, l utilisatio du symbole + est superflue mais le développemet est plus gééral et permet d iclure le cas de la défiitio avec cotiuité à gauche, tel que Lawless le propose). Exercice: I2004-Q7 6.4 Cramer-Vo Mises O procéde essetiellemet de la même faço que précedemmet. Au lieu de regarder le maximum des écarts absolus, o calcule l espérace (selo la distributio proposée) de l écart quadratique. Soit Ŝ(t), l estimateur de Kapla-Meier pour la foctio de survie et S(t), u modèle de référece (possiblemet paramétrique mais pas écessairemet). Pour u échatillo de taille, o calcule la statistique: W 2 Ŝ(t) S(t) ] 2 df (t) (2) Avec l estimateur de Kapla-Meier et das le cas de doées complètes, 5
o a: W 2 ˆF (t) F (t) ] 2 df (t) 1 ti+1 t i 1 ti+1 t i 1 /3 1 /3 1 F (t) ˆF (t)] 2 df (t) F (t) i/] 2 df (t) F (t i+1 ) i ] 3 + F (t i ) i ] 3 F (t i+1 ) ] i 3 F (t i+1 ) i + 1 (i + 1) 3 i 3 /3 ] 3 3F (t 3 i+1 ) (i + 1)2 i 2 2 ] + 3F 2 (t i+1 )/ 1 3i 2 + 3i + 1 F (t 3 2 i+1 ) 2i + 1 ] + F 2 (t i+1 ) 1 i 2 + i + 1/3 2F (t 2 i+1 ) i + 0, 5 ] + F 2 (t i+1 ) { 1 i 2 + i + 1/3 + F (t 2 i+1 ) i + 0, 5 ] 2 ] } 2 i + 0, 5 1 1 12 + F (t 2 i+1 ) i + 0, 5 ] 2 1 1 12 + 1 12 + i1 F (t i+1 ) i + 0, 5 F (t i ) i 0, 5 O choisit u iveau de sigificatio α. O cherche, das la table, la valeur seuil e foctio de et α. P.ex.: ] 2 ] 2 6
α 10% 0, 347 5% 0, 461 1% 0, 743 Si la statistique calculée W 2 est supérieure à la valeur associée das la table, alors o rejette l hypothèse S(t) fourie pour la mortalité du groupe sous étude. Exercice: F2004-Q1 6.5 Gii Le test de Gii permet de valider l hypothèse de la forme paramétrique expoetielle. Cotrairemet aux tests précédets, où l o voulait tester la validité d u modèle pleiemet spécifié (icluat les valeurs des paramètres), ici le test est idépedat de la valeur du paramètre de la distributio. Le test est puissat cotre les distributios avec taux de pae mootoe (croissat ou décroissat) c.-à-d. qu ue distributio de ce type sera aisémet détectée et rejetée. Le test de Gii aura plus de difficulté à distiguer les autres types de distributios et les rejeter. Le test est valide pour les études avec cesures de type 2 (populaires das les applicatios de mesure de fiabilité idustrielle), c.-à-d. que l étude se termie après qu u ombre r d évéemets aiet eu lieu. Soit t 1 < t 2 <... < t r, les temps des r évéemets observés. Les valeurs itermédiaires suivates sot calculées: W i ( i + 1)(t i t i 1 ) La statistique de Gii est obteue comme le ratio suivat: r i1 G r (i 1)W i (r 1) r i1 W i puisque tous les W i sot positifs et i 1 < r 1, alors o a 0 G r 1. Si le taux de de pae de la distributio sous-jacete est mootoe 7
croissat, alors o a G r 0. À l iverse, pour ue distributio sousjacete avec u taux de pae décroissat, o obtiet G r 1. Efi, pour ue loi expoetielle, G r 1/2 qui sera la valeur utilisée pour l hypothèse ulle. Sous H 0 : la mortalité suit ue loi expoetielle, o a que les W i sot i.i.d. (idépedats et idetiquemet distribués). Aussi W i /θ exp(1) et la distributio de la statistique est doc idépedate du paramètre de la loi expoetielle sous-jacete. E(G r ) 1/2 V ar(g r ) 1 12(r 1) et pour r suffisammet grad, o fait l approximatio que la distributio de la statisque est ormale: G r N. Exercices: Exemple 13.3.1 de Lawless, F2004-Q4 8