y i = αx i + β + u i,
|
|
|
- Sarah Rancourt
- il y a 10 ans
- Total affichages :
Transcription
1 I.1 ) TD1 L3 Econométrie Rappel : L estimateur ˆα (resp. ˆβ)estaussinotéa (resp. b) consommation Y (x i, ŷ i ) e i )a). Sous forme exacte y i = αx i + β. b) Sous forme aléatoire revenu X y i = αx i + β + u i, où u i est une famille de variables aléatoire vérifiant E(u i )=0et (u i ) i n deux à deux indépendantes, et la variance V (u i ) est une constante qui ne dépend pas de i. c) On cherche à minimiser le résidu mais il n est pas nul i.e. les points ne sont apriorijamaissurladroite. 3 ) On calcule les moyennes empiriques x = 1 n i=1 x i = 145 et ȳ = 1 n n i=1 y i =17. Par définition, l estimateur de α est i=1 ˆα = (y i ȳ)(x i x) i=1 (x = i x) On retrouve l ordonnée à l origine ˆβ en écrivant que la moyenne ( x, ȳ) est sur la droite de régression : ˆβ =ȳ α x =
2 Les résidus entre les observations y i et la prédiction ŷ i s écrivent e i =ŷ i y i. SCR = n e i = i=1 4 ) (ˆα, ˆβ) sont des estimateurs de α, β. Lesvaleurse i sont des instances des variables aléatoires u i.d unecertainemanièree i est un estimateur de u i. 5 ) α est le taux marginal de substitution. Pour obtenir l élasticité il faut se ramener à des pourcentages, dx/x dy/y = αx i y i = ) On a calculé la somme des carrés des résidus (SCR) et on obtient donc ˆσ u = i=1 e i n = = Puis σ ˆα = ˆσ u i=1 (x i x) =0.004 et σ ˆβ = x ˆσ a + ˆσ u n = ) On teste si α et β sont significativement non nuls. On sait que T = ˆα α ˆσ α suit une loi de Student St(n ). Pour effectuer le test { H 0 : α =0, H 1 : α 0 on construit t obs = ˆα 0 ˆσ α = Pour p = 0.05 on lit dans la table t p =.8. Larégiond acceptation (R.ACC) est [.8,.8]. Finalementt obs R.ACC, donc on rejette H 0 et on conclut que H 1 est significativement vraie. Le test pour β est le même, t obs = ˆβ σ ˆβ =0.97 R.ACC donc la valeur de ˆβ n est pas significative. Remarque : la relation linéaire entre x et y est significative si α est significativement non nul. 8 ) Avec la même valeur de t p que pour la question précédente on construit IC(α) =[ˆα ± t p σˆα] = [0.75, 0.97] IC(β) =[ˆβ ± t p σ ˆβ] =[ 13.83, 18.09].
3 9 ) Par définition R = R = R = cov(x,y ) V (X)V (Y ).Laformuledecalculusuelest i=1 x iy i n xȳ) i=1 x i n x ) i=1 y i nȳ ) = Remarque : pour établir cette égalité on utilise i=1 (x i x) = i=1 x i ) n x, formule à comparer avec l égalité V (X) =E(X ) E(X).Onaégalement i=1 (x i x)(y i ȳ) = i=1 x iy i ) n xȳ. 10 ) II.A. ŷ =0.86x +.13 R =0.97 (1) : surface Y (cm ) e i prix X (euros) On calcule pour les estimateurs des coefficients des deux régressions ˆα = 1.1, ˆβ =51.08 et pour la relation inverse, ˆα = et β = II.B. 1 ) La formule de calcul donne R = R = Onpeutaussivérifier i=1 x iy i n xȳ) i=1 x i n x )( = n i=1 y i nȳ ) R =ˆαˆα =
4 ) Il faut calculer σu,l estimateurdelavariancedeu.vuqu onadéjàcalculé R on peut utiliser l égalité ( n n ) ˆσ u = i=1 e i n = 1 R yi n nȳ = On en déduit les variance des estimateurs de α et β, σ ˆα = et σˆβ = On construit les tests à partir de la variable T T = ˆα α St(n ) σˆα { H 0 : α =0 H 1 : α 0, t obs = ˆαˆσ α = On lit dans la table t p =.365,larégiond acceptationdeh 0 est i=1 [ t p,tp ]=[.365,.365] t obs, donc on peut rejeter H 0, α est significativement non nul. 3 ) On construit à partir de R la variable F F = R /1 F(1,n ). (1 R )/(n ) Ici F obs =33.48.Onlitpourn =7et p =0.05,lavaleurcritiquet p =6.61 donc F obs t p la régression est bonne dans son ensemble. Remarque : le test de Student pour α et β est bilatéral, le test de Fisher pour R est unilatéral. 4 ) On prédit à partir des estimations de α et β = euros 5 ) De même à partir de ˆα et ˆβ, = cm. 4
5 III. 1 ) Nombre de salariés Y (x i, ŷ i ) ei Chiffre d affaires X ) On trouve a =ˆα =0.31 et b = ˆβ = ) ˆσ u = n i=1 e i =389.47, n i=1 x iy i n xȳ) R = i=1 x i n x )( =0.937, n i=1 y i nȳ ) σˆα = ˆσ u n = i=1 (x i x) 4 ) Ce test vérifie que α est significativement non nul. On teste ainsi l existence d une relation linéaire entre x et y. On construit t obs = ˆαˆσ α = Lavaleurcritiquepourn =11observations est t p =.6,donct obs [ t p ] et α est significativement non nul.,tp 5 ) = Onprédit65031 salariés. 6 ) On utilise les intervalles de confiance de α et β à p =0.05. Onreprend dans la table de Student le même t p que pour le 4 ) et on obtient les intervalles En réutilisant ces intervalles il vient IC(α) =[ˆα ± t p σˆα] = [0.5, 0.37] IC(β) =[ˆβ ± t p σ ˆβ] = [40.8, 156.5]. IC(α) IC(β) = [485.79, 818.7]. Donc la valeur fournie ne contredit pas le modèle, elle est dans l intervalle de confiance. 5
6 IV. 1 ) On retrouve dans le tableau ˆα = , ˆβ = 36.4, SCT = 1150, SCE =97.3 et SCR =177.7.OnpeutvérifierSCT= SCE+SCR. Par définition { H 0 : α =0 R = SCE SCT =1 SCR SCT = ), t obs = ˆαˆσ H 1 : α 0 α =5.3 La valeur critique pour n =7observations est t p =.571, donct obs [ t p ] et α est significativement non nul.,tp On peut commenter que t obs n est pas très loin de la région d acceptation. 3 ) On construit à partir de R la variable F F = R /1 F(1,n ). (1 R )/(n ) On obtient F obs = Onlitpourn = 7 et p = 0.05, lavaleurcritique t p =6.61 donc F obs t p la régression est bonne dans son ensemble. En fait il y aplusieursvaleursdei pour une même valeur de V dans le tableau, on pouvait s attendre à ce que la régression soit mauvaise Ventes V (x i, ŷ i ) e i Investissement I 6
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
Régression linéaire. Nicolas Turenne INRA [email protected]
Régression linéaire Nicolas Turenne INRA [email protected] 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Cours de Tests paramétriques
Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels
Etab=MK3, Timbre=G430, TimbreDansAdresse=Vrai, Version=W2000/Charte7, VersionTravail=W2000/Charte7 Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Chapitre 4 : Régression linéaire
Exercice 1 Méthodes statistiques appliquées aux sciences sociales (STAT-D-203) Titulaire : Catherine Vermandele Chapitre 4 : Régression linéaire Le diplôme de Master of Business Administration ou MBA est
Le Modèle Linéaire par l exemple :
Publications du Laboratoire de Statistique et Probabilités Le Modèle Linéaire par l exemple : Régression, Analyse de la Variance,... Jean-Marc Azaïs et Jean-Marc Bardet Laboratoire de Statistique et Probabilités
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
Résumé du Cours de Statistique Descriptive. Yves Tillé
Résumé du Cours de Statistique Descriptive Yves Tillé 15 décembre 2010 2 Objectif et moyens Objectifs du cours Apprendre les principales techniques de statistique descriptive univariée et bivariée. Être
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
1 Définition de la non stationnarité
Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
Introduction à la statistique non paramétrique
Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non
Statistiques à deux variables
Statistiques à deux variables Table des matières I Position du problème. Vocabulaire 2 I.1 Nuage de points........................................... 2 I.2 Le problème de l ajustement.....................................
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Les indices à surplus constant
Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012 Introduction et contexte 2/27 1 Introduction
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 [email protected] Plan Données Générales : Définition des statistiques Principe de l
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Enjeux mathématiques et Statistiques du Big Data
Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, [email protected] Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Etude des propriétés empiriques du lasso par simulations
Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est
Le risque Idiosyncrasique
Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes
Econométrie La régression linéaire simple et multiple
Ricco Rakotomalala Econométrie La régression linéaire simple et multiple Version 1.1 Université Lumière Lyon 2 Page: 1 job: Econometrie_Regression macro: svmono.cls date/time: 26-May-2015/18:13 Page: 2
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
BIOSTATISTIQUES AVANCEES PLAN. Quelques références. Master Biologie Intégrative 1 ère année
Master Biologie Intégrative 1 ère année 1 BIOSTATISTIQUES AVANCEES Yves Desdevises! Observatoire Océanologique de Banyuls-sur-Mer (www.obs-banyuls.fr)! 04 68 88 73 13! [email protected]! http://desdevises.free.fr
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
Statistiques descriptives
Statistiques descriptives L3 Maths-Eco Université de Nantes Frédéric Lavancier F. Lavancier (Univ. Nantes) Statistiques descriptives 1 1 Vocabulaire de base F. Lavancier (Univ. Nantes) Statistiques descriptives
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE
UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIE PAR MATHIEU SISTO NOVEMBRE
Température corporelle d un castor (une petite introduction aux séries temporelles)
Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature
Coup de Projecteur sur les Réseaux de Neurones
Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche
Les cartes de fidélités... 2 Natures de pièces... 5 Impression des chèques cadeaux... 6 Statistiques fidélités... 8 Fiche client...
Sommaire Les cartes de fidélités... 2 Natures de pièces... 5 Impression des chèques cadeaux... 6 Statistiques fidélités... 8 Fiche client... 9 Copyright WaveSoft 1/9 La gestion des cartes de fidélités
FOAD COURS D ECONOMETRIE 1 CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 2012.
FOAD COURS D ECONOMETRIE CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 202. Christine Maurel Maître de conférences en Sciences Economiques Université de Toulouse - Capitole Toulouse School of Economics-ARQADE
FORMULES DE CALCUL. Prix = PV TTC = PV HT x (1 + taux de TVA) TVA = PV HT x taux de TVA PV HT = PV TTC 1 + taux de TVA
FORMULES DE CALCUL Le prix : Prix = PV TTC = PV HT x (1 + taux de TVA) TVA = PV HT x taux de TVA PV HT = PV TTC 1 + taux de TVA Ex : PV TTC = 250 x 1,196 = 299. TVA = 250 x 19,6 % = 49. PV HT = 299 = 250.
PROBABILITÉS CONDITIONNELLES
PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
2 LE MODELE NÉOCLASSIQUE
2 Le modèle de Solow 22 Rôle de l épargne 23 Tests du modèle néoclassique 2 LE MODELE NÉOCLASSIQUE Ce chapitre présente un rappel synthétique du modèle de Solow (956 Ce modèle, avec celui de Ramsey, constitue
Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.
des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le
Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011
Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte [email protected]
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Probabilités (méthodes et objectifs)
Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d
Econométrie et applications
Econométrie et applications Ecole des Ponts ParisTech Département Sciences Economiques Gestion Finance Nicolas Jacquemet ([email protected]) Université Paris 1 & Ecole d Economie de Paris
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Apprentissage non paramétrique en régression
1 Apprentissage non paramétrique en régression Apprentissage non paramétrique en régression Résumé Différentes méthodes d estimation non paramétriques en régression sont présentées. Tout d abord les plus
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected]
Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected] Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/
IV- Equations, inéquations dans R, Systèmes d équations
IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
Comment bien régresser: La statistique peut-elle se passer d artefacts?
Comment bien régresser: La statistique peut-elle se passer d artefacts? Jean-Bernard Chatelain To cite this version: Jean-Bernard Chatelain. Comment bien régresser: La statistique peut-elle se passer d
Équivalence et Non-infériorité
Équivalence et Non-infériorité Éléments d Introduction Lionel RIOU FRANÇA INSERM U669 Mars 2009 Essais cliniques de supériorité Exemple d Introduction Données tirées de Brinkhaus B et al. Arch Intern Med.
Incertitudes expérimentales
Incertitudes expérimentales F.-X. Bally et J.-M. Berroir Février 2013 Table des matières Introduction 4 1 Erreur et incertitude 4 1.1 Erreurs............................................. 4 1.1.1 Définition
NON-LINEARITE ET RESEAUX NEURONAUX
NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
