SUJET DE BREVET METROPOLE JUIN 2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "SUJET DE BREVET METROPOLE JUIN 2014"

Transcription

1 SUJET DE BREVET METROPOLE JUIN 2014 SERIE GENERALE Exercice n 1 : (5 points) Voici un octogone régulier ABCDEFGH. 1) Représenter un agrandissement de cet octogone en l inscrivant dans un cercle de rayon 3 cm. Aucune justification n est attendue pour cette construction. 2) Démontrer que le triangle DAH est rectangle. 3) Calculer la mesure de l angle. Exercice n 2 : (6 points) Léa a besoin de nouveaux cahiers. Pour les acheter au meilleur prix, elle étudie les offres promotionnelles de trois magasins. Dans ces trois magasins, le modèle de cahier dont elle a besoin a le même prix avant promotion. Magasin A Cahier à l unité ou Lot de 3 cahiers pour le prix de 2 Magasin B Pour un cahier acheté, le deuxième à moitié prix Magasin C 30% de réduction sur chaque cahier acheté. 1) Expliquer pourquoi le magasin C est plus intéressant si elle n achète qu un cahier. 2) Quel magasin doit-elle choisir si elle veut acheter : a) deux cahiers? b) trois cahiers? 3) La carte de fidélité du magasin C permet d obtenir 10 % de réduction sur le ticket de caisse, y compris sur les articles ayant déjà bénéficié d une première réduction. Léa possède cette carte de fidélité, elle l utilise pour acheter un cahier. Quel pourcentage de réduction va-t-elle obtenir?

2 Exercice n 3 : (5 points) Voici un programme de calcul : Choisir un nombre Soustraire 6 Soustraire 2 Multiplier les deux nombres obtenus Résultat 1) Montrer que si on choisit 8 comme nombre de départ, le programme donne 12 comme résultat. 2) Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. On rappelle que les réponses doivent être justifiées. Proposition 1 : le programme peut donner un résultat négatif. Proposition 2 : si on choisit comme résultat. comme nombre de départ, le programme donne Proposition 3 : le programme donne 0 comme résultat pour exactement deux nombres. Proposition 4 : La fonction qui, au nombre choisi au départ, associe le résultat du programme est une fonction linéaire. Exercice n 4 : (3 points) Un sac contient 20 jetons qui sont soit jaunes, soit verts, soit rouges, soit bleus. On considère l expérience suivante : tirer au hasard un jeton, noter sa couleur et remettre le jeton dans le sac. Chaque jeton a la même probabilité d être tiré. 1) Le professeur, qui connaît la composition du sac, a simulé un grand nombre de fois l expérience avec un tableur. Il a représenté ci-dessous la fréquence d apparition des différentes couleurs en fonction du nombre de tirages.

3 a) Quelle couleur est la plus présente dans le sac? Aucune justification n est attendue. b) Le professeur a construit la feuille de calcul suivante : Quelle formule a-t-il saisie dans la cellule C2 avant de la recopier vers le bas? 2) On sait que la probabilité de tirer un jeton rouge est de. Combien y a-t-il de jetons rouges dans ce sac?

4 Exercice n 5 : (4 points) Dans ce questionnaire à choix multiples, pour chaque question, des réponses sont proposées, une seule est exacte. Pour chacune des questions, écrire le numéro de la question et recopier la bonne réponse. Aucune justification n est attendue N Questions A B C D 1 Quand on double le rayon d une boule, son volume est multiplié par : 2 Une vitesse égale à 36 km.h -1 correspond à : 10 m.s m.s m.s m.s -1 3 Quand on divise 525 par 5, on obtient : On donne : 1 To (téraoctet) = octets et 1 Go (gigaoctet) = 10 9 octets. On partage un disque dur de 1,5 To en dossiers de 60 Go chacun. Le nombre de dossiers obtenus est égal à : , Exercice n 6 : (6 points) Pour savoir si les feux de croisement de sa voiture sont réglés correctement, Pauline éclaire un mur vertical comme l illustre le dessin suivant :

5 Pauline réalise le schéma ci-dessous (qui n est pas à l échelle) et relève les mesures suivantes : PA = 0,65 m ; AC = QP = 5 m et CK = 0,58 m. P désigne le phare, assimilé à un point. Pour que l éclairage d une voiture soit conforme, les constructeurs déterminent l inclinaison du faisceau. Cette inclinaison correspond au rapport. Elle est correcte si ce rapport est compris entre 0,01 et 0,015. 1) Vérifier que les feux de croisement de Pauline sont réglés avec une inclinaison égale à 0,014. 2) Donner une mesure de l angle correspondant à l inclinaison. On arrondira au dixième de degré. 3) Quelle est la distance AS d éclairage de ses feux? Arrondir le résultat au mètre près. Exercice n 7 : (7 points) Un agriculteur produit des bottes de paille parallélépipédiques. Information n 1 : Dimensions des bottes de paille : 90 cm 45 cm 35 cm Information n 2 : Le prix de la paille est de 40 par tonne. Information n 3 : 1 m 3 de paille a une masse de 90 kg.

6 1) Justifier que le prix d une botte de paille est 0,51 (arrondi au centime) 2) Marc veut refaire l isolation de la toiture d un bâtiment avec des bottes de paille parallélépipédiques. Le bâtiment est un prisme droit dont les dimensions sont données sur le schéma ci-dessous. Il disposera les bottes de paille sur la surface correspondant à la zone grisée, pour créer une isolation de 35 cm d épaisseur. Pour calculer le nombre de bottes de paille qu il doit commander, il considère que les bottes sont disposées les unes contre les autres. Il ne tient pas compte de l épaisseur des planches entre lesquelles il insère les bottes. a) Combien de bottes devra-t-il commander? b) Quel est le coût de la paille nécessaire pour isoler le toit?

7 CORRIGE DU BREVET METROPOLE JUIN 2014 SERIE GENERALE Corrigé de l exercice n 1 : (5 points) 1) figure réalisée sur à l aide du logiciel Geogebra 1 re méthode possible : Etapes de construction (partie non demandée ; seule la figure était exigée) On place un point O. On trace le cercle de centre O et de 3 cm de rayon. On trace un rayon [OA]. On trace une demi-droite d origine O formant avec le segment [OA] un angle de 45. On nomme B le point d intersection de cette demi-droite avec le cercle. On reporte à l aide du compas la longueur AB sur le cercle à partir du point B. On nomme C le nouveau point obtenu. On reporte de nouveau la même longueur à partir du point C et ainsi de suite jusqu à arriver au point A. On trace les côtés de l octogone en n oubliant pas d ajouter le codage.

8 2 e méthode possible : figure réalisée sur à l aide du logiciel Geogebra Etapes de construction (partie non demandée ; seule la figure était exigée) On place un point O. On trace le cercle de centre O et de 3 cm de rayon. On trace deux droites perpendiculaires en O. On trace les bissectrices (qu on prolonge en droites) de deux angles droits adjacents formés par les deux droites perpendiculaires. Chaque point d intersection avec le cercle est un sommet de l octogone. On nomme A, B, C, D, E, F, G et H les sommets de l octogone. On trace les côtés de l octogone en n oubliant pas d ajouter le codage. 2) DAH est un triangle inscrit dans le cercle circonscrit à l octogone régulier ABCDEFGH dont le côté [DH] est un diamètre de ce cercle. Or, si un côté d un triangle inscrit dans un cercle est un diamètre de ce cercle alors ce triangle est rectangle (et ce côté est son hypoténuse). Le triangle DAH est donc rectangle (en A).

9 3) L angle est formé par les deux angles adjacents et qui sont des angles au centre de l octogone régulier ABCDEFGH. Or, la mesure d un angle au centre d un polygone régulier est égale au quotient de 360 par le nombre de côtés de ce polygone. Un octogone ayant 8 côtés, on a : = = soit = = 45. Ainsi = + = = 90 Dans le cercle circonscrit à l octogone ABCDEFGH, l angle inscrit intercepte le même arc BH que l angle au centre. Or, dans un cercle, si un angle inscrit intercepte le même arc qu un angle au centre alors sa mesure est égale à la moitié de celle de cet angle au centre. Ainsi, = soit = c est-à-dire = 45. L angle!"# mesure 45. Corrigé de l exercice n 2 : (6 points) 1) Les magasins A et B ne proposent pas de réduction pour un seul cahier acheté contrairement au magasin C qui propose une réduction de 30% dès le premier cahier acheté. Le magasin C est alors le magasin le plus intéressant pour l achat d un cahier. Dans les prochaines réponses, on note x le prix initial d un cahier en.

10 2) On appelle A, B et C les dépenses respectives en dans les magasins A, B et C en fonction de x. a) Cas de l achat de 2 cahiers : Magasin A : deux cahiers sans promotion Magasin B : 2 e cahier à moitié prix Magasin C : réduction de 30 % sur chacun des deux cahiers A = 2x B = x + $ C = 2 %1& 'x B = 1,5 x C = 2 0,7x C = 1,4x C < B < A donc le magasin C reste le magasin le plus intéressant pour l achat de 2 cahiers. b) Cas de l achat de 3 cahiers : Magasin A : troisième cahier offert Magasin B : 2 e cahier à moitié prix ; 3 e cahier au prix normal Magasin C : réduction de 30 % sur chacun des trois cahiers A = 2x B = x + $ + x C = 3 %1& B = 1,5x + x C = 3 0,7x B = 2,5x C = 2,1x A < C < B donc le magasin A est le magasin le plus intéressant pour l achat de 3 cahiers. 3) On appelle R le prix d un cahier en après les deux réductions (30 % puis 10 %). On cherche à écrire R sous la forme %1& 1 après les deux promotions successives. R = %1& '.%1& '/0 R = 0,9 0,7 / R = 0,63/ R = 51&0,376/ R = %1& 78 9:: '/ 'x où p est le pourcentage de réduction Léa a obtenu une réduction totale de 37 % sur le prix d un cahier.

11 Corrigé de l exercice n 3 : (5 points) 1) On appelle R le résultat de ce programme de calcul. Lorsqu on choisit 8 comme nombre de départ, on obtient : R = (8 6)(8 2) R = 2 6 R = est bien le résultat du programme de calcul lorsqu on choisit 8 comme nombre de départ. 2) Proposition n 1 : VRAI Si on choisit 3 comme nombre de départ, on obtient : R = (3 6)(3 2) R = -3 1 R = -3 Le résultat de ce programme de calcul peut donc être négatif. Proposition n 2 : VRAI Si on choisit comme nombre de départ, on obtient : R = % &6'%&2' R = ; ; R = ; ; R = ; 5;6 R = Proposition n 3 : VRAI Rechercher les valeurs qui permettent d obtenir 0 comme résultat revient à résoudre l équation : 5/&665/&26 = 0 qui est une équation produit nul. Dire qu un produit est nul équivaut à dire qu un de ses facteurs au moins est nul. L équation équivaut à : x 6 = 0 ou x 2 = 0 x = 6 ou x = 2 2 et 6 sont les deux solutions de l équation 5/&665/&26 = 0 Le programme donne donc 0 comme résultat pour exactement deux nombres : 2 et 6.

12 Proposition n 4 : FAUX On appelle f la fonction qui à tout nombre x associe le résultat du programme de calcul lorsqu on choisit x comme nombre de départ soit f : x 5/&665/&26 Pour tout nombre x, on a f(x) = x² 2x 6x + 12 f(x) = x² 8x + 12 Corrigé de l exercice n 4 : (3 points) 1) a) Le jaune est la couleur la plus présente dans le sac (fréquence la plus élevée). b) La formule saisie dans la cellule C2 est = B2 / A2 2) On sait qu il y a 20 jetons dans le sac et que la probabilité de tirer un jeton rouge est de. Le nombre de jetons rouges s obtient en effectuant 20. Il y a donc 4 jetons rouges dans le sac. Corrigé de l exercice n 5 : (4 points) Les bonnes réponses sont coloriées ci-dessous. N Questions A B C D 1 Quand on double le rayon d une boule, son volume est multiplié par : 2 Une vitesse égale à 36 km.h -1 correspond à : 10 m.s m.s m.s m.s -1 3 Quand on divise 525 par 5, on obtient : On donne : 1 To (téraoctet) = octets et 1 Go (gigaoctet) = 10 9 octets. On partage un disque dur de 1,5 To en dossiers de 60 Go chacun. Le nombre de dossiers obtenus est égal à : ,

13 Corrigé de l exercice n 6 : (6 points) 1) Le quadrilatère PQCA a 3 angles droits (codés sur la figure). Or, si un quadrilatère a 3 angles droits alors il est un rectangle. Donc PQCA est un rectangle. Or, si un quadrilatère est un rectangle alors ses côtés opposés sont égaux. Donc, QC = PA c est-à-dire QC = 0,65 m. Le point K appartient au segment [QC] donc QK = QC KC QK = 0,65 0,58 QK = 0,07 m. Ainsi =,L c est-à-dire MN MO = 0,014 2) Dans le triangle QPK rectangle en Q : tan P Q = tan P Q = 0,014 et, à l aide de la calculatrice, on obtient 0,8 L angle MON mesure bien environ 0,8 (mesure arrondie au dixième de degré près) 3) 1 re réponse possible : PQCA étant un rectangle, l angle est droit. De plus, cet angle est formé par les deux angles adjacents S T et S. Donc : S T = S où S = car K appartient à [QC] S T 90 0,8 S T 89,2

14 Dans le triangle APS, rectangle en A, on a : tan PS T Q = UV U AS = tanps T Q AS 0,65 tan589,2 6 AS 46,5 m La distance d éclairage est d environ 47 m (arrondie au m près). 2 e réponse possible : Dans les triangles APS et CKS, les points S, C et A sont alignés et les points S, K et P sont alignés. De plus, les droites (AP) et (QC) sont perpendiculaires à la droite (AS). Or, si deux droites sont perpendiculaires à une même droite alors elles sont parallèles entre elles. Donc, les droites (AP) et (QC) sont parallèles entre elles. D après le théorème de Thalès, on a : NW OX, YW YX,S S En particulier, on a : où,, VZ, VU SC = SA AC car le point C appartient au segment [SA] SC = SA 5 Ce qui revient à,, VU;, VU

15 En appliquant l égalité des produits en croix, on obtient : 0,58 SA = 0,65 (SA 5) 0,58 SA = 0,65 SA 5 0,65 0,58 SA 0,65 SA = -3,25 (0,58 0,65) SA = -3,25-0,07 SA = -3,25 SA = ;, ;,L SA 46,4 La distance d éclairage est d environ 46 m (arrondie au m près). Remarque : on obtient deux valeurs arrondies différentes car la réponse n 1 utilise une valeur approchée lors des calculs alors que la réponse n 2 n utilise que des valeurs exactes. C est donc la réponse n 2 qui est la plus précise. Mais les deux résultats sont acceptés pour la résolution de cet exercice. Corrigé de l exercice n 7 : (7 points) 1) On appelle V le volume d une botte de paille en m 3 : V = 0,9 0,45 0,35 V = 0, On appelle m la masse d une botte de paille en t : m = V 0,09 m = 0, ,09 m = 0, On appelle P le prix d une botte de paille en : P = m 40 P = 0, P = 0,510 3 Le prix d une botte de paille, arrondi au centime près, est bien de 0,51.

16 2) a) On recherche les dimensions de la face rectangulaire JKGF : BFGC étant un rectangle, ses côtés opposés sont de même longueur. Ainsi, FG = BC soit FG = 15,3 m. De même, FB = GC soit FB = 5 m. IFBA étant un rectangle, ses côtés opposés sont de même longueur. Ainsi, IF = AB soit IF = 3,6 m. De même, IA = FB soit IA = 5m. Le point I appartient au segment [JA] donc JI = JA IA soit JI = 7,7 5 JI = 2,7 m. D après le théorème de Pythagore dans le triangle JIF rectangle en I, on a : JF ² = JI ² + IF ² JF ² = 2,7² + 3,6² JF ² = 7, ,96 JF ² = 20,25 JF = 4,5 m On place chaque botte de paille sur une face rectangulaire de dimensions 90 cm 45 cm soit 0,9 m 0,45 m. 1re méthode : On appelle C le nombre de bottes de paille en colonne : C = JF : 0,9 C = 4,5 : 0,9 C = 5 On placera 5 bottes de paille par colonne. On appelle L le nombre de bottes de paille en ligne : L = FG : 0,45 L = 15,3 : 0,45 L = 34 On placera 34 bottes de paille en ligne. On appelle B le nombre de bottes de paille nécessaires pour isoler le toit :

17 B = C L B = 5 34 B = 170 On aura besoin de 170 bottes de paille pour isoler le toit. 2e méthode : On appelle AJKGF l aire en m² de la surface rectangulaire JKGF à isoler AJKGF = JF FG AJKGF = 4,5 15,3 AJKGF = 68,85 On appelle Abotte l aire en m² d une face rectangulaire de dimensions 90 cm 45 cm soit 0,9 m 0,45 m d une botte de paille. Abotte = 0,9 0,45 Abotte = 0,405 On appelle B le nombre de bottes de paille nécessaires pour isoler le toit : B = U z{ } U ~ B =,, B = 170 On aura besoin de 170 bottes de paille pour isoler le toit. b) On appelle C le coût en de la paille nécessaire pour isoler le toit C 170 0,51 C 86,7 Le coût de la paille nécessaire est d environ 86,70. Remarque : avec la valeur exacte obtenue (0,510 3 ) précédemment, on obtient 86,75. Les deux résultats sont acceptés pour la résolution de cet exercice.

DNB, Mathématiques, correction

DNB, Mathématiques, correction 50 80 50 40 0 DNB, Mathématiques, correction juin 204 2 heures Exercice 5 points. Représentation d un agrandissement de cet octogone en l inscrivant dans un cercle de rayon 3 cm. B A 30 20 0 60 30 40 50

Plus en détail

CORRECTION DIPLÔME NATIONAL DU BREVET

CORRECTION DIPLÔME NATIONAL DU BREVET CORRECTION DIPLÔME NATIONAL DU BREVET SESSION 04 Exercice : ( points) Voici un octogone régulier ABCDEFGH. ) Représenter un agrandissement de cet octogone en l inscrivant dans un cercle de rayon cm. Aucune

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges MÉTROPOLE - NTILLES - GUYNE Juin 2014 Durée : 2h00 Calculatrice autorisée Indication portant sur l ensemble du sujet Toutes les réponses doivent être justifiées,

Plus en détail

DIPLÔME NATIONAL DU B REVET

DIPLÔME NATIONAL DU B REVET REPÈRE 14DNBGENMATMEAG1 DIPLÔME NATIONAL DU B REVET SESSION 2014 Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE Durée de l épreuve : 2 h 00 Coefficient : 2 Le candidat répond sur une copie modèle Éducation

Plus en détail

DIPLÔME NATIONAL DU B REVET

DIPLÔME NATIONAL DU B REVET REPÈRE 14DNBGENMATMEAG1 DIPLÔME NATIONAL DU B REVET SESSION 2014 Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE Durée de l épreuve : 2 h 00 oefficient : 2 Le candidat répond sur une copie modèle Éducation Nationale.

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION 2014 Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE Durée de l épreuve : 2 h 00 Coefficient : 2 Le candidat répond sur une copie modèle Éducation Nationale. Ce sujet comporte

Plus en détail

DNB, Mathématiques, sujet

DNB, Mathématiques, sujet DNB, Mathématiques, sujet juin 2014 2 heures Le candidat répond sur une copie modèle Éducation Nationale. L utilisation de la calculatrice est autorisée (Circulaire n o 99-186 du 16 novembre 1999) L usage

Plus en détail

A ˆ O B = = 45.

A ˆ O B = = 45. CORRECTION BREVET DES COLLEGES METROPOLE 2014 Exercice 1 1 ) Explications : - Construire le cercle de centre 0 et de rayon 3 cm. - Sur ce cercle, placer un point A, puis placer un point B tel que A ˆ O

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

BREVET BLANC *** MATHEMATIQUES *** Année 2015

BREVET BLANC *** MATHEMATIQUES *** Année 2015 BREVET BLANC *** MATHEMATIQUES *** Année 2015 L orthographe, le soin, la qualité, la clarté et la précision des raisonnements seront pris en compte à hauteur de 4 points sur 40 dans l appréciation de la

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

V Exercice 1 :(5 points) V Exercice 2 : (6 points) Saint Denis (Ile de La Réunion) 3 ème

V Exercice 1 :(5 points) V Exercice 2 : (6 points) Saint Denis (Ile de La Réunion) 3 ème Ó Ö Ö Ø ÓäÒ Ô Ö ÓǑÔ ÓǑ Ô Ö Åº Å Ó Ö Ù µ Ù Ö ãú Ø åñ Øá ãñ Ø Õ Ù ê ¾ Ù âò ¾¼½ V Exercice 1 :(5 points) 1) Je vous laisse le soin de tracer cet octogone régulier. 2) A et H sont deux points consécutifs de

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES

BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES Durée de l épreuve : 2 heures. Ce sujet comporte 6 pages numérotées de 1 à 6. Dès qu il vous est remis, assurez-vous qu il est complet. L usage de la calculatrice

Plus en détail

Correction du Brevet Blanc Shanghai mars 2013

Correction du Brevet Blanc Shanghai mars 2013 Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer

Plus en détail

BREVET BLANC MATHEMATIQUES

BREVET BLANC MATHEMATIQUES BREVET BLANC MATHEMATIQUES Avril 2014 ---------- Durée de l épreuve : 2 heures ---------- Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Le sujet est à rendre avec la copie L usage de la calculatrice

Plus en détail

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice)

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Exercice 1 : Activité mentale Temps estimé : 4 min Dicter chaque calcul deux fois, ou l écrire au tableau et l effacer après 10 secondes.

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Septembre 014 Durée : h00 Calculatrice autorisée Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si

Plus en détail

Brevet Blanc nº2 avril 2015

Brevet Blanc nº2 avril 2015 durée : 2 heures Brevet Blanc nº2 avril 2015 L utilisation d une calculatrice est autorisée. Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si une indication

Plus en détail

Brevet des collèges 26 juin 2014 Métropole Antilles-Guyane

Brevet des collèges 26 juin 2014 Métropole Antilles-Guyane Brevet des collèges 26 juin 2014 Métropole Antilles-Guyane Indication portant sur l ensemble du sujet Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour chaque

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015 MATHEMATIQUES BREVET BLANC Vendredi 3 Avril 2015 Exercice 1 : ( 2,5 points) Un sac contient 5 boules noires numérotées de 1 à 5 et 3 boules blanches numérotées de 1 à 3. Chacune de ces boules a la même

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges FRANCE, ANTILLES, GUYANE Septembre 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points.

Plus en détail

Feuille de révision n 3 pour le brevet

Feuille de révision n 3 pour le brevet Feuille de révision n 3 pour le brevet Cette feuille est constituée d exercices tirés des annales des brevets des années antérieures et traite les chapitres abordés en classe depuis le deuxième brevet

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Brevet des collèges Amérique du Nord 7 juin 2011

Brevet des collèges Amérique du Nord 7 juin 2011 Durée : 2 heures Brevet des collèges Amérique du Nord 7 juin 2011 Correction ACTIVITÉS NUMÉRIQUES Exercice 1 12 points Le professeur choisit trois nombres entiers relatifs consécutifs rangés dans l ordre

Plus en détail

POLYNESIE Juin 2010 Brevet Page 1 sur 6

POLYNESIE Juin 2010 Brevet Page 1 sur 6 POLYNESIE Juin 2010 Brevet Page 1 sur 6 Exercice 1 : Activités numériques (12 points) 1. Déterminer le PGCD de 120 et 144 par la méthode de votre choix. Faire apparaître les calculs intermédiaires. 2.

Plus en détail

1 Extrait du DNB Juin 2014 3ème

1 Extrait du DNB Juin 2014 3ème Exemples d activités et extraits d évaluations Pour chacune des évaluations et activités suivantes, 1 résoudre le problème et anticiper les différentes démarches que les élèves pourraient envisager 2 déterminer,

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible.

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible. L orthographe, le soin, la qualité et la précision de la rédaction seront pris en compte à hauteur de 4 points sur 40 dans l évaluation de la copie. L utilisation de la calculatrice est autorisée. Les

Plus en détail

BREVET CENTRES ETRANGERS juin 2012

BREVET CENTRES ETRANGERS juin 2012 ACTIVITES NUMERIQUES (12 POINTS) Exercice 1 1- Calculer 1 4 + 2 x 4. 1 4 + 2 x 4 = 1 4 + 2 4 = 1 + 2 4 = 4 BREVET CENTRES ETRANGERS juin 2012 2- Au goûter, Lise mange 1 du paquet de gâteaux qu elle vient

Plus en détail

Brevet des collèges Polynésie septembre 2014

Brevet des collèges Polynésie septembre 2014 Brevet des collèges Polynésie septembre 2014 Durée : 2 heures Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans

Plus en détail

Correction du deuxième Brevet Blanc mai 2013 Lycée International Victor Hugo de Florence.

Correction du deuxième Brevet Blanc mai 2013 Lycée International Victor Hugo de Florence. Exercice 1 (4 points) d après Amérique du Sud, novembre 2010. et donc les nombres semblent égaux, mais il faut le démontrer. Je sais que si alors. Je cherche à savoir si Alors j aurai si je trouve. Conclusion

Plus en détail

Chapitre V. Polygones semblables

Chapitre V. Polygones semblables hapitre V Polygones semblables 1. Photocopieuse. Sur la photocopieuse du collège, on peut lire les pourcentages d agrandissement ou de réduction préprogrammés : 141%, 115%, 100%, 93%, 82%, 75%, 71%, et

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2010 ÉPREUVE DE MATHÉMATIQUES classe de 3 e Durée : 2 heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

CORRECTION BREVET BLANC

CORRECTION BREVET BLANC Partie numérique Exercice 1 : CORRECTION BREVET BLANC Question 1 : on teste les trois valeurs en remplaçant x par la valeur. La solution est Question 2 : Les solutions sont et -2 Question 3 : on fait deux

Plus en détail

Tache complexe. Nuageux - pluvieux La paillotte 500 50 La boutique 350 300

Tache complexe. Nuageux - pluvieux La paillotte 500 50 La boutique 350 300 Pondichéry 28 avril 2015 Tache complexe EXERCICE 3 Peio, un jeune Basque décide de vendre des glaces du 1er juin au 31 août inclus à Hendaye. Pour vendre ses glaces, Peio hésite entre deux emplacements

Plus en détail

Brevet des collèges, correction, Métropole, 28 juin 2011

Brevet des collèges, correction, Métropole, 28 juin 2011 Brevet des collèges, correction, Métropole, 28 juin 2011 Activités numériques 12 points Exercice 1 Un dé cubique a 6 faces peintes : une en bleu, une en rouge, une en jaune, une en vert et deux en noir.

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges ASIE Juin 2014 Durée : 2h00 Calculatrice autorisée Exercice 1 On laisse tomber une balle d une hauteur de 1 mètre. 3 points A chaque rebond elle rebondit des

Plus en détail

BREVET Etape 5 : Prolonger l axe obtenu jusqu à ce qu il coupe le cercle circonscrit en 2 points que l on nommera :

BREVET Etape 5 : Prolonger l axe obtenu jusqu à ce qu il coupe le cercle circonscrit en 2 points que l on nommera : BREVET 2014 Il s agit de quelques pistes d analyse pour ce sujet et non pas d un corrigé-type: Exercice 1- Etape 1 : Réaliser un cercle de centre 0 et de rayon 3 cm avec le compas Etape 2 : Tracer un diamètre

Plus en détail

Brevet des collèges Polynésie juin 2010

Brevet des collèges Polynésie juin 2010 Brevet des collèges Polynésie juin 2010 Durée : 2 heures CTIVITÉS NUMÉRIQUES Exercice 1 1. Déterminer le PGCD de 120 et 144 par la méthode de votre choix. Faire apparaître les calculs intermédiaires. 2.

Plus en détail

ACTIVITES NUMERIQUES 12 points

ACTIVITES NUMERIQUES 12 points BREVET BLANC Mai 2012 Mathématiques Le corrigé La rédaction et la présentation sont prises en compte pour 4 points. Les calculatrices sont autorisées. Durée de l'épreuve : 2 heures. EXERCICE 1 On donne

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Juin 2014 Durée : 2h00 Calculatrice autorisée Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour chaque

Plus en détail

BREVET BLANC CORRECTIONS. ÉPREUVE : MATHÉMATIQUES Avril 2015

BREVET BLANC CORRECTIONS. ÉPREUVE : MATHÉMATIQUES Avril 2015 BREVET BLANC CORRECTIONS ÉPREUVE : MATHÉMATIQUES Avril 2015 Durée : 2 h Les copies sont à rendre à l intérieur de l énoncé. L emploi de la calculatrice est autorisé. En plus des points prévus pour chacun

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Brevet des collèges, correction 27 juin 2013 Métropole La Réunion Antilles-Guyane

Brevet des collèges, correction 27 juin 2013 Métropole La Réunion Antilles-Guyane Brevet des collèges, correction 27 juin 201 Métropole La Réunion Antilles-Guyane Exercice 1 4 points Avec un logiciel : on a construit un carré ABD, de côté 4 cm. on a placé un point M mobile sur [AB]

Plus en détail

Correction du brevet des collèges Polynésie juin 2010

Correction du brevet des collèges Polynésie juin 2010 Correction du brevet des collèges Polynésie juin 2010 Durée : 2 heures ACTIVITÉS NUMÉRIQUES Exercice 1 1. Déterminons le PGCD de 120 et 144 par l algorithme d Euclide : PGCD(144 ;120) =PGCD(120 ;24) =

Plus en détail

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2 MON CAHIER DE VACANCES n 1 MATHEMATIQUES 3 ème 2 Ce cahier appartient à. Ce cahier est à rapporter le vendredi 6 Novembre 201, à Mme Viault. Les exercices sont à rédiger, sur ce livret, le plus sérieusement

Plus en détail

Brevet des collèges Polynésie juin 2011

Brevet des collèges Polynésie juin 2011 Brevet des collèges Polynésie juin 0 Durée : heures ACTIVITÉS NUMÉRIQUES points Exercice Cet exercice est un questionnaire à choix multiples. Pour chaque question, quatre réponses sont proposées mais une

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges AMÉRIQUE DU SUD Décembre 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour. Indication portant

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges NOUVELLE-LÉDONIE Décembre 0 Durée : h00 alculatrice autorisée Exercice : Questionnaire à choix multiples points et exercice est un questionnaire à choix multiples

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30 Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE 2ème trimestre 2010 Durée de l épreuve : 1 h 30 Le candidat doit traiter les 3 exercices La qualité de la rédaction, la clarté et la précision des

Plus en détail

Concours de recrutement de professeur des écoles session 2014, groupement académique 2

Concours de recrutement de professeur des écoles session 2014, groupement académique 2 Concours de recrutement de professeur des écoles session 014, groupement académique Corrigé non officiel de la deuxième épreuve d admissibilité proposé par http ://primaths.fr 1 Première partie La montée

Plus en détail

MATHEMATIQUES 1 partie. Activités numériques

MATHEMATIQUES 1 partie. Activités numériques NOM : Classe : Prénom : MATHEMATIQUES partie Les réponses seront justifiées. Le détail des calculs figurera sur la copie. Activités numériques Quel est le PGCD des nombres 185 et 444? 2 Un chef d orchestre

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013 BREVET BLANC de Mathématiques Jeudi 16 mai 2013 ********************************** Durée de l épreuve : 2 heures ********************************** Le sujet comporte 5 pages. Dès que ce sujet vous est

Plus en détail

Brevet blanc de mathématiques

Brevet blanc de mathématiques Brevet blanc de mathématiques avril 2011 L'usage de la calculatrice est autorisé. I Activités numériques 12 points II Activités géométriques 12 points III Problème 12 points Qualité de rédaction et présentation

Plus en détail

Si le travail n est pas terminé, laisser tout de même une trace de la recherche. Elle sera prise en compte dans la notation.

Si le travail n est pas terminé, laisser tout de même une trace de la recherche. Elle sera prise en compte dans la notation. Exercice 1 : brevet centre étrangers, juin 2012 (4 points : 1+3) 1 ) Calculer 2 ) Au goûter, Lise mange du paquet de gâteaux qu elle vient d ouvrir. De retour du collège, sa sœur Agathe mange les des gâteaux

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Septembre 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points. Exercice 1 6

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

Brevet des collèges Métropole, Antilles-Guyane, Réunion. Durée : 2 heures

Brevet des collèges Métropole, Antilles-Guyane, Réunion. Durée : 2 heures Métropole, Antilles-Guyane, Réunion Durée : 2 heures Toutes les réponses doiventêtre justifiées, sauf si une indication contraire est donnée. ACTIVITÉS NUMÉRIQUES 12 points Exercice 1 Un dé cubique a 6

Plus en détail

Brevet des collèges Centres étrangers juin 2012

Brevet des collèges Centres étrangers juin 2012 Durée : 2 heures Brevet des collèges Centres étrangers juin 2012 L utilisation d une calculatrice est autorisée. ACTIVITÉS NUMÉRIQUES Exercice 1 12 points 1. Calculer 1 4 + 2 4. 2. Au goûter, Lise mange

Plus en détail

Brevet des collèges Polynésie septembre 2012

Brevet des collèges Polynésie septembre 2012 Brevet des collèges Polynésie septembre 2012 Durée : 2 heures Activités numériques Exercice 1 : On donne le programme de calcul suivant : Choisir un nombre. Lui ajouter 1. Calculer le carré de cette somme.

Plus en détail

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. 3 ème COLLÈGE NAZARETH BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. EXERCICE 1 : ( /3) 1. Soit : A = 8 3 5 3 : 20 21. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin.

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points) Exercice

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

ˇ ˇ = Corrigé du Brevet de Mathématiques ˇ ˇ

ˇ ˇ = Corrigé du Brevet de Mathématiques ˇ ˇ ˇ ˇ = Corrigé du revet de Mathématiques ˇ ˇ Exercice......(4 points) Une coopérative collecte le lait dans différentes exploitations agricoles. Le détail, de la collecte du jour ont été saisis dans une

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges PONDICHÉRY Avril 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points. EXERCICE 1 Cet

Plus en détail

Diplôme national du Brevet Nouvelle Calédonie 9 décembre 2014

Diplôme national du Brevet Nouvelle Calédonie 9 décembre 2014 Durée : heures Diplôme national du Brevet Nouvelle Calédonie 9 décembre 014 A. P. M. E. P. Exercice 1 : Questionnaire à choix multiples 4 points Cet exercice est un questionnaire à choix multiples (QCM).

Plus en détail

DIPLÔME NATIONAL DU BREVET SESSION 2010

DIPLÔME NATIONAL DU BREVET SESSION 2010 DIPLÔME NATIONAL DU BREVET SESSION 2010 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont deux feuilles

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION JUIN 2008 ÉPREUVE DE MATHÉMATIQUES SÉRIE COLLÈGE Durée de l épreuve: 2h00 Métropole - La Réunion- Mayotte L emploi des calculatrices est autorisé Barème: - Activités

Plus en détail

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014 COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2014 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

DIPLÔME NATIONAL DU BREVET SESSION 2009

DIPLÔME NATIONAL DU BREVET SESSION 2009 DIPLÔME NATIONAL DU BREVET SESSION 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 6 pages numérotées de 1/6 à 6/6. Dès que ce sujet

Plus en détail

Triangle rectangle : Cercle circonscrit et médiane

Triangle rectangle : Cercle circonscrit et médiane Triangle rectangle : Cercle circonscrit et médiane I) Vocabulaire 1) Hypoténuse Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse. 2) Hauteurs, médianes, médiatrices

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

2 1,5 1 0,5 0 0,5 1 1,5 2 2,5 3 3,5 4. Exercice 3 : les faces d un dé équilibré à six faces porte chacune les lettres du mot : N O T O U S.

2 1,5 1 0,5 0 0,5 1 1,5 2 2,5 3 3,5 4. Exercice 3 : les faces d un dé équilibré à six faces porte chacune les lettres du mot : N O T O U S. Corrigé Nouvelle-Calédonie. Mars 2011. ctivités numériques. Exercice 1 : 1. Calcul du PGCD de 1 755 et 1 053 par l algorithme d Euclide : 1 755 = 1 053 1 + 702 1 053 = 702 1 + 351 702 = 351 2 + 0 Le PGCD

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique

Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique Correction Deuxième partie du cahier-de-vacances Demande Si vous trouvez un lien

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION 2011 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie modèle Éducation Nationale. Ce sujet comporte 7 pages numérotées de 1/7

Plus en détail

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Exercice 1 : ACTIVITES NUMERIQUES (12 points) 1. (3x + 5)² = (3x) 2 + 2 3x 5 + 5 2 = 9x² + 30x + 25 2. 4(4 + 1) = 20 (4 + 1)(4 2) = 10 (4 + 1)² =

Plus en détail

Le sujet est à rendre avec la copie.

Le sujet est à rendre avec la copie. NOM : Prénom : Classe : ACADEMIE DE BORDEAUX Collège Jean Moulin, COULOUNIEIX-CHAMIERS Durée : h DIPLOME NATIONAL DU BREET Série Collège Brevet BLANC Du janvier 01 Epreuve : MATHEMATIQUES Les calculatrices

Plus en détail