4. Programmation en nombres entiers

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "4. Programmation en nombres entiers"

Transcription

1 IFT575 Modèles de recherche opérationnelle (RO). Programmation en nombres entiers a. Modélisation

2 Terminologie de base Programmation en nombres entiers Programmation linéaire avec certaines variables contraintes à prendre des valeurs entières Programmation non linéaire en nombres entiers Programmation non linéaire (sec. 7) avec certaines variables entières Programmation pure en nombres entiers toutes les variables sont entières Programmation (mite) en nombres entiers certaines variables sont entières Programmation 0- (binaire) les variables entières sont à valeurs 0 ou (binaires). Programmation entiers

3 Eemple : California Mfg (H&L,.) Choisir de nouveau emplacements pour construire des usines et des entrepôts Deu emplacements : LA et SF On ne peut construire un entrepôt que dans une ville où l on a aussi une usine On ne peut construire plus d un entrepôt On associe à chaque construction (d une usine ou d un entrepôt dans chacun des lieu envisagés) Sa valeur estimée Son coût de construction Objectif : maimiser la valeur totale estimée, en ne dépassant pas une limite maimum sur les coûts. Programmation entiers

4 Eemple (suite). Usine à LA. Usine à SF. Entrepôt à LA. Entrepôt à SF Limite maimum Valeur estimée (millions $) Coût de construction (millions $) Programmation entiers

5 Modèle California Mfg Variables : j 0 si la décision si la décision Objectif : maimiser la valeur estimée totale ma Contraintes fonctionnelles Limite maimum sur les coûts de construction On ne peut construire plus d un entrepôt j est approuvée ( oui) j n'est pas approuvée ( non) Z Programmation entiers 5

6 Modèle California Mfg (suite) Contraintes fonctionnelles (suite) Entrepôt à LA seulement si usine à LA Entrepôt à SF seulement si usine à SF Contraintes 0- (intégralité) Ou encore j { 0,}, j,,, 0 j et j entier, j,,,. Programmation entiers 6

7 . Programmation entiers 7 Modèle California Mfg : résumé entier,,, 0,,,,,, ma Z

8 Modélisation avec Ecel On applique la même approche que pour la PL Ecel Solver permet deu tpes de contraintes particulières pour modéliser les variables entières : bin : pour représenter les variables 0- ent : pour représenter les variables entières générales Ecel Solver résout les modèles de programmation en nombres entiers par l algorithme de branch-andbound (voir plus loin) Voir l eemple California Mfg. Programmation entiers 8

9 Utilisation des variables binaires Le modèle illustre deu cas classiques d utilisation des variables binaires Alternatives mutuellement eclusives : on ne peut construire plus d un entrepôt Décisions contingentes : on ne peut construire un entrepôt que là ou on a construit une usine Voons d autres eemples utilisant des variables 0-. Programmation entiers 9

10 Contraintes mutuellement eclusives Prenons l eemple de deu contraintes L une ou l autre des deu contraintes doit être satisfaite, mais pas les deu simultanément! soit 8 soit 6 Soit M un très grand nombre; le sstème précédent est équivalent à soit 8 soit 6 M 8 M 6. Programmation entiers 0

11 Contraintes mutuellement eclusives En introduisant une variable binaire, on obtient un sstème équivalent 8 6 M La signification de cette variable est :, si la première contrainte est satisfaite 0, si la deuième contrainte est satisfaite C est un autre eemple d alternatives mutuellement eclusives M ( ). Programmation entiers

12 Contraintes mutuellement eclusives On aurait pu aussi introduire deu variables binaires, si la première contrainte est satisfaite, si la deuième contrainte est satisfaite On doit avoir Pour se ramener au modèle précédent, il suffit de poser et - C est un cas particulier de la situation suivante : K parmi N contraintes doivent être satisfaites Dans ce cas plus général, on introduit N variables binaires. Programmation entiers

13 K contraintes parmi N Soit les N contraintes : f (,,..., n) dj, j,,..., j On introduit alors N variables binaires : j, si la j ème contrainte est satisfaite f j(,,..., n) dj M ( j ), j,,..., Il reste à spécifier que seulement K de ces contraintes peuvent être satisfaites : N j j K N N. Programmation entiers

14 Fonction aant N valeurs possibles Soit la contrainte : f (, ou,..., n) d ou d ou... dn On introduit alors N variables binaires : j, si la fonction vaut d j La contrainte s écrit alors ainsi : f (,,..., N j j n ) N j d j j. Programmation entiers

15 Fonction aant N valeurs possibles Eemple Wndor Glass Supposons que le temps de production maimum à l usine n est pas toujours 8h, mais pourrait être également 6h ou h Cette contrainte s écrit alors : On introduit alors variables binaires : 8 6 ou ou... ou 6 8. Programmation entiers 5

16 Objectif avec coûts fies Supposons que le coût associé à un produit j est composé de deu parties : Un coût fie initial k j encouru dès qu une unité de j est produite Un coût c j proportionnel au nombre d unités de j produites Le coût total associé à la production de j unités est: fj( j ) { k si > j c j j j 0 0 sij 0. Programmation entiers 6

17 Objectif avec coûts fies Supposons que l objectif consiste à minimiser la somme de n fonctions avec coûts fies : min n On introduit alors n variables binaires : Z j L objectif s écrit alors ainsi : min Z j ( fj j ) { si > j 0 0 sij 0 n j ( c j j k j. Programmation entiers 7 j )

18 Objectif avec coûts fies Mais comment représenter la relation entre j et j? Les valeurs de j et de j dépendent l une de l autre : il s agit d un eemple de décisions contingentes On doit donc avoir une contrainte qui précise que j vaut 0 si j 0 Mais contrairement à la situation dans notre eemple California Mfg, les deu variables ne sont pas binaires: j peut être quelconque Que faire?.... Programmation entiers 8

19 Objectif avec coûts fies Soit M j une borne supérieure sur la valeur de j On écrit la relation entre les deu variables ainsi : Alors : Si j 0, alors j 0 Si j, alors j M j Si j > 0, alors j j Mj j Si j 0, alors toute solution optimale satisfait j 0 lorsque k j > 0 (si k j 0, la variable j est inutile). Programmation entiers 9

20 Objectif avec coûts fies minz n Les contraintes originales du problème j ( M j j c j j j kjj) { } j n 0,,,,..., j. Programmation entiers 0

21 Variables entières en variables 0- Soit une variable entière générale bornée : Soit N l entier tel que 0 u N u < La représentation binaire de est N Intérêt de cette transformation : les méthodes de programmation 0- souvent plus efficaces que les méthodes de programmation en nombres entiers Mais augmentation du nombre de variables! j 0 j j N. Programmation entiers

22 Eemple Trois tpes de produits Deu usines Profit/unité de produit (000 $) Ventes potentielles par produit (unités/semaine) Capacité de production par usine (h/semaine) Pas plus de deu produits peuvent être fabriqués Une seule des deu usines doit être eploitée. Programmation entiers

23 Eemple (suite) Produit tps production (h/unité) Produit tps production (h/unité) Produit tps production (h/unité) Capacité de production (h/semaine) Usine 0 Usine 6 0 Profit/unité 5 7 (000 $) Ventes potentielles (/semaine). Programmation entiers

24 Eemple (suite) Variables : j nombre d unités fabriquées du produit j Pour représenter la contrainte «Pas plus de deu produits», on doit introduire des variables 0- : j { si > j 0 0 sij 0 Pour représenter la contrainte «Une seule des deu usines», on doit ajouter une variable 0- : { si l' usine est choisie 0 sinon. Programmation entiers

25 Eemple (suite) Objectif : maz 5 Ventes potentielles : Pas plus de deu produits : 7 7, 5, Relation entre variables continues et variables 0- : 9, 9 5, 7. Programmation entiers 5

26 . Programmation entiers 6 Eemple (suite) Une seule des deu usines : En utilisant la variable 0- (et M très grand) : 0 6 soit 0 soit 0 6 ) ( 0 M M

27 Eemple : résumé ma Z 5 7, 9 5, M ( 0 M,, 0 ) j { 0,}, j,,,. Programmation entiers 7

28 Eemple Trois tpes de produits Cinq annonces publicitaires Maimum de trois annonces/produit Nombre d annonces Produit profit, millions $ Produit profit, millions $ Produit profit, millions $ Programmation entiers 8

29 Eemple : premier modèle? Variables : i nombre d annonces du produit i L hpothèse de proportionnalité est violée! On ne peut représenter l objectif sous forme linéaire uniquement avec ces variables! Nous verrons deu modèles possibles pour contourner cette difficulté. Programmation entiers 9

30 Eemple : premier modèle Variables : sii j 0 sinon Objectif : maz Eactement cinq annonces Définition des variables 0- ij j i j ij jij, i 5,,. Programmation entiers 0

31 Eemple : deuième modèle Variables : Cette définition implique : i 0 i 0, Ou encore : i i i ij i j sii j 0 sinon i i i, i, i i 0, 0,, i i i 0 0, i, i ij, i,,, 0 j ( ),. Programmation entiers

32 Eemple : deuième modèle (suite) Supposons que ( annonces pour le produit ) Le profit associé à cette valeur doit être Mais veut dire que chaque variable binaire associée au produit vaut Comment comptabiliser correctement la contribution de ces trois variables au profit? Solution : le profit associé à la variable ij est c ij -c ij Dans notre eemple, le profit associé à est -0 est - est - 0. Programmation entiers

33 Eemple : deuième modèle (suite) Objectif : maz Eactement cinq annonces i j ij 5 Définition des variables 0- ),,,, j i i ( j ij,. Programmation entiers

34 Eemple Une compagnie aérienne veut affecter trois équipages à des séquences de vols Il a un coût associé à chaque séquence de vols La compagnie cherche à minimiser les coûts d affectation des équipages au séquences de façon à assurer le service sur chacun de ses vols Eemple : vols et séquences de vols. Programmation entiers

35 . Programmation entiers 5 Eemple (suite) Coût Vol

36 Eemple (suite) Variables : j Objectif : ma si la séquence de vols j 0 sinon Z 7 Affecter trois équipages j j est affectée Programmation entiers 6

37 . Programmation entiers 7 Eemple (suite) Le service doit être assuré sur chacun des vols : Et ainsi de suite (voir détails dans H&L, sec..)

38 Eemple (suite) C est un eemple de problème de recouvrement d ensemble I : un ensemble d objets (ici, les vols) J : une collection de sous-ensembles de I (ici, les séquences de vols) Ji, i Variables j I Contraintes : : les sous-ensembles dans J qui contiennent i si le sous- ensemblej est choisi 0 sinon j Ji Partitionnement d ensemble : j, i I j Ji. Programmation entiers 8 j, i I

4. Programmation en nombres entiers

4. Programmation en nombres entiers IFT575 Modèles de recherche opérationnelle (RO). Programmation en nombres entiers b. Séparation et évaluation progressive c. Plans de coupes Résolution de modèles entiers Programmation en nombres entiers

Plus en détail

Programmation linéaire (PL) 2. Programmation linéaire a. Modélisation. Exemple d un modèle de PL. Exemple d un modèle de PL (suite)

Programmation linéaire (PL) 2. Programmation linéaire a. Modélisation. Exemple d un modèle de PL. Exemple d un modèle de PL (suite) Programmation linéaire (PL) IFT1575 Modèles de recherche opérationnelle (RO). Programmation linéaire a. Modélisation Problème classique de planification : affecter des ressources limitées à plusieurs activités

Plus en détail

Problème du flot à coût minimum

Problème du flot à coût minimum Problème du flot à coût minimum IFT1575 Modèles de recherche opérationnelle (RO). Optimisation de réseaux e. Flot à coût minimum On a un graphe orienté et connexe chaque arc (i,j), on associe une capacité

Plus en détail

Exemple d un modèle de PL. 2. Programmation linéaire a. modélisation. Programmation linéaire (PL) Exemple d un modèle de PL (suite)

Exemple d un modèle de PL. 2. Programmation linéaire a. modélisation. Programmation linéaire (PL) Exemple d un modèle de PL (suite) Exemple d un modèle de PL IFT1575 Modèles de recherche opérationnelle (RO). Programmation linéaire a. modélisation Données du problème (Wyndor Glass, sec..1 H&L): Deux types de produits (produit 1, produit

Plus en détail

MATH-F-306 - Optimisation. Prénom Nom Note

MATH-F-306 - Optimisation. Prénom Nom Note MATH-F-306 Optimisation examen de 1 e session année 2009 2010 Prénom Nom Note Répondre aux questions ci-dessous en justifiant rigoureusement chaque étape, affirmation, etc. AUCUNE NOTE N EST AUTORISÉE.

Plus en détail

Ax = b iff (B + N) x N

Ax = b iff (B + N) x N Chapitre 3 Algorithme du simplexe 3.1 Solution de base admissible P en forme standard. A = (a 1,...,a n ) Hypothèse : n m (plus de variables que d équations) et rg(a)=m (pas d équation inutile). Donc après

Plus en détail

Analyse de la complexité algorithmique (1)

Analyse de la complexité algorithmique (1) Analyse de la complexité algorithmique (1) L analyse de la complexité telle que nous l avons vue jusqu à présent nous a essentiellement servi à déterminer si un problème est ou non facile (i.e. soluble

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

Problèmes de transport

Problèmes de transport Problèmes de transport formulation des problèmes d affectation Hugues Talbot Laboratoire A2SI 31 mars 2009 Problèmes de Transport Introduction Distribution Théorie Équilibrage Modélisation Plan Solution

Plus en détail

Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT

Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT Chapitre 4 Machines de Turing Dans ce chapitre on présente un modèle de calcul introduit dans les années 3 par Turing, les machines de Turing. Ces machines formalisent la notion de calculabilité. La thèse

Plus en détail

Résumé du chapitre 8 Ressources et interblocage

Résumé du chapitre 8 Ressources et interblocage Résumé du chapitre 8 Ressources et interblocage Jacques Mossière 12 août 2004 1 Introduction Ce chapitre est consacré à l étude d un problème classique dans les systèmes, l interblocage, c est à dire l

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

Algorithme du simplexe

Algorithme du simplexe Algorithme du simplexe Une solution à la programmation linéaire Hugues Talbot Laboratoire A2SI 18 mars 2008 Plan Algèbre linéaire Algorithme du simplexe Formulation et forme standard Notations Recherche

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire NICOD JEAN-MARC Master 2 Informatique Université de Franche-Comté UFR des Sciences et Techniques septembre 2008 NICOD JEAN-MARC Rappels sur les graphes 1 / 47 Sommaire 1 Exemple

Plus en détail

GÉNÉRALITÉS SUR LES FONCTIONS

GÉNÉRALITÉS SUR LES FONCTIONS . Qu'est-ce qu'une fonction? Vocabulaire GÉNÉRALITÉS SUR LES FONCTIONS Définition Notion de fonction À chaque fois que l'on associe à une quantité une (autre) quantité, on dit que que l'on définit une

Plus en détail

Chapitre 4 : Dualité en programmation linéaire

Chapitre 4 : Dualité en programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 4 : Dualité en programmation linéaire J.-F. Scheid 1 Plan du chapitre 1 Introduction et définitions 2 Propriétés et Théorèmes de dualité 3 Conditions d optimalité

Plus en détail

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION CHAPITRE 2 FONCTIONS I. INTRODUCTION Une fonction est «une machine à transformer des nombres». Par eemple, la fonction «carré» désigne la «machine» qui transforme les nombres en leurs carrés. Ainsi elle

Plus en détail

Problèmes de transport et transbordement

Problèmes de transport et transbordement Problèmes de transport et transbordement Résolution Hugues Talbot Laboratoire A2SI 9 avril 2009 Plan Introduction Introduction Solution des problèmes de transport Solution de base initiale Le simplexe

Plus en détail

Programmation par Contraintes. Correctif des quelques exercices.

Programmation par Contraintes. Correctif des quelques exercices. Programmation par Contraintes. Correctif des quelques exercices. Ruslan Sadykov 22 décembre 204 Les règles de Golomb Une règle de Golomb est un ensemble d entiers naturels dans lequel les distances entre

Plus en détail

ALGÈBRE DE BOOLE ET FONCTIONS BOOLÉENNES

ALGÈBRE DE BOOLE ET FONCTIONS BOOLÉENNES ALGÈBRE DE BOOLE ET FONCTIONS BOOLÉENNES 1 PROPRIÉTÉS L algèbre de Boole est définie sur l'ensemble E2 constitué des éléments {0,1}. Il eiste une relation d'ordre 0 < 1, et trois opérations de base. La

Plus en détail

COURS : FONCTIONS LINÉAIRES & AFFINES

COURS : FONCTIONS LINÉAIRES & AFFINES CHAPITRE CURS : FNCTINS LINÉAIRES & AFFINES Etrait du programme de la classe de troisième : CNTENU CMPÉTENCES EXIGIBLES CMMENTAIRES Fonction linéaire. Connaître la notation a, pour une valeur numérique

Plus en détail

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes.

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes. Au menu Cours 7: Classes Probabilistes Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique Retours sur quelques algorithmes Quelques résultats INF561 Algorithmes et Complexité 1 2 Sous

Plus en détail

Sujet 6 : Modèles de la planification tactique: planification de production

Sujet 6 : Modèles de la planification tactique: planification de production Sujet 6 : Modèles de la planification tactique: planification de production MSE3312: Planification de production et gestion des opérations Andrew J. Miller Dernière mise au jour: November 18, 2009 Dans

Plus en détail

Cours/TD n 3 : les boucles

Cours/TD n 3 : les boucles Cours/TD n 3 : les boucles Où on se rendra compte qu il est normal de rien comprendre Pour l instant, on a vu beaucoup de choses. Les variables, les Si Alors Sinon, les tests avec les ET, les OU et les

Plus en détail

Chapitre 1 : Programmation linéaire

Chapitre 1 : Programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 1 : Programmation linéaire J.-F. Scheid 1 I. Introduction 1) Modélisation En Recherche Opérationnelle (RO), modéliser un problème consiste à identifier: les variables

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

CODES CORRECTEURS D'ERREURS

CODES CORRECTEURS D'ERREURS CODES CORRECTEURS D'ERREURS Marc URO TABLE DES MATIÈRES DÉTECTION ET CORRECTION D'ERREURS... 6 CAS D'UN CANAL SANS SYMBOLE D'EFFACEMENT...6 CAS D'UN CANAL AVEC SYMBOLE D'EFFACEMENT...7 GÉNÉRATION ET DÉTECTION

Plus en détail

LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE

LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE LA PROGRAMMATION LINEAIRE : ANALYSE DE SENSIBILITE Nous abordons dans cette leçon la partie analyse de sensibilité de la résolution d'un problème de programmation linéaire. Il s'agit d'étudier les conséquences

Plus en détail

UNIVERSITE SAAD DAHLAB DE BLIDA

UNIVERSITE SAAD DAHLAB DE BLIDA LA PROGRAMMATION LINEAIRE La première révolution industrielle avait remplacé la force musculaire de l'homme par celle des machines. La seconde voyait la machine se commander elle-même. Les ordinateurs

Plus en détail

OPTIMISATION SOUS CONTRAINTES

OPTIMISATION SOUS CONTRAINTES OPTIMISATION SOUS CONTRAINTES Sommaire 1. Optimisation entre des bornes... 1 2. Exercice... 4 3. Optimisation sous contrainte à variables multiples... 5 Suite à une planification de la production, supposons

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

1. Question 1 pt Comment s'appelle la société française de recherche opérationnelle?

1. Question 1 pt Comment s'appelle la société française de recherche opérationnelle? CONTRÔLE DE RECHERCHE OPÉRATIONNELLE Le contrôle est noté sur 30. 1. Question 1 pt Comment s'appelle la société française de recherche opérationnelle? 2. Management de projet 2 pts Considérons le projet

Plus en détail

TP - Modélisation et optimisation des systèmes complexes

TP - Modélisation et optimisation des systèmes complexes Master Informatique 1ere année (M1) Année 2010-2011 TP - Modélisation et optimisation des systèmes complexes Résolution du problème d'aectation généralisé par relaxation lagrangienne 1 Introduction Le

Plus en détail

1 Programmation linéaire

1 Programmation linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2012 2013 Master d économie Cours de M. Desgraupes Méthodes Numériques Document 4 : Corrigé des exercices d optimisation linéaire

Plus en détail

Un modèle général et des résultats de complexité pour le partage de biens indivisibles

Un modèle général et des résultats de complexité pour le partage de biens indivisibles Un modèle général et des résultats de complexité pour le partage de biens indivisibles Sylvain Bouveret, Hélène Fargier, Jérôme Lang et Michel Lemaître ONERA / IRIT / CNES / SUPAERO le 27 mai 2005 Partage

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

INFO-F-310 (MATH-H404) Algorithmique et Recherche Opérationnelle. Prof. Yves De Smet (co-titulaire Prof. Bernard Fortz)

INFO-F-310 (MATH-H404) Algorithmique et Recherche Opérationnelle. Prof. Yves De Smet (co-titulaire Prof. Bernard Fortz) INFO-F-310 (MATH-H404) Algorithmique et Recherche Opérationnelle Prof. Yves De Smet (co-titulaire Prof. Bernard Fortz) Terminologie Recherche Opérationnelle Méthodes quantitatives de gestion Mathématiques

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

Sous-adressage et CIDR

Sous-adressage et CIDR Sous-adressage et CIDR C. Pain-Barre INFO - IUT Aix-en-Provence version du 19/2/2013 Table des matières 1 Introduction 1 2 Principes du sous-adressage 2 2.1 Le sous-adressage vu d Internet...................................

Plus en détail

INFO-F-302 Informatique Fondamentale Examen Session de Juin 2014

INFO-F-302 Informatique Fondamentale Examen Session de Juin 2014 INFO-F-302 Informatique Fondamentale Examen Session de Juin 2014 CORRIGÉ Documents non autorisés, durée: 2h45 1 Questions de cours (6 points) Question 1 (2pts) Donner quatre méthodes vues en cours pour

Plus en détail

TD 5 : Les piles. PC* - Lycée Thiers 2015/2016

TD 5 : Les piles. PC* - Lycée Thiers 2015/2016 2015/2016 Exercice 1 : Pile renversée Corrigé Consignes Pour tous les exercices de cette planche on aura préalablement écrit l implémentation des piles à capacité limitée ou illimitée vue en cours, et

Plus en détail

Placements de tours sur les diagrammes de permutations

Placements de tours sur les diagrammes de permutations Placements de tours sur les diagrammes de permutations 5 août 0 Résumé Le problème des placements de tours consiste à compter le nombre de manières de placer k tours sur un échiquier sans que les tours

Plus en détail

UNIVERSITE IBN ZOHR Année Universitaire 2014-2015 Faculté des Sciences Juridiques Economiques et Sociales Agadir

UNIVERSITE IBN ZOHR Année Universitaire 2014-2015 Faculté des Sciences Juridiques Economiques et Sociales Agadir UNIVERSITE IBN ZOHR Année Universitaire 2014-2015 Faculté des Sciences Juridiques Economiques et Sociales S5 Agadir Recherche Opérationnelle Corrigé de la série1: Traduction des problèmes en language mathématique

Plus en détail

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS CLASSIFICATION AUTOMATIQUE Prof.É.D.Taillard Classification automatique @Prof. E. Taillard EIVD, Informatique logiciel, 4 e semestre CLASSIFICATION AUTOMATIQUE But :

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

INTRODUCTION À OMP PROBLÈME D USINAGE 1 Préambule

INTRODUCTION À OMP PROBLÈME D USINAGE 1 Préambule 1 Préambule 1 sur 7 Le logiciel OMP est un produit de OM Partners. Le version mise à disposition est la version 9.27. OMP comporte : un compilateur de modèles et de données ; un optimiseur ; un générateur

Plus en détail

Introduction au Logiciel GAMS (General Algebraic Modeling System)

Introduction au Logiciel GAMS (General Algebraic Modeling System) Introduction au Logiciel GAMS (General Algebraic Modeling System) J.-M. Reneaume SOMMAIRE A. INTRODUCTION... 1 B. DESCRIPTION DU MODELE... 3 1. Structure générale du modèle... 3 a) Structure du fichier

Plus en détail

SUJET + CORRIGE. Avertissement

SUJET + CORRIGE. Avertissement Année : 2012/2013 Semestre 2 DEVUIP Service scolarité PARCOURS : Licence LIMI201 & LIMI211 UE J1MI2013 : Algorithmes et Programmes Épreuve : Devoir Surveillé Terminal Date : Lundi 10 juin 2013 Heure :

Plus en détail

(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7

(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7 Chapitre 1 Modelisation 11 Exemples de Problèmes 111 La Cafétaria Cafétaria ouverte toute la semaine Statistique sur le personnel requis : Jour Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche Nombre

Plus en détail

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM TD TECHNIQUES DE CODAGE ET DE COMPRESSION. LANGAGE / CODAGE / VALENCE.. Rappels Toute fraction intelligible d un message est constituée de symboles. Le langage est l ensemble de ces symboles. Un codage

Plus en détail

Mathématique pour l informatique Examen durée : 3 heures. Question 1. Mettre ce problème en forme standard en introduisant des variables d écarts.

Mathématique pour l informatique Examen durée : 3 heures. Question 1. Mettre ce problème en forme standard en introduisant des variables d écarts. Mathématique pour l informatique Examen durée : 3 heures. Université de Provence Licence Informatique Année 2001-2002 Exercice 1 (Simplexe : 10 points) On donne le problème de programmation linéaire (P)

Plus en détail

Organisation de l aviation civile internationale

Organisation de l aviation civile internationale Organisation de l aviation civile internationale NOTE DE TRAVAIL HLSC/15-WP/30 21/11/14 DEUXIÈME CONFÉRENCE DE HAUT NIVEAU SUR LA SÉCURITÉ (HLSC 2015) PLANIFIER L AMÉLIORATION DE LA SÉCURITÉ DE L AVIATION

Plus en détail

Mini-Projet de Prolog : Solver de Sudoku

Mini-Projet de Prolog : Solver de Sudoku UNIVERSITE François Rabelais TOURS Polytech Tours-Département Informatique 64, Avenue Jean Portalis 37200 TOURS Mini-Projet de Prolog : Solver de Sudoku Encadré par : Présenté par : M. J-L Bouquard Florent

Plus en détail

ACCQ204 4 Jan. 2016. Cours 3. Définition 1 Pour tout entier r 2 un code de Hamming (binaire) a pour matrice de parité H r telle que : 1 0 1 0 1.

ACCQ204 4 Jan. 2016. Cours 3. Définition 1 Pour tout entier r 2 un code de Hamming (binaire) a pour matrice de parité H r telle que : 1 0 1 0 1. ACCQ4 4 Jan 6 Cours 3 Enseignant: Aslan Tchamkerten Crédit: Pierre de Sainte Agathe Code de Hamming Définition Pour tout entier r un code de Hamming (binaire) a pour matrice de parité H r telle que : H

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 2. Programmation linéaire b. Méthode du simplexe c. Dualité d. Analyse de sensibilité

IFT1575 Modèles de recherche opérationnelle (RO) 2. Programmation linéaire b. Méthode du simplexe c. Dualité d. Analyse de sensibilité IFT575 Modèles de recherche opérationnelle (RO) 2. Programmation linéaire b. Méthode du simplee c. Dualité d. Analyse de sensibilité Interprétation des variables d écart Dans la solution optimale du problème

Plus en détail

2 Correspondance des Points de Contrôle Spline - Bézier

2 Correspondance des Points de Contrôle Spline - Bézier COURBES B-SPLINES 1 Introduction Une courbe de Bézier est totalement modifiée dès qu on déplace un point de contrôle : on dit que la méthode de Bézier est une méthode globale. Les courbes B-Splines Uniformes,

Plus en détail

Automates temporisés Partie 1: Définitions

Automates temporisés Partie 1: Définitions p.1 Automates temporisés Partie 1: Définitions p.2 Motivation Les automates temporisés constituent un des modèle de systèmes réactifs à temps continu proposé par Alur et Dill en 1991. Temps continu vs

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Introduction à la RO

Introduction à la RO 1 Introduction à la RO Problèmes de flots dans les graphes Cédric BENTZ (CNAM) Christophe PICOULEAU (CNAM) 2 Capacité journalière d'un réseau ferroviaire (1/2) Sur le réseau ferroviaire, on a indiqué sur

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

Utilisation des Structures Combinatoires pour le Test Statistique. Contexte. Plan. Le test de logiciel. Les structures combinatoires décomposables

Utilisation des Structures Combinatoires pour le Test Statistique. Contexte. Plan. Le test de logiciel. Les structures combinatoires décomposables Utilisation des Structures Combinatoires pour le Test Statistique Sandrine-Dominique GOURAUD Équipe Programmation et Génie Logiciel, L.R.I. Co-encadrants: M.-C. Gaudel et A. Denise Plan Contexte Structures

Plus en détail

Mathématiques et Philosophie en classe de seconde

Mathématiques et Philosophie en classe de seconde Mathématiques et Philosophie en classe de seconde Intervention du Professeur de mathématiques. Effectif de la classe : 34 élèves. Intervention : quinze heures en alternance avec le cours de Philosophie.

Plus en détail

Structure de l exposé. Introduction à l aide multicritère à la décision. Concepts clés. Qu est-ce que l aide multicritère à la décision?

Structure de l exposé. Introduction à l aide multicritère à la décision. Concepts clés. Qu est-ce que l aide multicritère à la décision? Structure de l exposé Les midis de la science Qu est-ce que l aide multicritère à la décision? Concepts clés Branche de la Recherche Opérationnelle (RO) [Roy, 1992]: Chercher à prendre appui sur la science

Plus en détail

Achats/ventes en bourse - IGI3006 - Michel Couprie

Achats/ventes en bourse - IGI3006 - Michel Couprie Achats/ventes en bourse - IGI00 - Michel Couprie NOTE:LessectionsA,B,C,D,Efontpartiedel énoncédonnéauxétudiants,lessections suivantes contiennent des indications ou des solutions. A. Le problème Une société

Plus en détail

Probabilité d un événement. Combinaisons d événements. Probabilité conditionnelle

Probabilité d un événement. Combinaisons d événements. Probabilité conditionnelle Probabilités classiques Mathématiques discrètes Théorie des probabilités Cours 31, MATH/COSC 1056F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne 7 novembre 00,

Plus en détail

Méthodes d Optimisation

Méthodes d Optimisation Méthodes d Optimisation Licence Professionnelle Logistique Université du Littoral - Côte d Opale, Pôle Lamartine Laurent SMOCH (smoch@lmpa.univ-littoral.fr) Septembre 2011 Laboratoire de Mathématiques

Plus en détail

Équations différentielles en physique

Équations différentielles en physique Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure.

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure. Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Licence 3 Mathématiques-Informatique Daniel Li Construction de la mesure de Lebesgue 28 janvier 2008 Dans ce chapitre, nous allons

Plus en détail

THÉORÈME DE ROLLE ET THÉORÈME DE LA MOYENNE DE LAGRANGE

THÉORÈME DE ROLLE ET THÉORÈME DE LA MOYENNE DE LAGRANGE THÉORÈME DE ROLLE ET THÉORÈME DE LA MOYENNE DE LAGRANGE Théorème de Rolle 2 Théorème de la moenne de Lagrange 3 Interprétation phsique 4 Conséquences mathématiques du théorème de la moenne de Lagrange

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Master MIMSE - Année 1. Gestion des stocks Gestion des stocks déterministe Variantes du modèle de Wilson DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Master MIMSE - Année 1. Gestion des stocks Gestion des stocks déterministe Variantes du modèle de Wilson DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- 1 Master MIMSE - Année 1 Gestion des stocks Gestion des stocks déterministe Variantes du modèle de Wilson 2 Hypothèses du modèle de Wilson Un seul produit ex. multiproduit Horizon de temps infini horizon

Plus en détail

VII- Enumérations dans l ordre alphabétique

VII- Enumérations dans l ordre alphabétique VII- Enumérations dans l ordre alphabétique Prenons un dictionnaire. Comment savoir si un mot se trouve avant ou après un autre? On commence par comparer la première lettre de ces deux mots. Si elles sont

Plus en détail

De l art d écrire des programmes qui résolvent des problèmes que l on ne sait pas résoudre soi-même!

De l art d écrire des programmes qui résolvent des problèmes que l on ne sait pas résoudre soi-même! Chapitre 1 La récursivité De l art d écrire des programmes qui résolvent des problèmes que l on ne sait pas résoudre soi-même! 1.1 Définition et types de récursivité Définition 1 (Définition récursive,

Plus en détail

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016 Exos corrigés darithmétique...classe : TS-Spé Prof. MOWGLI Ahmed Année scolaire 2015-2016 1 Pour des cours particuliers par petits groupes de 3 ou 4 élèves en maths et/ou physique-chimie, veuillez me contacter.

Plus en détail

Chapitre 2: Modélisation

Chapitre 2: Modélisation 2013 2014 RCP104 Optimisation en Informatique Chapitre 2: Dr. Nazih OUWAYED nazih.ouwayed@gmail.com http://nouwayed.yolasite.com Sommaire Comment décrire un porblème Principe Cas réel par un programme

Plus en détail

Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception?

Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception? Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception? Semaine 2, auteurs Maha Abboud-Blanchard (ESPE de Versailles,

Plus en détail

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif Chapitre 6 Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique 6.1.1 Exemple introductif Problème : n matrices M i (m i, m i+1 ) à multiplier en minimisant le nombre de multiplications,

Plus en détail

Chapitre 7 Tests d hypothèse (partie 1)

Chapitre 7 Tests d hypothèse (partie 1) Chapitre 7 Tests d hypothèse (partie 1) I Qu est ce qu un test statistique? La philosophie est toujours la même : déterminer des informations sur une population à partir d informations sur un échantillon

Plus en détail

Cours Systemes d exploitation

Cours Systemes d exploitation Université de Kairouan Institut Supérieur des Siences Appliquées et de Technologie Cours Conçu Spécialement Aux Etudiants: De Master Pilotage et Réseaux Industriels Cours Systemes d exploitation Noureddine

Plus en détail

TRAVAIL PRATIQUE. 2x + 1. x + 1

TRAVAIL PRATIQUE. 2x + 1. x + 1 A - Polynômes et factorisation Résultats d apprentissage générau C COMMUNICATION RP RÉSOLUTION DE PROBLÈMES L LIENS R RAISONNEMENT E ESTIMATION ET CALCUL MENTAL T TECHNOLOGIE V VISUALISATION généraliser

Plus en détail

Chapitre 7 Solutions des problèmes

Chapitre 7 Solutions des problèmes Chapitre 7 Solutions des problèmes 1. Modifications à apporter à un réseau. Dans le réseau proposé, la tâche H ne précède pas la tâche F, contrairement à ce qui est spécifié dans le tableau des prédécesseurs

Plus en détail

I) Deux propriétés importantes Propriété 1 Si A est multiple de B et B est un multiple de n, alors A est un multiple de n.

I) Deux propriétés importantes Propriété 1 Si A est multiple de B et B est un multiple de n, alors A est un multiple de n. Extrait de cours de maths de 5e Chapitre 1 : Arithmétique Définition 1. Multiples et diviseurs Si, dans une division de D par d, le reste est nul, alors on dit que D est un multiple de d, que d est un

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 3 novembre 2005 1 programmation linéaire à deux variables 1.1 Partitionnement du plan Une droite permet de découper un plan en plusieurs parties. Droite

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Recherche opérationnelle

Recherche opérationnelle Université dulittoral Côte d Opale Master 2 en Sciences Economiques et de Gestion Recherche opérationnelle Daniel DE WOLF Dunkerque, Septembre 2006 Table des matières 1 Laprogrammation linéaire. 7 1.1

Plus en détail

Expressions, types et variables en Python

Expressions, types et variables en Python Expressions, types et variables en Python 2015-08-26 1 Expressions Les valeurs désignent les données manipulées par un algorithme ou une fonction. Une valeur peut ainsi être : un nombre, un caractère,

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Contexte pédagogique Objectifs Suites numériques Visualiser les situations exprimées à l aide de suites

Plus en détail

Thème : intégration d'un outil logiciel

Thème : intégration d'un outil logiciel Thème : intégration d'un outil logiciel Présentation du thème Introduit dés l'école élémentaire (par exemple avec l'utilisation de la calculatrice) De plus en plus important au cours de la scolarité (grâce

Plus en détail

MASTER de Génie Civil, Lyon Année scolaire 2006-2007 DYNAMIQUE DES SOLS ET DES STRUCTURES. Sujet No 1, durée : 2 heures

MASTER de Génie Civil, Lyon Année scolaire 2006-2007 DYNAMIQUE DES SOLS ET DES STRUCTURES. Sujet No 1, durée : 2 heures MASTER de Génie Civil, Lyon Année scolaire 6-7 Epreuve du 6 mars 7 DYNAMIQUE DES SOLS ET DES STRUCTURES GENIE PARASISMIQUE Sujet No, durée : heures Les copies doivent être rédigées en français et écrites

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Modélisations dynamiques avec le tableur

Modélisations dynamiques avec le tableur 400 Pour chercher et approfondir APMEP Modélisations dynamiques avec le tableur Philippe Langenaken (*) Dans les études supérieures de type économique, les calculs d optimisations sont nombreu. Par ailleurs,

Plus en détail

INFO-F-302 Informatique Fondamentale Exercices - Modélisation en SAT

INFO-F-302 Informatique Fondamentale Exercices - Modélisation en SAT INFO-F-302 Informatique Fondamentale Exercices - Modélisation en SAT Prof. Emmanuel Filiot Exercice 1 Modélisation autour des mots Dans ce problème, on va travailler sur les mots, vus de manière générale

Plus en détail

Chapitre 3. Eléments pour comprendre et écrire des démonstrations

Chapitre 3. Eléments pour comprendre et écrire des démonstrations Chapitre 3 Eléments pour comprendre et écrire des démonstrations Une des tâches essentielles en mathématique est de chercher à s assurer que telle ou telle proposition est vraie ou fausse. Il ne suffit

Plus en détail

CH.2 CODES CORRECTEURS

CH.2 CODES CORRECTEURS CH.2 CODES CORRECTEURS 2.1 Le canal bruité 2.2 La distance de Hamming 2.3 Les codes linéaires 2.4 Les codes de Reed-Muller 2.5 Les codes circulaires 2.6 Le câblage des codes circulaires 2.7 Les performances

Plus en détail

Les algorithmes évolutionnistes. INF6953 Les algorithmes évolutionnistes (1) 1

Les algorithmes évolutionnistes. INF6953 Les algorithmes évolutionnistes (1) 1 Les algorithmes évolutionnistes INF6953 Les algorithmes évolutionnistes (1) 1 Métaheuristiques et algorithmes évolutionnistes Les métaheuristiques recherche locale consistent fondamentalement à faire évoluer

Plus en détail

1 FAITES CONNAISSANCE AVEC LA MÉTHODE DES PLANS D EXPÉRIENCES

1 FAITES CONNAISSANCE AVEC LA MÉTHODE DES PLANS D EXPÉRIENCES 1 FAITES CONNAISSANCE AVEC LA MÉTHODE DES PLANS D EXPÉRIENCES Si vous lisez ce livre c est que, probablement, vous faites des expériences et que vous cherchez à mieux les organiser. Vous cherchez surtout

Plus en détail

DPSI V-Match Mode d emploi Version 1.1

DPSI V-Match Mode d emploi Version 1.1 BeMmmng Page 2 de 16 Table des matières 1. Principe de fonctionnement... 4 2. Programmation... 6 2.1. Changement du sens de rotation... 7 2.2. Réglage du neutre... 8 2.3. Réglage des fins de courses...

Plus en détail