Groupe : (h, k) ( 5, 12)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Groupe : (h, k) ( 5, 12)"

Transcription

1 Fiche de soutien Les propriétés de la fonction racine carrée PROPRIÉTÉ FONCTION SOUS FORME CANONIQUE f(x) = a + k (ou f(x) = a 1 + k et a 1 = a ) EXEMPLE f(x) = 2 12 (ou f(x) = 6 12) Coordonnées du sommet (h, k) ( 5, 12) Domaine (dom f) Si b > 0, dom f = [h, + [. Si b < 0, dom f = ], h]. Image (ima f) Croissance et décroissance Zéro de la fonction f Ordonnée à l origine Signe de la fonction f Si a > 0, ima f = [k, + [. Si a < 0, ima f = ], k]. Si a > 0 et b > 0, alors la fonction est croissante sur l intervalle [h, + [. Si a < 0 et b > 0, alors la fonction est décroissante sur l intervalle [h, + [. Si a > 0 et b < 0, alors la fonction est décroissante sur l intervalle ], h]. Si a < 0 et b < 0, alors la fonction est croissante sur l intervalle ], h]. S il existe un zéro, c est la valeur de x pour laquelle f(x) = 0. Si elle existe, c est la va leur de f(0). f(0) = 6 dom f = [ 5, + [ ima f = [ 12, + [ La fonction f est croissante sur l intervalle [ 5, + [. Le zéro est égal à ou f(0) 1,42 Selon l équation de la fonction. La fonction f est : positive sur l intervalle [ 1, + [ ; négative sur l intervalle [ 5, 1]. Extremum Si a > 0, la valeur minimale est k. Si a < 0, la valeur maximale est k. La fonction a un minimum de 12. Éditions Grand Duc Merci de ne pas photocopier Corrigé du matériel reproductible 3-13

2 Fiche de soutien (suite) 1. Écrivez les équations suivantes sous la forme. a) c) b) d) 2. Déterminez le sommet et le zéro, s il existe, des fonctions définies par les équations suivantes. a) c) Sommet : (4, 1) Zéro : (5, 0) Sommet : ( 9, 8) Zéro : ( 25, 0) b) d) Sommet : ( 2, 4) Zéro : Sommet : ( 6, 2) Zéro : Aucun. 3. Tracez le graphique des fonctions suivantes. a) b) 3-14 Corrigé du matériel reproductible Merci de ne pas photocopier Éditions Grand Duc

3 Fiche de soutien (suite) 4. Remplissez le tableau suivant en donnant les caractéristiques des deux fonctions présentées. PROPRIÉTÉ Sommet (1, 3) (2, 3) Domaine dom f = [1, + [ dom g = [2, + [ Image ima f = [3, + [ ima g = ], 3] Croissance et décroissance La fonction f est croissante sur l intervalle [1, + [. La fonction g est décroissante sur l intervalle [2, + [. Zéro de la fonction Aucun. Le zéro est égal à 6,5. Ordonnée à l origine Aucune. Aucune. Signe de la fonction La fonction f est positive sur [1, + [, soit sur tout son domaine. La fonction g est positive sur l intervalle [2, 6,5] et négative sur l intervalle [6,5, + [. Extremum La valeur minimale est 3. La valeur maximale est 3. Graphique Éditions Grand Duc Merci de ne pas photocopier Corrigé du matériel reproductible 3-15

4 Fiche de soutien Trouver l équation d une fonction racine carrée Pour trouver l équation sous la forme canonique d une fonction racine carrée, il suffit de connaître les coordonnées du sommet et un autre point de son graphique. Les coordonnées du sommet donnent les valeurs des paramètres h et k, et l autre point donne le signe du paramètre b. Ainsi, on peut trouver l équation sous la forme canonique ou et. La seconde forme est la plus pratique, car la valeur du paramètre b est limitée à 1 ou 1. De plus, en utilisant cette forme canonique, on obtient une équation unique. Exemple : Trouver l équation de la fonction racine carrée ayant son sommet (extremum) au point de coordonnées (7, 1) et dont le graphique passe par le point ( 9, 4). Les coordonnées du sommet donnent les valeurs des paramètres h et k (ici h = 7 et k = 1). Donc l équation correspond, pour l instant, à. Si l on trace un croquis rapide qui représente le sommet et l autre point du graphique de la fonction, on obtient la représentation ci-contre. Grâce à cette représentation, on voit que, pour que la fonction ait son sommet au point (7, 1) et que son graphique passe par le point ( 9, 4), il faut que les variations de la variable indépendante soient négatives à partir du sommet. Donc, b est négatif et égal à 1 et l équation est de la forme. Ensuite, on peut remplacer les valeurs de x et de y de l équation par les coordonnées du point ( 9, 4) et ainsi trouver la valeur du paramètre a 1. L équation recherchée est donc : Corrigé du matériel reproductible Merci de ne pas photocopier Éditions Grand Duc

5 Fiche de soutien (suite) Résoudre des équations ou des inéquations avec une racine carrée Pour résoudre algébriquement une équation ou une inéquation dans laquelle intervient une fonction racine carrée, il ne faut pas oublier que la fonction racine carrée est définie seulement pour les valeurs positives de l expression contenue sous son radical. On doit donc vérifier si la ou les valeurs obtenues sont cohérentes avec le domaine et l image de la fonction considérée. Exemple : Résoudre l inéquation. On peut représenter graphiquement cette inéquation en traçant d abord le graphique de la fonction racine carrée correspondant au membre de gauche, soit, et le graphique de la fonction affine correspondant au membre de droite, soit. Il s agit donc de trouver toutes les valeurs de la variable x pour lesquelles f(x) g(x). En regardant le graphique ci-contre, représentant les deux fonctions présentes dans l inéquation, on voit que la solution de l inéquation correspond aux valeurs de x à partir de l intersection entre le graphique de la fonction racine carrée et celui de la fonction affine, et jusqu à l abscisse du sommet du graphique de la fonction racine carrée (x = 5). Pour toutes ces valeurs, les valeurs des ordonnées des points de la fonction f sont supérieures ou égales aux valeurs des ordonnées de la fonction g. Il faut donc trouver la valeur de l abscisse à l intersection, en résolvant l équation. En développant cette équation, on obtient l équation 64x 2 12x 451 = 0. Il faut calculer les zéros d une fonction polynomiale du second degré exprimée sous la forme générale (ax 2 + bx + c = 0), soit. On a et (valeur à rejeter). Donc, la solution est x ou bien x 5. Éditions Grand Duc Merci de ne pas photocopier Corrigé du matériel reproductible 3-17

6 Fiche de soutien (suite) 1. Trouvez l équation de la fonction racine carrée qui possède les caractéristiques suivantes. a) Le graphique de la fonction a son sommet en ( 1, 3) et passe par le point (0, 10). b) Le paramètre a = 5, l abscisse du sommet de cette fonction est 8 et son graphique passe par le point (28, 6). 2. Résolvez les équations suivantes. a) c) x = x = 0 et x =. b) d) x = 5 x = Résolvez les inéquations suivantes graphiquement et algébriquement. a) b) f(x) = x + 17 g(x) = f(x) = g(x) lorsque x = 12 (x = 28 est à rejeter). f(x) g(x) lorsque x 12. [12, + [ f(x) = g(x) = 2x + 7 f(x) = g(x) lorsque x = 0 (x = 6 est à rejeter). f(x) g(x) lorsque x 0 et x 6. [ 6, 0] 3-18 Corrigé du matériel reproductible Merci de ne pas photocopier Éditions Grand Duc

7 Exercices supplémentaires 1. Déterminez le sommet, le domaine et le zéro (s il existe) des fonctions suivantes. a) d) Sommet : ( 5, 1) Domaine : [ 5, + [ Sommet : (2, 3) Domaine : [2, + [ Zéro : ( 4, 0) Zéro : (11, 0) b) e) Sommet : (0, 0) Domaine : [0, + [ Sommet : (1, 2) Domaine : [1, + [ Zéro : (0, 0) Zéro : c) f) Sommet : Domaine : Sommet : ( 2, 2) Domaine : ], 2] Zéro : Aucun. Zéro : 2. Résolvez les équations suivantes. a) e) x = x = 2 b) f) x = 3 (x = 4 est à rejeter). x = 5 c) g) x = 0 et x =. x = 3 d) h) x = 16 (x = 9 est à rejeter). x = 11 et x = Donnez l équation d une fonction racine carrée qui possède les caractéristiques suivantes. a) Son zéro est égal à 2 et son sommet est ( 2, 4). b) Son domaine est [ 4, + [, son image est ], 7] et son ordonnée à l origine est 1. Éditions Grand Duc Merci de ne pas photocopier Corrigé du matériel reproductible 3-19

8 Exercices supplémentaires (suite) 4. Tracez le graphique des fonctions suivantes. a) b) c) 5. La trajectoire décrite par un oiseau au cours des trois premières minutes de son envol est donnée par la fonction f(x) = 20, où x représente le temps écoulé depuis qu il a quitté le sol, en secondes, et f(x) son altitude, en mètres. a) Tracez le graphique de cette fonction dans le plan cartésien ci-contre. b) Après deux minutes, quelle est l altitude de l oiseau? Elle est d environ 219,09 m, soit f(120) = 20. c) Après combien de temps l oiseau se trouve-t-il à une altitude de 140 m? Après 49 secondes, soit 140 = Au printemps, 18 jours après le début de la fonte des glaces, on note que le niveau d eau du fleuve Saint-Laurent atteint une hauteur maximale de 50 cm au-dessus du niveau normal. La fonction f(x) = représente le niveau d eau qui est au-dessus du niveau normal, en centimètres, selon x, le nombre de jours écoulés depuis le début de la fonte des glaces. a) Après combien de temps le niveau d eau était-il de 10 cm au-dessus du niveau normal? Après deux jours, soit 10 = b) Quel était le niveau de l eau 14 jours après le début de la fonte des glaces? Il était de 30 cm au-dessus du niveau normal, soit f(x) = Corrigé du matériel reproductible Merci de ne pas photocopier Éditions Grand Duc

9 a1 Évaluation des connaissances Fiche 1 1. Des biologistes tentent de modéliser la croissance d une plante. On souhaite trouver une fonction permettant de déterminer la hauteur de la plante selon le nombre de jours écoulés depuis la mise en terre de la graine. On croit qu une fonction racine carrée pourrait permettre de modéliser cette situation. Le tableau ci-dessous présente les données obtenues pour la même espèce de plante. À l aide d un nuage de points, déterminez la meilleure équation possible pouvant représenter cette situation. Nombre de jours écoulés depuis la plantation Hauteur de la plante (cm) 3,2 7 3,2 3, , ,5 3, ,1 3, ,9 3, ,8 3, ,4 3, ,3 3, ,8 3, , , ,1 3, ,5 L équation est h(x) = 3,48. Démarche : Soit x le nombre de jours écoulés depuis la plantation et y la hauteur de la plante (cm). Le sommet de la courbe est situé sur la droite y = 0. On a donc k = 0. La fonction est nulle lorsque x 6. On a donc h = 6. h(x) = a ou h(x) = a 1 Il faut estimer la valeur de a 1 = a. Par exemple, pour le point (7, 3,2), on a a 1 = 3,2, soit 3,2 = a 1. On trouve la valeur de a 1 pour chacun des points du tableau, puis on calcule la moyenne des valeurs trouvées. La moyenne des a 1 est d environ 3,48, soit 45, Donc, l équation est h(x) = 3,48. Éditions Grand Duc Merci de ne pas photocopier Corrigé du matériel reproductible 3-21

10 Évaluation des connaissances Fiche 1 (suite) 2. En économie, on utilise souvent des fonctions pour représenter la demande et l offre d un produit en fonction de son prix. La demande d un produit augmente lorsque son prix diminue. L offre, quant à elle, augmente lorsque le prix du produit augmente. Le prix d équilibre d un produit correspond au point d intersection de l offre et de la demande. La demande d un produit selon son prix est donnée par la fonction D(x) = et l offre par la fonction O(x) = 0,4x, où x représente le prix du produit. En tentant de trouver le prix d équilibre de ce produit, Maude a obtenu un résultat d environ 2238 $. En observant son graphique, reproduit ci-dessus, elle se rend compte que ce résultat est impossible. Aidez-la à déterminer le prix d équilibre et expliquez d où provient son erreur. Le prix d équilibre est de 161,74 $. Démarche : = 0,4x 8 = 0,4x 240 = 0,05x x 5 = ( 0,05x + 30) 2 3x 5 = 0,0025x 2 3x = 0,0025x 2 6x Donc x 161,74 ou x 2238,26. Il y a deux solutions. Celle qui nous intéresse, dans le contexte, est 161,74. La seconde solution, soit celle que Maude a trouvée, apparaît lorsqu on élève au carré l égalité suivante : = 0,05x En élevant au carré, on introduit une seconde fonction racine carrée. La solution 2238,26 $ correspond à l intersection de la courbe de cette seconde fonction racine carrée avec la droite représentant l offre Corrigé du matériel reproductible Merci de ne pas photocopier Éditions Grand Duc

11 Évaluation des connaissances Fiche 2 1. Mathieu doit résoudre le problème suivant. Un point est situé sur la ligne horizontale y = 6 dans le plan cartésien. On déplace le point sur cette ligne (vers la gauche ou vers la droite) et on veut connaître la distance séparant ce point de l origine, selon la coordonnée en x du point (la coordonnée en y est toujours 6). Mathieu a trouvé la fonction d(x) =, mais son enseignante prétend que ce n est pas la bonne fonction. Mathieu dit que la fonction est croissante et qu elle passe par le point (0, 6), ce qui est plausible dans le contexte. Tracez le graphique de la fonction que Mathieu a trouvée et dites si cette fonction est la bonne ou non. Si ce n est pas le cas, tracez également le graphique de la bonne fonction. La fonction trouvée par Mathieu n est pas bonne. La bonne fonction est d(x) =. Démarche : La fonction de Mathieu, d(x) = le graphique ci-dessus., est représentée par la courbe en gris sur Il est vrai que la fonction représentant cette situation doit passer par le point (0, 6) et qu elle est croissante, mais si on observe la courbe en gris sur le graphique, on remarque que la croissance n est pas assez grande. Par exemple, lorsque x = 10, la distance entre les points (10, 6) et (0, 0) devrait être plus grande que 10, mais on voit facilement que ce n est pas le cas sur le graphique. Il faut donc trouver la bonne fonction. Soit x l abscisse d un point situé sur la droite y = 6 et d(x) la distance séparant le point (x, 6) de l origine. On a donc P 1 (0, 0) et P 2 (x, 6). d(x) = d(x) = d(x) = La bonne fonction est illustrée par la courbe en noir sur le graphique. Éditions Grand Duc Merci de ne pas photocopier Corrigé du matériel reproductible 3-23

12 Évaluation des connaissances Fiche 2 (suite) 2. Lorsqu un corps tombe en chute libre, et que sa vitesse initiale est nulle, on peut déterminer la hauteur de l objet à l aide de l équation suivante. h = h 0 + at 2, où h est la hauteur de l objet ; h 0 est la hauteur initiale de l objet ; a = 9,8 m/s 2 est l accélération gravitationnelle ; t est le temps en secondes. Un objet est lâché du toit d un édifice de 80 m de hauteur. On veut connaître le temps que met l objet avant de toucher le sol. a) Trouvez une fonction permettant de calculer le temps écoulé depuis que l objet a été lâché, en fonction de la hauteur de l objet. h = h 0 + at 2 h h 0 = at 2 t = t = = t 2 b) Représentez graphiquement cette fonction et indiquez, sur le graphique, les points correspondant au moment où l objet est lâché et au moment où l objet touche le sol. Le moment où l objet est lâché correspond au point A sur le graphique ci-contre, et le moment où l objet touche le sol correspond au point B. c) Estimez le temps de chute de l objet. Environ 4,04 secondes, soit t = Corrigé du matériel reproductible Merci de ne pas photocopier Éditions Grand Duc

La fonction racine carrée. Document B. Table des matières

La fonction racine carrée. Document B. Table des matières 1 La fonction racine carrée Document B Table des matières - Résolution algébriques d équations avec racine carrée, p.2 à 8; - Règles sous la forme canonique avec b 1 et b = 1, p.9-10; - Équation axe de

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

Les paraboles. x ax 2 + bx + c.

Les paraboles. x ax 2 + bx + c. 1ES Résumé du cours sur le second degré. Les paraboles. On appelle fonction du second degré une fonction de la forme x ax 2 + bx + c. Bien sûr a doit être différent de 0 sinon ce n est pas une fonction

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009 Second degré Christophe ROSSIGNOL Année scolaire 008/009 Table des matières 1 Polynômes du second degré 1.1 Définition................................................. 1. Forme canonique.............................................

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS. 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS

CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS. 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS On peut effectuer les quatre opérations de base sur des fonctions, c est-à-dire les additionner, les soustraire,

Plus en détail

CH VI Notion de fonctions : les fonctions linéaires et affines.

CH VI Notion de fonctions : les fonctions linéaires et affines. CH VI Notion de fonctions : les fonctions linéaires et affines. I) Activités : Activité 1 : Relier les points correspondants. [- ; 3] Ensemble des réels x tels que x [ ; + [ Ensemble des réels x tels que

Plus en détail

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières Chapitre 4 Fonctions affines et équations du 1 er degré. TABLE DES MATIÈRES page -1 Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières I Exercices I-1 1................................................

Plus en détail

Fonctions affines Exercices corrigés

Fonctions affines Exercices corrigés Fonctions affines Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : antécédent, image, résolution d équation, représentation graphique d une fonction affine (coefficient directeur et ordonnée

Plus en détail

Séquence 7 : Fonctions affines. Seconde. Séance 1 Généralités. est appelée fonction affine. est une fonction affine si son expression algébrique vaut

Séquence 7 : Fonctions affines. Seconde. Séance 1 Généralités. est appelée fonction affine. est une fonction affine si son expression algébrique vaut Seconde Définition : Soient Séquence 7 : Fonctions affines Séance 1 Généralités deux nombres réels La fonction { est appelée fonction affine Concrètement, est une fonction affine si son expression algébrique

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations nde Eléments de correction du DNS 1 Lectures graphiques Soient f et g deux fonctions définies sur IR. Leurs représentations graphiques, notées respectivement C f et C g, sont tracées dans le repère ci-dessous.

Plus en détail

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines Cours 7 FONCTIONS USUELLES Parité d une fonction Définition Soit f une fonction définie sur un ensemble D. On dit que f est paire si : { D est symétrique par rapport à 0 Pour tout x D, f ( x) = f (x) On

Plus en détail

Domaine: Codomaine: Croissance: Décroissance: Extremum:

Domaine: Codomaine: Croissance: Décroissance: Extremum: 2. Fais l analyse de la fonction représentée ci-dessous. a) Domaine: Codomaine: Croissance: Décroissance: Extremum: b) Domaine: Codomaine: Croissance: Décroissance: Extremum: 3. Représente graphiquement

Plus en détail

CQP 208. Chapitre 5 Optimisation. Olivier Godin. 20 novembre 2015. Université de Sherbrooke. Optimisation 1 / 50

CQP 208. Chapitre 5 Optimisation. Olivier Godin. 20 novembre 2015. Université de Sherbrooke. Optimisation 1 / 50 CQP 208 Chapitre 5 Optimisation Olivier Godin Université de Sherbrooke 20 novembre 2015 Optimisation 1 / 50 Plan du chapitre 1 Croissance, décroissance et extremums relatifs d une fonction 2 Extremums

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Chapitre 7. Les fonctions de références

Chapitre 7. Les fonctions de références Chapitre 7 Les fonctions de références I Rappels sur les fonctions I1 Domaine de définition I2 Les variations I3 Parité II Les fonctions de référence II1 Fonctions affines II2 Fonction carré II3 Fonction

Plus en détail

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes.

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes. www.mathsenligne.com 2N3 - FONCTION CARRE ET SECOND DEGRE COURS (1/6) CONTENUS CAPACITES ATTENDUES COMMENTAIRES Expressions algébriques Transformations d expressions algébriques en vue d une résolution

Plus en détail

FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES

FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES SYNTHESE ( THEME 9 ) FONCTIONS (2) : FONCTIONS AFFINES REPRESENTATIONS GRAPHIQUES A - FONCTION AFFINE A : DEFINITION ET NOTATION a et b étant deux nombres fixés, on appelle fonction affine tout processus

Plus en détail

I- FONCTION DE RÉFÉRENCE. Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine

I- FONCTION DE RÉFÉRENCE. Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine Première Maths FONCTIONS DE LA FORME f+g ET kf I- FONCTION DE RÉFÉRENCE Les fonctions de référence 1, et ² ainsi que leurs utilisations ont été abordées en classe de seconde. a) Fonction affine Elle est

Plus en détail

Variations des fonctions

Variations des fonctions CH2-1er S Variations des fonctions Rédacteur : Yann BANC Le mot du prof : Ce chapitre vous permet de revoir les fonctions usuelles et de découvrir de nouvelles fonctions usuelles : valeur absolue et racine

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012 Lycée Marlioz - Aix les Bains Bac Blanc 2012 Mathématiques - Terminale E Candidats n ayant pas choisi la spécialité maths 16 mai 2012 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Courbes représentatives de fonctions

Courbes représentatives de fonctions Courbes représentatives de fonctions I) Définitions. Soit une fonction définie sur un intervalle, à valeurs dans. 1) Graphe de la fonction. a) Définition. Le graphe de la fonction est l ensemble des couples

Plus en détail

119 exercices de mathématiques pour 1 re S

119 exercices de mathématiques pour 1 re S mai 06 9 exercices de mathématiques pour re S Stéphane PASQUET Sommaire Disponible sur http: // www. mathweb. fr mai 06 I Le second degré.................................. I. Calcul de discriminant et

Plus en détail

La réciproque est fausse : les droites parallèles à l axe des ordonnées ne sont pas des représentations graphiques de fonction

La réciproque est fausse : les droites parallèles à l axe des ordonnées ne sont pas des représentations graphiques de fonction S Cours Les fonctions affines Par cœur : définition d une fonction affine Soit a et b deux réels. Une fonction définie sur R par : f(x) = ax + b est appelée fonction affine. De plus, a = Variation des

Plus en détail

1 C est quoi une fonction? 2. 2 Représentation graphique d une fonction. 6. 3 Fonction affine. 8. 4 Représentation graphique d une fonction affine.

1 C est quoi une fonction? 2. 2 Représentation graphique d une fonction. 6. 3 Fonction affine. 8. 4 Représentation graphique d une fonction affine. Sommaire 1 C est quoi une fonction? 2 2 Représentation graphique d une fonction. 6 3 Fonction affine. 8 4 Représentation graphique d une fonction affine. 10 5 Coefficient directeur d une fonction affine.

Plus en détail

LES FONCTIONS LINEAIRES ET AFFINES

LES FONCTIONS LINEAIRES ET AFFINES LES FONCTIONS LINEAIRES ET AFFINES I) Les fonctions linéaires : 1) Activité: 2) Définition : Une fonction linéaire f est une fonction définie par f(x) = ax ( ou f : x ax ) où a est un nombre réel et x

Plus en détail

C(x) = 5 9. et h = 160

C(x) = 5 9. et h = 160 Chapitre Fonctions affines. Définition Définition. La fonction définie par f : R R = m+h où m et h sont des nombres réels, est appelée fonction affine. Eemple La fonction C() qui permet de convertir des

Plus en détail

Séance 1 : Notion de fonction : fonction linéaire et fonction affine

Séance 1 : Notion de fonction : fonction linéaire et fonction affine Séance 1 : Notion de fonction : fonction linéaire et fonction affine La première partie de la première séance est dédiée à la lecture de la fiche méthodologique. Pourquoi débuter les révisions par une

Plus en détail

Fonctions. Fonctions linéaires, affines et constantes

Fonctions. Fonctions linéaires, affines et constantes linéaires, affines et constantes 1. linéaires Comme il existe une infinité de fonctions différentes, on les classe par catégories. La première catégorie est constituée par les fonctions linéaires. Une

Plus en détail

Bac Blanc de Mathématiques Correction Durée : 3 heures

Bac Blanc de Mathématiques Correction Durée : 3 heures Terminale STG Mercatique Jeudi 1 avril 2010 Bac Blanc de Mathématiques Correction Durée : 3 heures L usage de la calculatrice est autorisé. Le sujet comporte 6 pages. EXERCICE 1 3 points Cet eercice est

Plus en détail

Physique - Chimie Energie de position- Energie cinétique Energie mécanique Conservation de l énergie mécanique

Physique - Chimie Energie de position- Energie cinétique Energie mécanique Conservation de l énergie mécanique Document du professeur 1/7 Niveau 3 ème Physique - Chimie Energie de position- Energie cinétique Energie mécanique Conservation de l énergie mécanique Programme C. De la gravitation à l énergie mécanique

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

Sujet A. g :x 4x 2 (en vert)

Sujet A. g :x 4x 2 (en vert) Exercice I ( points) Sujet A Compléter les phrases suivantes : Une situation de proportionnalité est représentée en mathématiques par une fonction. Une fonction affine est une relation de la forme f(x)

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - fonctions de références, représentations graphiques, dérivées, tableau de variations : toutes sections - opérations sur les limites, asymptotes : STI2D,

Plus en détail

Brevet de technicien supérieur Comptabilité et gestion des organisations

Brevet de technicien supérieur Comptabilité et gestion des organisations Comptabilité et gestion des organisations Lycée Cassini Exercice 1 11 points A. Étude d une fonction Soit f la fonction définie sur l intervalle [1 ; 14] par x+ 1 ln x f (x)=. x 1. a. Démontrer que. pour

Plus en détail

Fonctions à deux variables

Fonctions à deux variables Fonctions à deux variables ECE Lcée Carnot 5 janvier Aspect graphique Définition. Une fonction à deux variables est une application f : D R, où D est une sous-ensemble du plan R appelé domaine de définition

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

2 Fonctions affines : définitions et propriétés fondamentales

2 Fonctions affines : définitions et propriétés fondamentales Chapitre 3 : Fonctions affines Dans tout ce chapitre, le plan est muni d un repère. 1 Rappels sur les équations de droite Une droite qui n est pas verticale a une unique équation du type y = ax + b, qu

Plus en détail

Généralités sur les fonctions ( En seconde )

Généralités sur les fonctions ( En seconde ) Généralités sur les fonctions ( En seconde ) Dernière mise à jour : Dimanche 31 Octobre 2010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2010-2011) Lycée Stendhal, Grenoble ( Document

Plus en détail

Lecture graphique. Table des matières

Lecture graphique. Table des matières Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................

Plus en détail

Fonctions affines. Notation1 Notation 2

Fonctions affines. Notation1 Notation 2 I/ Fonctions affines 1 ) Définition Fonctions affines Une fonction est affine lorsque l image d un nombre où a et b sont deux nombres quelconques connus. peut s écrire sous la forme Les nombres a et b

Plus en détail

FONCTIONS LINEAIRES ET FONCTIONS AFFINES

FONCTIONS LINEAIRES ET FONCTIONS AFFINES Chapitre 3 FONCTIONS LINEAIRES ET FONCTIONS AFFINES Terminale BEP Objectifs (à la fin du chapitre, je dois être capable de ) : - Différencier fonction affine et linéaire. - Calculer une image. - Déterminer

Plus en détail

GÉNÉRALITÉS SUR LES FONCTIONS

GÉNÉRALITÉS SUR LES FONCTIONS . Qu'est-ce qu'une fonction? Vocabulaire GÉNÉRALITÉS SUR LES FONCTIONS Définition Notion de fonction À chaque fois que l'on associe à une quantité une (autre) quantité, on dit que que l'on définit une

Plus en détail

Deuxième partie : L'objectif est de déterminer la valeur de x pour laquelle l'aire de l'entrepôt est maximale.

Deuxième partie : L'objectif est de déterminer la valeur de x pour laquelle l'aire de l'entrepôt est maximale. EXERCICES SUR LES FONCTIONS DU SECOND DEGRÉ Exercice 1 Une entreprise doit aménager un bâtiment industriel, constitué de trois parties : un atelier, un hall d'exposition et un entrepôt. La figure ci-dessous

Plus en détail

Second degré Forme canonique d un trinôme Exercices corrigés

Second degré Forme canonique d un trinôme Exercices corrigés Second degré Forme canonique d un trinôme Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : reconnaître une forme canonique Exercice 2 :

Plus en détail

Calculs et Fonctions. Commandes Calculs et Fonctions

Calculs et Fonctions. Commandes Calculs et Fonctions Calculs et Fonctions Commandes Calculs et Fonctions Asymptote CercleOsculateur Coefficients Courbe CourbeImplicite Courbure Degré Dénominateur Dérivée ElémentsSimples Extremum Facteurs Fonction Intégrale

Plus en détail

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne Séquence 3 1 ère partie : Second degré e partie : Probabilités (1) Séquence 3 MA1 1 1 ère partie Second degré Sommaire 1. Pré-requis. Forme canonique, étude d une fonction du second degré 3. Équation du

Plus en détail

Baccalauréat STG C.G.R.H. Polynésie 5 septembre 2013 Correction

Baccalauréat STG C.G.R.H. Polynésie 5 septembre 2013 Correction Baccalauréat STG C.G.R.H. Polynésie 5 septembre 2013 Correction EXERCICE 1 8 points La société Bonbon.com commercialise des confiseries. On utilise une feuille de calcul d un tableur pour observer l évolution

Plus en détail

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs

MATHEMATIQUES BTS1 2013-2014 Corrigés des devoirs MATHEMATIQUES BTS1 2013-201 Corrigés des devoirs CC 23 /09/2013 page2 CC 18/10/2013 page DV 25/11/2013 page 6 BTS Blanc 13/12/2013 page 8 CC 07/01/201 page 12 CC 0/02/201 page 1 BTS Blanc 27/02/201 page

Plus en détail

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule

Plus en détail

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS Auteur : Alain Ladureau DÉVELOPPEMENTS LIMITÉS TI-Nspire CAS 1. Objectifs Découvrir la notion de développement limité. Utiliser des développements limités dans l étude locale des fonctions. Les appliquer

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Suites numériques. Sommaire :

Suites numériques. Sommaire : Suites numériques I Activité n o 2 page 295 Sommaire : II Généralités sur les suites numériques III Variations et bornes IV Suites arithmétiques V Suites géométriques VI Suites convergentes VII Représentation

Plus en détail

Utiliser DYNAMIC pour étudier des enregistrements vidéo de mouvements. 1 Relativité du mouvement en classe de Seconde :

Utiliser DYNAMIC pour étudier des enregistrements vidéo de mouvements. 1 Relativité du mouvement en classe de Seconde : Utiliser DYNAMIC pour étudier des enregistrements vidéo de mouvements 1 Relativité du mouvement en classe de Seconde : 1.1 Programme : Exemples d activités Contenus Connaissances et savoir-faire exigibles

Plus en détail

Corrigé du baccalauréat ES Pondichéry 16 avril 2015

Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Exercice 1 Commun à tous les candidats 5 points Partie A On appelle B l événement «la batterie est défectueuse» ; l événement «le disque dur est défectueux».

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

Chapitre 5. Le monopole

Chapitre 5. Le monopole Chapitre 5. Le monopole 5.1. Présentation. Une entreprise est dite en situation de monopole lorsqu elle est l unique offreur sur le marché d un bien, si le nombre de demandeurs sur le marché est grand

Plus en détail

Table des matières LES FONCTIONS POLYNOMIALES

Table des matières LES FONCTIONS POLYNOMIALES Table des matières LES FONCTIONS POLYNOMIALES 1 Différents types de fonctions polynomiales Étude des différentes fonctions polynomiales.1 Les fonctions constantes.1.1 La fonction constante de base.1. La

Plus en détail

Simplification d expressions contenant des valeurs absolues & applications

Simplification d expressions contenant des valeurs absolues & applications Simplification d epressions contenant des valeurs absolues & applications Rappelons la définition de la valeur absolue : si 0 ( R ) si 0 En d autres termes, la valeur absolue d un réel positif est ce réel,

Plus en détail

EQUATIONS, INEQUATIONS

EQUATIONS, INEQUATIONS 1 sur 13 EQUATIONS, INEQUATIONS I. Résolution d équations Activité conseillée p126 activité1 : Notion d équation et d inéquation Activité conseillée p60 activité1 : Notion d équation et d inéquation -p140

Plus en détail

TES-sujets de révisions BAC Amérique du sud nov. 2009

TES-sujets de révisions BAC Amérique du sud nov. 2009 TES-sujets de révisions BAC Amérique du sud nov. 009 Exercice 3 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des trois réponses est exacte. Indiquer

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

CHAPITRE 3 Repères, points et droites

CHAPITRE 3 Repères, points et droites CHAPITRE 3 Repères, points et droites A) Repères et coordonnées des points 1) Repères Pour représenter le plan en géométrie analytique, on a besoin de définir deux axes, qu'on appelle axe des abscisses

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

Corrigé du baccalauréat ES Asie 19 juin 2014

Corrigé du baccalauréat ES Asie 19 juin 2014 Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe

Plus en détail

Une société propose une formule d abonnement de 28 mensuel pour un forfait de 2 heures de communication et 0,50 par minute de dépassement.

Une société propose une formule d abonnement de 28 mensuel pour un forfait de 2 heures de communication et 0,50 par minute de dépassement. Fonction affine I) Définition et exemples 1) Définition Soit a et b deux nombres connus et fixés. Une fonction affine est une fonction numérique de la forme : ou 2) Exemples: Exemple 1 : Une société propose

Plus en détail

Amérique du Sud, novembre 2006

Amérique du Sud, novembre 2006 Exercice 1 ( 5 points) Commun à tous les candidats Un hôpital est composé de trois services : service de soins A, service de soins B, service de soins C. On s intéresse aux prises de sang effectuées dans

Plus en détail

Inde, avril 2014, exercice 1

Inde, avril 2014, exercice 1 Sujet 1 Inde, avril 2014, exercice 1 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1 La durée de vie, exprimée en années, d un moteur pour automatiser

Plus en détail

2 nde CORRIGE : DEVOIR COMMUN DE

2 nde CORRIGE : DEVOIR COMMUN DE 2 nde CORRIGE : DEVOIR COMMUN DE MATHEMATIQUES Exercice 1 : (4 points) 1. Compléter le tableau à double entrée ci-dessous. Elèves vaccinés Elèves non vaccinés Total Elèves ayant eu la grippe 14 133 147

Plus en détail

On hachurera la partie du plan qui ne convient pas sans aucune justification.

On hachurera la partie du plan qui ne convient pas sans aucune justification. Exercice 1 (7 points) : PARTIE I En annexe 1, à rendre avec la copie, on a construit dans un repère orthonormal les droites D et D d équations respectives D : x + y = 6 et D : x + 2y = 8. Déterminer graphiquement

Plus en détail

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations

Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Brevet de technicien supérieur Métropole Session mai 2014 - Comptabilité et gestion des organisations Exercice 1 11 points Une entreprise fabrique un certain type d articles. Sa capacité maximale de production

Plus en détail

Devoir Surveillé n 2

Devoir Surveillé n 2 Devoir Surveillé n 2 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.

Plus en détail

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES D EXERCICES REGROUPÉS PAR THÈME

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES D EXERCICES REGROUPÉS PAR THÈME mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

INÉQUATIONS. Notations Inéquations Représentations graphiques 1 ]a ; b[ a < x < b

INÉQUATIONS. Notations Inéquations Représentations graphiques 1 ]a ; b[ a < x < b 27 5. Inéquations 5.1. Définition Exemple : x < 4 + 2x La droite réelle Le symbole utilisé pour les intervalles infinis est une notation et ne représente pas un nombre réel. Une inéquation affirme que

Plus en détail

Centres étrangers 2014. Enseignement spécifique

Centres étrangers 2014. Enseignement spécifique Centres étrangers 214. Enseignement spécifique EXERCICE 3 (7 points) (commun à tous les candidats) Les parties A et B sont indépendantes Une image numérique en noir et blanc est composée de petits carrés

Plus en détail

Notion de champ. PARtiE 3. Le programme. Évaluation diagnostique p. 216. CoMPrEndrE Champs et forces

Notion de champ. PARtiE 3. Le programme. Évaluation diagnostique p. 216. CoMPrEndrE Champs et forces PARtiE 3 Manuel unique, p. 216 ( Manuel de physique, p. 102) Notion de champ séquence 1 Le programme notions et contenus Exemples de champs scalaires et vectoriels : pression, température, vitesse dans

Plus en détail

Baccalauréat ES Antilles Guyane juin 2009

Baccalauréat ES Antilles Guyane juin 2009 Baccalauréat ES Antilles uyane juin 2009 EXERCICE PARTIE A : aucune justification n est demandée 4 points Cette partie est un questionnaire à choix multiples. Pour chacune des questions, trois réponses

Plus en détail

DÉRIVATION (Partie 1) I. Fonction dérivée d une fonction polynôme du second degré

DÉRIVATION (Partie 1) I. Fonction dérivée d une fonction polynôme du second degré 1 sur 5 DÉRIVATION (Partie 1) Le mot «dérivé» vient du latin «derivare» qui signifiait «détourner un cours d eau». Le mot a été introduit par le mathématicien franco-italien Joseph Louis Lagrange (1736

Plus en détail

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP)

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) SESSION DE 2005 concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) section : mathématiques deuxième composition de mathématiques (épreuve de remplacement)

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2011 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 5 pages numérotées de 1 à 5. Du papier millimétré est mis à la disposition des

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Contrôle commun : 4 heures

Contrôle commun : 4 heures Exercice 1 (5 points) Contrôle commun : 4 heures PARTIE A On considère la fonction f définie sur l intervalle ]0 ; + [ par f(x) = ln x + x. 1. Déterminer les limites de la fonction f en 0 et en +.. Étudier

Plus en détail

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve... Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Baccalauréat ES Nouvelle-Calédonie novembre 2007

Baccalauréat ES Nouvelle-Calédonie novembre 2007 accalauréat S Nouvelle-alédonie novembre 007 XRI points ommun à tous les candidats Soit f une fonction définie et dérivable sur l intervalle ]0 ; [, strictement croissante sur l intervalle ]0 ; ] et strictement

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1 BREVET BLANC DE MATHEMATIQUES Mai 2010 La calculatrice est autorisée. Le soin et la qualité de la rédaction seront pris en compte dans la notation. N candidat : Observations Présentation et rédaction :

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Université du Québec à Montréal Introduction à l optimisation Donnée dans le cadre du cours Microéconomie II ECO2012 Baccalauréat en économique Par Dominique Duchesneau 21 janvier septembre 2008 Ce document

Plus en détail

1 Introduction. 2 Fonctions linéaires, fonctions affines. 2.1 Définitions. Fonctions linéaires et fonctions affines Cours. Objectifs du chapitre

1 Introduction. 2 Fonctions linéaires, fonctions affines. 2.1 Définitions. Fonctions linéaires et fonctions affines Cours. Objectifs du chapitre Fonctions linéaires et fonctions affines Cours Objectifs du chapitre Connaitre le sens de variation d une fonction affine. Connaitre le signe d une fonction affine. 1 Introduction Activité 2 Fonctions

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière PRO 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde PRO partie première PRO partie terminale PRO Sommaire

Plus en détail

Fonctions de référence

Fonctions de référence CLASSE : 2nde Durée approximative : 1 H DS 2N3 Correction Fonctions de référence EXERCICE 1 : / 4 points Difficulté : L'alcoolémie est le taux d'alcool présent dans le sang. Elle se mesure généralement

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail