PLACE DES STATISTIQUES DANS LA RECHERCHE MEDICALE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "PLACE DES STATISTIQUES DANS LA RECHERCHE MEDICALE"

Transcription

1 PLACE DES STATISTIQUES DANS LA RECHERCHE MEDICALE

2 PLAN Définition des statistiques Échantillonnage Mise en place d une étude Interprétation des résultats Petits échantillons Analyse des bases de données Méthodes multivariées Exemples Grands échantillons

3 INTRODUCTION

4 La Statistique et les Biostatistiques La STATISTIQUE : discipline traitant du recueil (plans d expérience, sondages, ), du traitement et de l interprétation de données caractérisées par une grande variabilité. Partie des mathématiques appliquées, utilisant la théorie des probabilités. Beaucoup de domaines d applications Sondages : enquêtes d opinion Industrie : contrôle de qualité Marketing : scoring, profil de consommateurs Médecine : épidémiologie, recherche clinique.. Statistiques appliquées à la Médecine = BIOSTATISTIQUES Données spécifiques : variabilité inter et intra, données interprétées, Méthodes spécifiques : survie, courbes ROC, plans d expérience

5 Problématique actuelle Révolution Informatique Multiplication des sources de données ( SIH, Internet,.) Explosion des moyens de calculs (PC 4GHz) Mise à disposition de plus en plus de logiciels de plus en plus évolués (SPSS, STATVIEW, S+, STATISTICA, R.) Nouveaux enjeux Politique de Recherche et de Publication Rigueur exigée Besoin de méthodes exploratoires efficaces (grandes bases de données) Nécessité d une méthodologie statistique rigoureuse

6 Méthodologie statistique Employer bien sûr la " bonne" procédure statistique pendant l analyse MAIS cela ne suffit pas Choisir le bon type d étude Choisir le bon plan d expérience Choisir les bons critères de jugement Qualité des données recueillies Avant l étude Analyse statistique rigoureuse (tests, modèles, ) Bonne interprétation des résultats Fin d étude

7 Schéma général d une étude Projet : Objectifs, Bibliographie Plan d analyse Echantillon Recueil des données Analyse Descriptive Analyse Inférentielle Interprétation Rapport

8 L Échantillonnage

9 L inférence statistique On désire étudier une population P Principe : On tire un échantillon E de taille n issu de P On analyse les caractéristiques de E On généralise à P Attention!! E doit être un échantillon représentatif de P E doit être de taille suffisamment élevée pour pouvoir extrapoler les résultats Définir très précisément la population que l on désire étudier!!

10 Les fluctuations d échantillonnage Quand on tire aléatoirement un échantillon, on a des fluctuations. Exemple : on s intéresse aux 10 premiers étudiants entrant dans l amphi. On comptabilise 7 femmes et 3 hommes. Peut-on en déduire que 70% des étudiants sont des femmes? NON!!! Soit X le nombre de femmes parmi les 10 étudiants. On peut montrer que X suit une loi binomiale de taille 10 et de paramètre 0.5 (on considère que dans la population totale, les proportions d hommes et de femmes sont les mêmes) et calculer la probabilité d observer 0,1,2,,10 femmes P(X=k)

11 Les prendre en compte Comment prendre en compte les fluctuations d échantillonnage? 1) En vérifiant que l échantillon est représentatif (tests d adéquation par exemple) 2) En donnant la marge d erreur que l on commet en raisonnant sur un échantillon (Intervalles de confiance) 3) En maîtrisant les risques d erreurs (puissance)

12 Mise en Place d une Étude

13 Les différents types d études + Étude rétrospective : Étude la plus fréquente Pas d inclusion de patients Collecte de données à partir des dossiers Rapide et simple à mettre en œuvre - Comparabilité des groupes Qualité des données recueillies + Étude prospective pilote En général, peu de patients Qualité des données Sert à déterminer des caractéristiques pour une étude comparative contrôlée. - Pas de comparaisons Résultats limités

14 Les différents types d études + Étude prospective contrôlée (essai contrôlé) : Cas le plus complexe Résultats fiables (Puissance calculée au début de l étude) Critères d inclusion + Randomisation / Comparabilité des groupes Critères de jugement définis au début - Étude longue ( en général, 3 ans minimum). Peut être coûteuse + Étude épidémiologique, Cohorte, Résultats fiables (Puissance statistique) - Grand nombre de sujets Suivi au cours du temps (10,15 ans!!) Multicentrique

15 Mise en Place d une Étude Dans tous les cas, rédaction d un protocole!! Protocole

16 Conseils pour la Rédaction du Protocole L'introduction : ce paragraphe a pour objectifs : de décrire l'état actuel des connaissances sur le sujet d'expliquer le problème scientifique Les objectifs de l'étude : il s'agit de décrire en quelques phrases l'objectif principal de l'étude et les objectifs secondaires. Ces objectifs doivent être précis et déduits du paragraphe précédent. La sélection des patients : ce paragraphe a pour objectifs : de décrire la méthode de recrutement, de définir des groupes éventuels, de préciser les critères d'inclusion et de non-inclusion. Les critères de jugement : définir précisément le critère de jugement principal et éventuellement les critères secondaires : pourcentage de guérison, mesure d'un paramètre biologique, score, durée de vie, Ce critère conditionne le type d'analyse statistique.

17 Conseils pour la Rédaction du Protocole Plan d'expérience : expliciter le plan d'expérience envisagé : groupes parallèles, plan 2x2, crossover, nombre de sujets recrutés : s'il est basé sur un calcul de nombre de sujets nécessaires, indiquer les éléments du calcul, sinon justifier le nombre choisi (données bibliographiques, étude exploratoire...). durée prévue de l'étude. Information recueillie : description des paramètres enregistrés, mode de recueil. Analyses statistiques : décrire brièvement le type d'analyses statistiques envisagées. Documents annexes : lettre d'information, consentement éclairé, références bibliographiques, cahier d'observation, CV des investigateurs.

18 Quelques aspects statistiques Détermination du plan d expérience groupes parallèles, plans factoriels appariement, stratification cross-over, carré latin Discussion sur les variables analysées : critères de jugement (principal et secondaires), dans le cas d un essai clinique Attention, la multiplication des hypothèses et des tests rend la conclusion de l étude très difficile : l étude doit être bâti autour de quelques questions précises Type d analyses statistiques prévues Détermination de la taille des échantillons

19 Que veut-on montrer?? Efficacité ou Équivalence? Les essais d efficacité : on suppose l égalité des traitements et on cherche à rejeter l hypothèse Les essais d équivalence : on considère que deux traitements sont équivalents si la différence entre-eux ne dépasse pas. Comparaison de moyennes, de fréquences, de courbes? Test Unilatéral ou Bilatéral? Plan d Expérience? Nombre de groupes? Indépendant / Apparié? Stratification, facteur de confusion,?

20 Les plans d expérience De nombreux types de plan d'expérience. Groupes parallèles +++ comparaisons intra-individuelles Mesures répétées. Le choix entre plusieurs plans doit être fait en tenant compte de leurs avantages et de leurs inconvénients. Le choix du plan détermine : la méthodologie statistique à employer pour l'analyse le nombre de patients à inclure dans l'étude Un plan d'expérience est choisi de manière à optimiser la puissance des tests statistiques tout en minimisant le nombre de patients à inclure dans l'étude.

21 Les Groupes Parallèles Certainement le plan le plus simple et le plus utilisé. L'ensemble des patients est divisé en plusieurs groupes homogènes, de même taille en général, de manière à avoir une comparaison statistique la plus "efficace" possible. Chaque patient reçoit un traitement et un seul. Méthodologie statistique d'analyse simple.(anova 1Facteur) Attention à la comparabilité des groupes de traitements. La variabilité entre les sujets peut être importante.

22 Les comparaisons intra-individuelles Dans ce type d'essai, le sujet est son propre témoin et reçoit donc successivement deux ou plusieurs traitements, dans un ordre aléatoire. Tailles d'échantillon plus faibles, chaque patient étant "utilisé" plusieurs fois Permet de minimiser la variance inter-sujet dans les différents stades de l'expérimentation (efficace si Variance Intra < Variance Inter). Suppose que le sujet soit dans les mêmes conditions dans les différentes phases d'expérimentation Aucun des traitements administrés au cours d'une phase ne doit influencer les résultats de la phase suivante WASH-OUT (période de "sevrage" )

23 Plans Intra-Individuels : 2 Traitements L'essai croisé (cross-over): on compare deux traitements A et B Chaque patient reçoit soit A puis B, ou B puis A. Indispensable d'étudier simultanément l'effet des traitements mais également l'ordre d'administration. Si plus de deux traitements, le cross-over est trop compliqué et l'on utilise alors le carré latin T0 X0 Baseline T0 X0 Baseline A B WASH-OUT X1 X2 X3 Contrôle WASH-OUT X1 X2 X3 Contrôle B A

24 Mesures Répétées 2 Groupes : A et B 1 variable numérique X mesurée k fois (T1, T2,, Tk) A A B A B B Très utilisé!!!! Méthodologie statistique relativement simple (ANOVA en Mesures Répétées)

25 Nombre de cas à inclure dans l étude? On a déterminé le problème clinique On a déterminé le(s) critère(s) de jugement On a défini le plan d expérience adapté Pb : combien, doit-on inclure de patients pour répondre correctement à l hypothèse posée? On utilise un test statistique Notion de puissance

26 Notion de puissance d un test Puissance = F(,N, variabilité = DS) La variabilité peut masquer la différence (2) Puissance dépend du risque de première espèce α, mais inutile en pratique car α fixéà5% Puissance = F(,N,DS) En pratique, on estime et DS et on déduit N

27 Notion de puissance d un test Les deux risques sont antagonistes α = 0 β=1 et β = 0 α= 1 En pratique : on fixe α=5% on se donne sur critères cliniques on estime σ (étude pilote) on a donc «la main» que sur N : on calcule N pour assurer β = 10% ou 20% (puissance > 80%) Formules, tables, logiciels Exemple, pour 2 moyennes : n z = 2( + α 1 z 1 β ) 2 σ ² ²

28 Puissance d un test et Taille d échantillon Comparaison de deux antihypertenseurs avec : Différence à mettre en évidence ( ) : 5mm de mercure Ecart-type (DS): 10 mm Risque de première espèce (α ): 5% Puissance β = 0.9 N1=N2=86 Si N1=N2=30 1-β = 0.48 (1- β = puissance) Nombre de Patients par Groupe Ne pas confondre : Conditions d application du test et Puissance du test

29 Traitement statistique des données

30 Le recueil des données (Data Management) Les résultats statistiques sont fonction des données - Problème de la qualité des données Problème des données manquantes (analyses multivariées)!! Pour certains essais, nécessité de suivre des guidelines (FDA, AMM) 2 approches : Maximaliste : Guidelines ( double saisie, confrontation et gel de la base) Minimaliste : logiciel permettant le contrôle à la saisie (bornes, valeurs autorisées ) Approche 1 : Complexe, longue et coûteuse - A éviter si possible Approche 2 : Approche minimale, quelque soit l essai.

31 Méthodes Statistiques : définitions générales INDIVIDU : Objet sur lequel un ou plusieurs caractères peuvent être observés. POPULATION : Ensemble des individus pris en considération. VARIABLE : Propriété servant à distinguer les individus d'une population. Un caractère peut être qualitatif (attribut) ou quantitatif. DISCRETES (Nombre limité de valeurs) QUANTITATIVES CONTINUES (prend ses valeurs dans un intervalle VARIABLES BINAIRES ( Présent / Absent ) QUALITATIVES NOMINALES (SEXE, Couleur des Yeux, CSP, ) ORDINALES = SCORE (Notion d ordre)

32 Les méthodes statistiques Univariée (moyenne, DS, ) Descriptive Multivariée (ACP, ) La statistique Univariée (tests, ) Inférentielle Multivariée (modèles, )

33 La Statistique Descriptive BUTS : Contrôle de qualité des données, descriptifs simples (moyennes, ). Synthétiser, résumer, structurer l'information contenue dans les données. Mettre en évidence des propriétés de l'échantillon. Suggérer des hypothèses. Analyses univariées : moyennes, histogramme, box-plot, fréquences, Analyses multivariées =Analyse des Données. Permet de traiter des données multidimensionnelles. Principales méthodes multivariées: Méthodes de classification : déterminer des sous-groupes homogènes Méthodes factorielles : réduire le nombre de variables par construction d'axes synthétiques (ACP, AFC, ACM,...), mais aussi sous-groupes d individus 2 classes de méthodes souvent complémentaires Cours N 2

34 La Statistique Inférentielle Univariée BUT : Valider ou infirmer des hypothèses a priori ou formulées après une phase exploratoire. Utilisation de tests statistiques se référant à des modèles probabilistes. EXEMPLES : Comparaison de moyennes ANOVA (+ + +!!!) Comparaison de fréquences Tests de lois...

35 STATISTIQUE DESCRIPTIVE UNIVARIEE

36 Analyse descriptive univariée 3 Objectifs : Contrôle des données : Fréquences et Box-plots Calcul des statistiques descriptives : moyenne,. Présentation des résultats : Moyenne ± Déviation standard Fréquence avec Intervalle de confiance

37 Paramètres statistiques de base Moyenne : x = 1 n n i= 1 x i Variance estimée: n 1 = n 1 i= 1 ( i ) 2 s² x x Déviation standard : racine carrée de la variance Min, Max, Médiane, Quartiles, Centiles

38 Le Box-Plot ( Boîte à Moustaches ) Xmax 0 1,5 (Q3-Q1) Q3 Médiane + II=Q3-Q1 0 : valeur comprise entre 1.5 et 3 interquartiles * : valeur supérieure à 3 interquartiles Q1 1,5 (Q3-Q1) X min

39 Représentations graphiques VARIABLES DISCRETES Femme 45% Homme 55% Homme Femme VARIABLES CONTINUES VARIABLES QUALITATIVES

40 Intervalles de confiance à 95% d un paramètre numérique : si X suit une loi normale x ± 1.96 DS d une moyenne : quelque soit la loi de X, si n > 30 x ± 1.96 n DS d une fréquence si np, nq > 10 p ± 1.96 p(1 - n p)

41 Distribution d un paramètre (loi) Différentes formes observables D e n s i t y X Modélisation de la distribution : Hypothèse de loi

42 Tests de Normalité Hypothèses de normalité requise pour test T, ANOVA régression, Intervalles de confiance (valeurs normales) SHAPIRO-WILK ( N< 50 ) ou KOLMOGOROV-SMIRNOV ( N> 50 ) TEST D'ADEQUATION DU χ²

43 4 Lois principalement rencontrées Loi normale : modélise des phénomènes observés (poids des bébés) ou loi limite Loi Log-normale : équivaut à LnX~ N(m,s) (paramètres biologiques) Loi de Weibull : utilisée en fiabilité des matériels ou survie Loi exponentielle : cas simple de loi de Weibull (survie des ampoules)

44 4 Lois principalement rencontrées Loi Normale (Laplace-Gauss) Loi Log-Normale Loi de Weibull Loi Exponentielle

45 Comparaison de groupes, quel(s) test(s) utiliser?

46 Comparaison de Groupes Choix du test statistique Dépend de : La nature de la variable Du nombre de groupes De la taille des groupes Cas des variables binaires ou qualitatives : Test du χ² ou Fisher exact Variables numériques : plusieurs cas : <5 valeurs différentes : variables nominales. On utilise des tests de rang (nonparamétriques) tels que les tests de Wilcoxon ou Kruskal-Wallis. > 5 valeurs différentes : on considère que la variable est continue. Choix du test fait en fonction de plusieurs critères (algorithme suivant)

47 Comparaison de groupes : variable numérique Variable continue 2 groupes >2 groupes n 1 et n 2 > 30 n 1 ou n 2 < 30 n i < 30 Ecart-réduit X ~ N(m,σ) (biblio) OUI NON Tester variances n i > 30 2 parmi les 3 : 1) groupes équilibrés 2) variances égales 3) distributions similaires homogénéité Non homogénéité OUI NON Student Wilcoxon ANOVA Kruskal-Wallis

48 Des Questions? Patrick Devos Délégation à la Recherche Direction Générale CHRU de Lille CERIM Faculté de Médecine Université de Lille 2

Biostatistiques : Petits effectifs

Biostatistiques : Petits effectifs Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 patrick.devos@univ-lille2.fr Plan Données Générales : Définition des statistiques Principe de l

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Item 169 : Évaluation thérapeutique et niveau de preuve

Item 169 : Évaluation thérapeutique et niveau de preuve Item 169 : Évaluation thérapeutique et niveau de preuve COFER, Collège Français des Enseignants en Rhumatologie Date de création du document 2010-2011 Table des matières ENC :...3 SPECIFIQUE :...3 I Différentes

Plus en détail

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier Statistiques Appliquées à l Expérimentation en Sciences Humaines Christophe Lalanne, Sébastien Georges, Christophe Pallier Table des matières 1 Méthodologie expérimentale et recueil des données 6 1.1 Introduction.......................................

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Aide-mémoire de statistique appliquée à la biologie

Aide-mémoire de statistique appliquée à la biologie Maxime HERVÉ Aide-mémoire de statistique appliquée à la biologie Construire son étude et analyser les résultats à l aide du logiciel R Version 5(2) (2014) AVANT-PROPOS Les phénomènes biologiques ont cela

Plus en détail

Introduction aux Statistiques et à l utilisation du logiciel R

Introduction aux Statistiques et à l utilisation du logiciel R Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil

Plus en détail

IBM SPSS Statistics Base 20

IBM SPSS Statistics Base 20 IBM SPSS Statistics Base 20 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 316. Cette version s applique à IBM SPSS

Plus en détail

PROGRAMME (Susceptible de modifications)

PROGRAMME (Susceptible de modifications) Page 1 sur 8 PROGRAMME (Susceptible de modifications) Partie 1 : Méthodes des revues systématiques Mercredi 29 mai 2013 Introduction, présentation du cours et des participants Rappel des principes et des

Plus en détail

Statistique Descriptive Élémentaire

Statistique Descriptive Élémentaire Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

A. Protocole de recherche (ainsi que l abrégé en langue française)

A. Protocole de recherche (ainsi que l abrégé en langue française) Commission d'éthique cantonale (VD) de la recherche sur l'être humain Av. de Chailly, 23, 1012 Lausanne Courriel : secretariat.cer@vd.ch 5.12.2013/mz Recommandations pour la soumission d un dossier Tous

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1

FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1 INTRODUCTION ça L'INFçERENCE STATISTIQUE 1. Introduction 2. Notion de variable alçeatoire íprçesentation ívariables alçeatoires discrçetes ívariables alçeatoires continues 3. Reprçesentations d'une distribution

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Lecture critique d article Rappels Bio statistiques Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Plan du cours Rappels fondamentaux Statistiques descriptives Notions de tests statistiques

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Études épidémiologiques analytiques et biais

Études épidémiologiques analytiques et biais Master 1 «Conception, évaluation et gestion des essais thérapeutiques» Études épidémiologiques analytiques et biais Roxane Schaub Médecin de santé publique Octobre 2013 1 Objectifs pédagogiques Connaitre

Plus en détail

Audit et Inspection Les contraintes extérieures B.Malivoir

Audit et Inspection Les contraintes extérieures B.Malivoir Audit et Inspection Les contraintes extérieures B.Malivoir Chef de projet Hémato-Onco CHRU Tours Vice Présidente CPP Région Ouest1 Le contexte juridique Directive 2001/20/CE du Parlement européen et du

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

OUTIL D'EVALUATION DU TEMPS ARC / CHEF DE PROJET PROMOTEUR REQUIS POUR UNE RECHERCHE BIOMEDICALE V 2.3 DE L OUTIL NOTICE D UTILISATION

OUTIL D'EVALUATION DU TEMPS ARC / CHEF DE PROJET PROMOTEUR REQUIS POUR UNE RECHERCHE BIOMEDICALE V 2.3 DE L OUTIL NOTICE D UTILISATION OUTIL D'EVALUATION DU TEMPS ARC / CHEF DE PROJET PROMOTEUR REQUIS POUR UNE RECHERCHE BIOMEDICALE V 2.3 DE L OUTIL NOTICE D UTILISATION i) Contexte :... - 2 - ii) But de l outil :... - 2 - iii) Fonctionnement

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION Sylvie Gervais Service des enseignements généraux École de technologie supérieure (sylvie.gervais@etsmtl.ca) Le laboratoire des condensateurs

Plus en détail

GUIDE DE LECTURE CRITIQUE D'UN ARTICLE MEDICAL ORIGINAL (LCA)

GUIDE DE LECTURE CRITIQUE D'UN ARTICLE MEDICAL ORIGINAL (LCA) GUIDE DE LECTURE CRITIQUE D'UN ARTICLE MEDICAL ORIGINAL (LCA) Coordinateurs : B. GOICHOT et N. MEYER Faculté de Médecine de Strasbourg Septembre 2011 PLAN L épreuve de lecture critique d article original

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie Partie I : Séries statistiques descriptives univariées (SSDU) A Introduction Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie et tous sont organisés selon le même

Plus en détail

Evaluation de la variabilité d'un système de mesure

Evaluation de la variabilité d'un système de mesure Evaluation de la variabilité d'un système de mesure Exemple 1: Diamètres des injecteurs de carburant Problème Un fabricant d'injecteurs de carburant installe un nouveau système de mesure numérique. Les

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

LES DIFFERENTS TYPES DE MESURE

LES DIFFERENTS TYPES DE MESURE LES DIFFERENTS TYPES DE MESURE Licence - Statistiques 2004/2005 REALITE ET DONNEES CHIFFREES Recherche = - mesure. - traduction d une réalité en chiffre - abouti à des tableaux, des calculs 1) Qu est-ce

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE

Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

NOTE DE SYNTHESE RELATIVE AUX COMMENTAIRES SUR LE PROJET DE DECRET N 2-14-841 RELATIF A L AUTORISATION DE MISE SUR LE MARCHE DES MEDICAMENTS A USAGE

NOTE DE SYNTHESE RELATIVE AUX COMMENTAIRES SUR LE PROJET DE DECRET N 2-14-841 RELATIF A L AUTORISATION DE MISE SUR LE MARCHE DES MEDICAMENTS A USAGE NOTE DE SYNTHESE RELATIVE AUX COMMENTAIRES SUR LE PROJET DE DECRET N 2-14-841 RELATIF A L AUTORISATION DE MISE SUR LE MARCHE DES MEDICAMENTS A USAGE HUMAIN AVEC LEURS REPONSES CORRESPONDANTES 1 Mme S.

Plus en détail

Chapitre 3 - L'enquête descriptive simple

Chapitre 3 - L'enquête descriptive simple Chapitre 3 - L'enquête descriptive simple Version 1.2 AUTEURS PRINCIPAUX : NELLY AGRINIER - CÉDRIC BAUMANN - ISABELLE FOURNEL CO-AUTEURS : FRANCIS GUILLEMIN - GUY HÉDELIN Septembre 2010 Table des matières

Plus en détail

ELABORATION DU PLAN DE MONITORING ADAPTE POUR UNE RECHERCHE BIOMEDICALE A PROMOTION INSTITUTIONNELLE

ELABORATION DU PLAN DE MONITORING ADAPTE POUR UNE RECHERCHE BIOMEDICALE A PROMOTION INSTITUTIONNELLE Référence HCL : Titre de l étude : ELABORATION DU PLAN DE MONITORING ADAPTE POUR UNE RECHERCHE BIOMEDICALE A PROMOTION INSTITUTIONNELLE Investigateur Coordonnateur : Méthode. Définition du niveau de risque

Plus en détail

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux pressesagro.gembloux@ulg.ac.be www.pressesagro.be

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

METHODOLOGIE GENERALE DE LA RECHERCHE EPIDEMIOLOGIQUE : LES ENQUETES EPIDEMIOLOGIQUES

METHODOLOGIE GENERALE DE LA RECHERCHE EPIDEMIOLOGIQUE : LES ENQUETES EPIDEMIOLOGIQUES Enseignement du Deuxième Cycle des Etudes Médicales Faculté de Médecine de Toulouse Purpan et Toulouse Rangueil Module I «Apprentissage de l exercice médical» Coordonnateurs Pr Alain Grand Pr Daniel Rougé

Plus en détail

Analyse de grandes bases de données en santé

Analyse de grandes bases de données en santé .. Analyse de grandes bases de données en santé Alain Duhamel Michaël Genin Mohamed Lemdani EA 2694 / CERIM Master 2 Recherche Biologie et Santé Journée Thématique Fouille de Données Plan. 1 Problématique.

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Estelle Marcault. 20/01/2012 URC Paris Nord 1

Estelle Marcault. 20/01/2012 URC Paris Nord 1 Estelle Marcault 20/01/2012 URC Paris Nord 1 Définition du Monitoring Surveillance de l avancement d un essai clinique Garantie que la conduite de l essai, les enregistrements et les rapports sont réalisés

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques

Plus en détail

Essais précoces non comparatifs : principes et calcul du nombre de sujets nécessaire

Essais précoces non comparatifs : principes et calcul du nombre de sujets nécessaire Essais précoces non comparatifs : principes et calcul du nombre de sujets nécessaire Sylvie CHABAUD Direction de la Recherche Clinique et de l Innovation : Centre Léon Bérard - Lyon Unité de Biostatistique

Plus en détail

La simulation probabiliste avec Excel

La simulation probabiliste avec Excel La simulation probabiliste avec Ecel (2 e version) Emmanuel Grenier emmanuel.grenier@isab.fr Relu par Kathy Chapelain et Henry P. Aubert Incontournable lorsqu il s agit de gérer des phénomènes aléatoires

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

23. Interprétation clinique des mesures de l effet traitement

23. Interprétation clinique des mesures de l effet traitement 23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d

Plus en détail

Solutions Décisionnelles SPAD. La maîtrise des données, l'art de la décision

Solutions Décisionnelles SPAD. La maîtrise des données, l'art de la décision Solutions Décisionnelles SPAD La maîtrise des données, l'art de la décision SPAD, la référence en Analyse de Données et Data Mining La solution logicielle SPAD permet de tirer le meilleur parti de tous

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Pratique de l analyse de données SPSS appliqué à l enquête «Identités et Capital social en Wallonie»

Pratique de l analyse de données SPSS appliqué à l enquête «Identités et Capital social en Wallonie» Centre de recherche en démographie et sociétés UCL/IACCHOS/DEMO Pratique de l analyse de données SPSS appliqué à l enquête «Identités et Capital social en Wallonie» 1 2 3+ analyses univariées Type de variables

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Evaluation générale de la qualité des données par âge et sexe

Evaluation générale de la qualité des données par âge et sexe Analyse démographique pour la prise des décisions. Tendances, et inégalités de mortalité et de fécondité en Afrique francophone : les outils en ligne de l UNFPA / UIESP pour l'estimation démographique.

Plus en détail

SPHINX Logiciel de dépouillement d enquêtes

SPHINX Logiciel de dépouillement d enquêtes SPHINX Logiciel de dépouillement d enquêtes sphinx50frversion4.doc 1 Les trois stades du SPHINX sont ceux que comporte habituellement toute enquête d opinion: Elaboration du questionnaire (fiche outil

Plus en détail

La politique européenne de la Mutualité Française en matière de dispositifs médicaux

La politique européenne de la Mutualité Française en matière de dispositifs médicaux La politique européenne de la Mutualité Française en matière de dispositifs médicaux Assises du Médicament GT 6 Sabine Bonnot Chargée de mission Politique des produits de santé 6 avril 2011 Sommaire: -

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

MATHÉMATIQUES. Mat-4104

MATHÉMATIQUES. Mat-4104 MATHÉMATIQUES Pré-test D Mat-404 Questionnaire e pas écrire sur le questionnaire Préparé par : M. GHELLACHE Mai 009 Questionnaire Page / 0 Exercice ) En justifiant votre réponse, dites quel type d étude

Plus en détail

First Line and Maintenance in Nonsquamous NSCLC: What Do the Data Tell Us?

First Line and Maintenance in Nonsquamous NSCLC: What Do the Data Tell Us? Dr Jean-Charles Soria : Bonjour et bienvenue dans ce programme. Je suis Jean Charles Soria, Professeur de Médecine et Directeur du programme de développement précoce des médicaments à l université Paris

Plus en détail

ÉTAT DES LIEUX. Niveau de preuve et gradation des recommandations de bonne pratique

ÉTAT DES LIEUX. Niveau de preuve et gradation des recommandations de bonne pratique ÉTAT DES LIEUX Niveau de preuve et gradation des recommandations de bonne pratique Avril 2013 Les recommandations et leur synthèse sont téléchargeables sur www.has-sante.fr Haute Autorité de Santé Service

Plus en détail

Quelques rappels concernant la méthode expérimentale

Quelques rappels concernant la méthode expérimentale Quelques rappels concernant la méthode expérimentale 1. La Méthode expérimentale : Définition. Une définition classique de la méthode expérimentale est qu elle «correspond à la méthode d investigation

Plus en détail

Analyse et interprétation des données

Analyse et interprétation des données 8 Analyse et interprétation des données Les données de l enquête peuvent être utilisées pour différents types d analyses aussi bien au niveau national qu au niveau international. Ce chapitre explique comment

Plus en détail

Annexe A de la norme 110

Annexe A de la norme 110 Annexe A de la norme 110 RAPPORTS D ÉVALUATION PRÉPARÉS AUX FINS DES TEXTES LÉGAUX OU RÉGLEMENTAIRES OU DES INSTRUCTIONS GÉNÉRALES CONCERNANT LES VALEURS MOBILIÈRES Introduction 1. L'annexe A a pour objet

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

Chapitre 1. La démarche statistique appliquée au management. Minicas. Questions :

Chapitre 1. La démarche statistique appliquée au management. Minicas. Questions : Chapitre 1 La démarche statistique appliquée au management Minicas Comment estimer les dégâts d une catastrophe naturelle (tempêtes, ouragans, etc.)? Aux États-Unis, la FEMA (Federal Emergency Management

Plus en détail

Introduction au métier d ARC. en recherche clinique

Introduction au métier d ARC. en recherche clinique Introduction au métier d ARC en recherche clinique Déroulement d un projet de recherche clinique Idée Faisabilité Avant Pendant Après Protocole accepté Démarches réglementaires Déroulement de l étude Analyse

Plus en détail

1. Les types d enquêtes

1. Les types d enquêtes La conduite d une enquête par questionnaire La conception d un questionnaire ne doit pas être réalisée de façon hasardeuse. Elle suit une méthodologie stricte qui permet d atteindre des résultats utilisables

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Panorama des problématiques de traitement de l information. Larbi Aït Hennani, Fatma Bouali, Vincent Vandewalle

Panorama des problématiques de traitement de l information. Larbi Aït Hennani, Fatma Bouali, Vincent Vandewalle Panorama des problématiques de traitement de l information Larbi Aït Hennani, Fatma Bouali, Vincent Vandewalle Conduite d une étude statistique Larbi Aït Hennani, maître de conférences en mathématiques

Plus en détail

Partie 1. Principes. Karmela Krleža-Jerić, An-Wen Chan, Kay Dickersin, Ida Sim, Jeremy Grimshaw, Christian Gluud, for the Ottawa GroupT 1

Partie 1. Principes. Karmela Krleža-Jerić, An-Wen Chan, Kay Dickersin, Ida Sim, Jeremy Grimshaw, Christian Gluud, for the Ottawa GroupT 1 Déclaration d Ottawa sur l enregistrement des essais d interventions de santé: Proposition pour l enregistrement international d informations relatives au protocole et de résultats des essais réalisés

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011

Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011 Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte jean-marc.labatte@univ-angers.fr

Plus en détail

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION

Plus en détail

LES MODELES DE SCORE

LES MODELES DE SCORE LES MODELES DE SCORE Stéphane TUFFERY CONFERENCE GENDER DIRECTIVE 31 mai 2012 31/05/2012 ActuariaCnam Conférence Gender Directive Stéphane Tufféry 1 Plan Le scoring et ses applications L élaboration d

Plus en détail

Statistique inférentielle TD 1 : Estimation

Statistique inférentielle TD 1 : Estimation POLYTECH LILLE Statistique inférentielle TD : Estimation Exercice : Maîtrise Statistique des Procédés Une entreprise de construction mécanique fabrique de pièces demoteurdevoiturepourungrandconstructeur

Plus en détail

Agenda de la présentation

Agenda de la présentation Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining

Plus en détail

Validation clinique des marqueurs prédictifs le point de vue du méthodologiste. Michel Cucherat UMR CNRS 5558 - Lyon

Validation clinique des marqueurs prédictifs le point de vue du méthodologiste. Michel Cucherat UMR CNRS 5558 - Lyon Validation clinique des marqueurs prédictifs le point de vue du méthodologiste Michel Cucherat UMR CNRS 5558 - Lyon Marqueur prédictif - Définition Un marqueur prédictif est un marqueur qui prédit le bénéfice

Plus en détail

Le traitement de données comportementales un tour d horizon avec des exemples traités par R

Le traitement de données comportementales un tour d horizon avec des exemples traités par R Le traitement de données comportementales un tour d horizon avec des exemples traités par R c Christian Jost - jost@cict.fr - 2011/12 document en cours de développement, merci de me signaler les erreurs

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO

EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO Auteur Baguinébié Bazongo 1 Ingénieur Statisticien Economiste Chef de l Unité de recherche à l Institut national

Plus en détail

Probabilité et Statistique pour le DEA de Biosciences. Avner Bar-Hen

Probabilité et Statistique pour le DEA de Biosciences. Avner Bar-Hen Probabilité et Statistique pour le DEA de Biosciences Avner Bar-Hen Université Aix-Marseille III 2000 2001 Table des matières 1 Introduction 3 2 Introduction à l analyse statistique 5 1 Introduction.................................

Plus en détail

Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident?

Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident? Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident? Nathalie LEPINE GREMAQ, Université de Toulouse1, 31042 Toulouse, France GRAPE, Université Montesquieu-Bordeaux

Plus en détail

EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE

EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE MICHÈLE PICARD FLIBOTTE EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE Essai-stage présenté à la Faculté des études supérieures de l Université Laval dans le cadre

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail