Reconnaissance de Forme Statistique

Dimension: px
Commencer à balayer dès la page:

Download "Reconnaissance de Forme Statistique"

Transcription

1 Reconnaissance de Forme Statistique James L. Crowley Deuxième Année ENSIAG Deuxième semestre 2002/2003 Séance 7 7 avril et 26 mars 2003 PCA et la discriminante linéaire de Fisher Plan de la séance : L'analyse en Composantes Principales...2 Exemple :...6 Reconstruction...8 Reconnaissance avec PCA...9 La discriminante linéaire de Fisher Le Discriminant de Fisher avec K > Comparaison de PCA et Discriminant de Fisher FisherFaces... 16

2 L'analyse en Composantes Principales L'analyse en composant principales est une méthodes de déterminer une sous-espace "optimale" pour la reconstruction. Il peut s'appliquer au cas où le vecteur X serait composé d'une grande nombre de caractéristiques. Voici son application pour une ensemble de imagettes (tous k confondus). Soit une ensemble de imagettes, toutes classes confondus, W m (i, j), composé de N pixels : W m (i, j) pour m {1, }, tel que i [0, I-1], j [0, J-1], I x J = N On les exprime sous forme de vecteur : Ensemble d'imagettes X m (n)= W m (i, j) ou n = j*i + i. On cherche une base orthogonale ϕ (n)= {ϕ d (n)} d = 0, 1,... D pour représenter les X(n). telles que D <<. Imagette moyenne µ(n)= 1 Xm (n) Imagette moyenne zéro X ~ m(n) = X m (n) µ(n) Base orthogonal ϕ (n) = { ϕ d (n) } d = 0, 1,... D-1 Vecteur code α = <X ~ (n), ϕ (n)> Image reconstruite : N-1 X ^(n) = µ(n) + αn ϕ (n) n=0 Image de résidu : R(n) = X(n) X^(n) Energie de résidu : ε r 2 = n=1 N R 2 (n) 7-2

3 La covariance, C k, est composée de 1024 x 1024 = 2 20 termes C k = E{ X ~ mk X ~ mk T } (pour une image de taille 2 n, il y a 2 2n pixels et 2 4n termes dans la covariance.) σ ij 2 = 1 (X ~ mk(i) X ~ mk(j)) ou bien : σ ij 2 = 1 Une autre vue : (Xmk (i) µ k (i))(x mk (j) µ k (j)) Former la matrice X par la concaténation de vecteurs X ~ m(n) A = (X ~ 0(n) X ~ 1(n) X ~ 2(n)... X ~ (n) ) = A est N par. Chaque colonne est une image. La covariance de A, C = E{X ~ m X ~ m T } = A A T C= A A T = Pour une image de 32 x 32, le matrice C= A A T est de taille 1024 x Il y a un coefficient par pair de pixels. Chaque terme est la covariance d'une paire de pixels. C = A A T est de taille N x N 7-3

4 On cherche une ensemble orthogonales ϕ (n) = {ϕ d (n) d = 0, 1,... N tels que : ϕ T AA T ϕ = λ c λ c est une matrice diagonale des valeurs principales de C. Chaque colonne de ϕ est un vecteur directeur ϕ d (n). Les colonnes ϕ d sont orthogonales. Une telle matrice de rotation est fournie par une procedure d'analyse en composants principales. ( ϕ d (n), λ c ) = PCA(C). Pour une image de 32 x 32, le matrice C= AA T est de taille 2 10 x 2 10 = Pour une image de 512 x 512, le matrice C= AA T est de taille 2 18 x 2 18 = Heureusement, il y a une astuce pour éviter la matrice de covariance de N x N coefficients. Le rank de AA T est, ou est le nombre d'images. << N. Noter que B = A T A est de taille 2, est le nombre d'images. Chaque coefficient est une produit de deux images! N b ij 2 = Xi (n) X j (n) n=1 Pour < 512 on peut facilement calculer une matrice R de rotation tels que chaque colonne est un vecteur directeur orthogonal. Soit R les composantes principales de X ~ T X ~ R T A T A R = λ b On multiplie les deux cotés par R : R R T A T A R = A T A R = R λ b R T R = I. aintenant on multiplie par A A A T A R = A R λ b = (A T A ) A R = (A R) λ b = (A A T ) ϕ = ϕ λ c Donc ϕ= AR. 7-4

5 λ b sont les premiers valeurs propre de λ c et ϕ = AR Donc,l es vecteurs propres : ϕ d (n) = A R triés par λ b ϕ = AR = Les vecteurs propres de A T A sont aussi les premiers vecteurs propres de A A T Chaque colonne est un vecteur dans une base orthogonale. ϕ (n) = m-1 X ~ m (n) R(m,n) ϕ (n) fournit une base "ortho-normal" pour X m (n). Une image (normalisée) peut être exprimé par α d = <X(n), ϕ d (n) > = d=0 X(n)ϕd (n) Les valeurs α d sont un "code" qui représente X(n) pour la reconnaissance ou la transmission. 7-5

6 Exemple : (Réalisé par F. Bérard en 1995). 16 images pris au hazard dans une séquence de 2 minutes. Average Image 7-6

7 Components Principales : Eigen Values E E E E E E E E E

8 Reconstruction Image Reconstructed image (120 bytes) Error Image. Reconstruction (120 bytes) Image Error 7-8

9 Reconnaissance avec PCA Dans l'espace PCA, pour chaque individu, on fait une ensemble de k images. Ensemble d'imagettes de la classe T k : X mk (n) = W mk (i, j) ou n = j*32 + i. Imagette moyenne de la classe T k : µ k (n) = 1 Xmk (n) Imagette moyenne zéro X ~ mk(n) = X mk (n) µ k (n) Projection sur D y : Zmk = <X ~ mk, ϕ > La covariance, C k, est composée de D y x D y termes C k = E{ Zmk Zmk T } (pour une image de taille 2 n, il y a 2 2n pixels et 2 4n termes dans la covariance.) σ ij 2 = 1 ou bien : (Zmk (i) Z mk (j)) σ ij 2 = 1 (Zmk (i) µ k (i))(z mk (j) µ k (j)) ω k = arg-max {g k (Z } k ou g k (Z ) = Z T (Dk ) Z + d k T Z + dko. avec D k = 1 2 C k 1 d k = C 1 k µ k d ko = 1 2 (µ k T C k 1 µ k) 1 2 Log{det(C k)} + Log{p(ω k )} 7-9

10 La discriminante linéaire de Fisher Dans beaucoup de domaines, il existe une multitude de caractéristiques utilisables pour la reconnaissance. Chaque caractéristique semble à apporter une contribution pour un cas ou dans une autre. Il semble souhaitable de les inclure dans le vecteur x. ais ceci induit une croissance exponentielle dans les nombres d'exemples nécessaires,. En Anglais, on appelle ce problème "The Curse of Dimensionality". La technique de Fisher permet une réduction dans le nombre de dimensions, d avec une faible augmentation dans la probabilité d'erreur. Le principe de Fisher est de projeter le vecteur de caractéristique, x de D x dimensions vers un espace z de D z par une transformation linéaire F choisit tel quel 1) D y << D x et 2) Les exemples des classes T k sont séparés. z = F T x En général, s il y a K classes, nous allons chercher D z = K 1 x 2 x 2 x 1 x 1 La discriminabilité des classes dépend de la direction de F Pour déterminer la meilleure projection, on appuie sur une mesure de la séparation entre classes. Soit deux classes T 1 et T 2 représenté par les exemples X 1m et X 2m 7-10

11 Z km = F T X km Z est un scalaire La moyenne des exemples est µ k = E{X km} = 1 k k X km Les moments sont invariants aux projections. Donc, la moyenne des projections est la projection de la moyenne. µ ~ k = E{Z km } = 1 k k Z km = 1 k k F T X km = F T µ k On note que µ ~ 1 µ ~ 2 = F T ( µ 1 µ 2) On veut rendre la distance entre classes aussi grandes que possible sans gain. C-à-d qu'on impose que F T = 1 Ce qu'il faut est de rendre la séparation grande par rapport à la dispersion des classes. La dispersion ("Scatter") pour une ensemble {X km} d'exemples et pour une classe k est une matrice S k = (X km µ k) (X km µ k) T La dispersion ("scatter") commun de deux classes T 1 et T 2 (La dispersion "intra-classes") est S T = S 1 + S 2 Après projection par F, la dispersion ("Scatter") pour les exemples de la classe k est S ~ k = k (Zkm µ ~ k) 2 Le critère de Fisher est maximiser le ratio de la séparation des deux classes par rapport à leurs dispersions. 7-11

12 J(F) = (µ~ 1 µ ~ 2) 2 S ~ 1 + S ~ 2 = F T ( µ 1 µ 2) 2 S ~ 1 + S ~ 2 Fisher cherche la transformation F T tel quel F = max { FT ( µ 1 µ 2) 2 F S ~ 1 + S ~ 2 } K Soit = k exemples, X km. k=1 La moyenne de chaque classe est µ k = 1 k k X km La moyenne de TOUS les exemples est µ = 1 K k µ k = k=1 1 K k=1 k X km La matrice de dispersion inter-classes S B (B voudrait dire "between) K S B = k (µ k µ )( µ k µ ) T k=1 La dispersion intra-classe S w (En Anglais W pour "within") est S W = K K Sk = k=1 k=1 k ( X km µ k) ( X km µ k) T La meilleur transformation F est celle que F = argmax { F F T S B F F T S w F } 7-12

13 La dispersion d'une classe, S k, est en proportion avec la covariance pour l'ensemble total de donnée. Il est symétrique et positif - semi-definis. Il est typiquement nonsingular si k > D. La matrice S B est positive et semi-definit. Dans notre exemple avec K=2, D z = 1 (donc F T S B est une scalaire) S B F est dans la direction µ 1 µ 2 et S B est bien singulier. J( F) = FT S B F F T S w F en physique, ceci est connu comme le quotient de Rayleigh. Il est possible de montrer que S B F = λ S w F. Ceci donne : F = µ 1 µ 2 µ 1 µ 2 Le facteur d échelle n'est pas important est-on peut déterminer directement F = S w -1(µ 1 µ 2 ). Ceci est la discriminant linéaire de Fisher pour deux classes. Il maximise la dispersion entre les classes. On rappelle que la surface de décision linéaire entre deux classes a la forme : F T X + d o = 0 où F = C 1 (µ 1 µ 2) et d o est un constant Comment généraliser en D z = K-1 dimensions? 7-13

14 Le Discriminant de Fisher avec K > 2 Pour le cas de K classes, la généralisation naturelle est avec K-1 fonctions de Fisher. Il est supposé que D K. K S w = k=1 Sk K où S B = k (µ k µ )( µ k µ ) T k=1 et µ k = 1 k X k La généralisation de S B est moins évident. On peut définir une moyenne globale, µ et une matrice de dispersion totale S T comme : et µ = 1 X m = 1 K k µ κ k=1 S T = K (X km µ )(X km µ ) T k=1 et S T = S w + S B Pour chaque classe, k, on obtient une transformation F k dans la forme d un vecteur à D dimensions. z k = F k T X Si on aligne les transformations dans une matrice de taille D x (K-1) on a Z = F T X Ou Z est un vecteur de K-1 coefficients. Par invariance des moments, on peut montrer que 7-14

15 S ~ w = F T S w F S ~ B = F T S B F Le Critère de Fisher est de maximiser J(W) = det(s~ B) det(s ~ w) = det(ft S B F) det(f T S w F) La solution est rendu par une analyse en composant principales de S ~ B S ~ B F k = λ k S ~ w F k Résoudre F k telle que (S ~ B λ k S ~ w) F k = 0 Les colons peuvent être calculé par une simple orthogonalisation par l'algorithme de Gram-Schmidt des vecteurs (µ k µ ) pour k = 1,..., K 1. On note que F n'est pas unique. Il existe une classe d équivalence avec les rotations et multiplications par une constant. Comparaison de PCA et Discriminant de Fisher Class 1 X PCA X FLD X X X Class

16 FisherFaces Dans le cas de la reconnaissance de visage, les variations d'éclairages peuvent provoquer les variations à l'intérieur d'une classe (S W ). La solution est de faire S T = X ~ X ~ T F pca = argmax { det ( F T S T F). F fld = argmax { det(f T (F pca S B F pca ) F) det(f T (F pca S W F pca ) F) } La base F = F pca F fld est un sous-espace linéaire robuste aux variations de lumières. 7-16

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Exercice : la frontière des portefeuilles optimaux sans actif certain

Exercice : la frontière des portefeuilles optimaux sans actif certain Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015 et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech david.madore@enst.fr 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

Revue des algorithmes PCA, LDA et EBGM utilisés en reconnaissance 2D du visage pour la biométrie

Revue des algorithmes PCA, LDA et EBGM utilisés en reconnaissance 2D du visage pour la biométrie Revue des algorithmes PCA, LDA et EBGM utilisés en reconnaissance 2D du visage pour la biométrie Nicolas MORIZET, Thomas EA, Florence ROSSANT, Frédéric AMIEL, Amara AMARA Institut Supérieur d Électronique

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

La (les) mesure(s) GPS

La (les) mesure(s) GPS La (les) mesure(s) GPS I. Le principe de la mesure II. Equation de mesure GPS III. Combinaisons de mesures (ionosphère, horloges) IV. Doubles différences et corrélation des mesures V. Doubles différences

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12 1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées :

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées : a) La technique de l analyse discriminante linéaire : une brève présentation. Nous nous limiterons ici à l'analyse discriminante linéaire et à deux groupes : - linéaire, la variante utilisée par ALTMAN

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

Introduction. Préambule. Le contexte

Introduction. Préambule. Le contexte Préambule... INTRODUCTION... BREF HISTORIQUE DE L ACP... 4 DOMAINE D'APPLICATION... 5 INTERPRETATIONS GEOMETRIQUES... 6 a - Pour les n individus... 6 b - Pour les p variables... 7 c - Notion d éléments

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

1 Comment faire un document Open Office /writer de façon intelligente?

1 Comment faire un document Open Office /writer de façon intelligente? 1 Comment faire un document Open Office /writer de façon intelligente? 1.1 Comment fonctionne un traitement de texte?: les balises. Un fichier de traitement de texte (WRITER ou WORD) comporte en plus du

Plus en détail

L'analyse de données. Polycopié de cours ENSIETA - Réf. : 1463. Arnaud MARTIN

L'analyse de données. Polycopié de cours ENSIETA - Réf. : 1463. Arnaud MARTIN L'analyse de données Polycopié de cours ENSIETA - Réf : 1463 Arnaud MARTIN Septembre 2004 Table des matières 1 Introduction 1 11 Domaines d'application 2 12 Les données 2 13 Les objectifs 3 14 Les méthodes

Plus en détail

Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE

Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE LAURENT Rémy laurent@clermont.in2p3.fr http://clrpcsv.in2p3.fr Journées des LARD Septembre 2007 M2R

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo

Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo Dans ce projet, nous allons réaliser le code qui permet d'insérer sur une image, un logo sur un

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Modèles pour données répétées

Modèles pour données répétées Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

L'analyse des données à l usage des non mathématiciens

L'analyse des données à l usage des non mathématiciens Montpellier L'analyse des données à l usage des non mathématiciens 2 ème Partie: L'analyse en composantes principales AGRO.M - INRA - Formation Permanente Janvier 2006 André Bouchier Analyses multivariés.

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

Trouver un vecteur le plus court dans un réseau euclidien

Trouver un vecteur le plus court dans un réseau euclidien Trouver un vecteur le plus court dans un réseau euclidien Damien STEHLÉ http://perso.ens-lyon.fr/damien.stehle Travail en commun avec Guillaume HANROT (INRIA Lorraine) CNRS/LIP/INRIA/ÉNS Lyon/Université

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS?

PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS? PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS? Pierre Baumann, Michel Émery Résumé : Comment une propriété évidente visuellement en dimensions deux et trois s étend-elle aux autres dimensions? Voici une

Plus en détail

La méthode des scores, particulièrement de la Banque de France

La méthode des scores, particulièrement de la Banque de France La méthode des scores, particulièrement de la Banque de France Devant la multiplication des défaillances d entreprises au cours des années 80 et début des années 90, la Banque de France a produit des travaux

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Implémentation de Nouveaux Elements Finis dans Life et Applications

Implémentation de Nouveaux Elements Finis dans Life et Applications 1 Département Informatique et Mathématiques Appliquées Année Universitaire 29-21 Rapport de stage Implémentation de Nouveaux Elements Finis dans Life et Applications Présenté par Abdoulaye Samake M1 Mathématiques

Plus en détail

IMAGES NUMÉRIQUES MATRICIELLES EN SCILAB

IMAGES NUMÉRIQUES MATRICIELLES EN SCILAB IMAGES NUMÉRIQUES MATRICIELLES EN SCILAB Ce document, écrit par des animateurs de l IREM de Besançon, a pour objectif de présenter quelques unes des fonctions du logiciel Scilab, celles qui sont spécifiques

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux

Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux hétérogènes Laurent Déjean Thales Airborne Systems/ENST-Bretagne Le 20 novembre 2006 Laurent Déjean Détection en

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Apprentissage non paramétrique en régression

Apprentissage non paramétrique en régression 1 Apprentissage non paramétrique en régression Apprentissage non paramétrique en régression Résumé Différentes méthodes d estimation non paramétriques en régression sont présentées. Tout d abord les plus

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

Analyse des correspondances avec colonne de référence

Analyse des correspondances avec colonne de référence ADE-4 Analyse des correspondances avec colonne de référence Résumé Quand une table de contingence contient une colonne de poids très élevé, cette colonne peut servir de point de référence. La distribution

Plus en détail

Techniques d interaction dans la visualisation de l information Séminaire DIVA

Techniques d interaction dans la visualisation de l information Séminaire DIVA Techniques d interaction dans la visualisation de l information Séminaire DIVA Zingg Luca, luca.zingg@unifr.ch 13 février 2007 Résumé Le but de cet article est d avoir une vision globale des techniques

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Une introduction aux codes correcteurs quantiques

Une introduction aux codes correcteurs quantiques Une introduction aux codes correcteurs quantiques Jean-Pierre Tillich INRIA Rocquencourt, équipe-projet SECRET 20 mars 2008 1/38 De quoi est-il question ici? Code quantique : il est possible de corriger

Plus en détail

Laboratoire d Automatique et Productique Université de Batna, Algérie

Laboratoire d Automatique et Productique Université de Batna, Algérie Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,

Plus en détail

Encryptions, compression et partitionnement des données

Encryptions, compression et partitionnement des données Encryptions, compression et partitionnement des données Version 1.0 Grégory CASANOVA 2 Compression, encryption et partitionnement des données Sommaire 1 Introduction... 3 2 Encryption transparente des

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

EVALUATION DE LA SANTÉ FINANCIÈRE D UNE MUNICIPALITÉ VIA UNE APPROCHE STATISTIQUE MULTIVARIÉE.

EVALUATION DE LA SANTÉ FINANCIÈRE D UNE MUNICIPALITÉ VIA UNE APPROCHE STATISTIQUE MULTIVARIÉE. EVALUATION DE LA SANTÉ FINANCIÈRE D UNE MUNICIPALITÉ VIA UNE APPROCHE STATISTIQUE MULTIVARIÉE. MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ADMINISTRATION PUBLIQUE - «OPTION POUR ANALYSTES»

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie

Plus en détail

Cours d initiation à la programmation en C++ Johann Cuenin

Cours d initiation à la programmation en C++ Johann Cuenin Cours d initiation à la programmation en C++ Johann Cuenin 11 octobre 2014 2 Table des matières 1 Introduction 5 2 Bases de la programmation en C++ 7 3 Les types composés 9 3.1 Les tableaux.............................

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Traitement numérique de l'image. Raphaël Isdant - 2009

Traitement numérique de l'image. Raphaël Isdant - 2009 Traitement numérique de l'image 1/ L'IMAGE NUMÉRIQUE : COMPOSITION ET CARACTÉRISTIQUES 1.1 - Le pixel: Une image numérique est constituée d'un ensemble de points appelés pixels (abréviation de PICture

Plus en détail

Université de Montréal. département de sociologie. L'analyse factorielle et l'analyse de fidélité. notes de cours et exemples

Université de Montréal. département de sociologie. L'analyse factorielle et l'analyse de fidélité. notes de cours et exemples Université de Montréal département de sociologie L'analyse factorielle et l'analyse de fidélité notes de cours et exemples Claire Durand, 2003 Notes aux lecteurs... Ce texte a d'abord été préparé pour

Plus en détail

Optimisation, traitement d image et éclipse de Soleil

Optimisation, traitement d image et éclipse de Soleil Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

Avant-après, amont-aval : les couples de tableaux totalement appariés

Avant-après, amont-aval : les couples de tableaux totalement appariés ADE-4 Avant-après, amont-aval : les couples de tableaux totalement appariés Résumé La fiche décrit les méthodes d analyse des couples de tableaux complètement appariés (mêmes individus, mêmes variables).

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

Analyse financière par les ratios

Analyse financière par les ratios Analyse financière par les ratios Introduction L outil utilisé dans les analyses financières est appelé ratio, qui est un coefficient calculé à partir d une fraction, c est-à-dire un rapport entre des

Plus en détail

Données longitudinales et modèles de survie

Données longitudinales et modèles de survie ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan

Plus en détail

Mathématiques appliquées à l'économie et à la Gestion

Mathématiques appliquées à l'économie et à la Gestion Mathématiques appliquées à l'économie et à la Gestion Mr Makrem Ben Jeddou Mme Hababou Hella Université Virtuelle de Tunis 2008 Continuité et dérivation1 1- La continuité Théorème : On considère un intervalle

Plus en détail

(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01)

(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01) (19) TEPZZ 8 8 4_A_T (11) EP 2 838 241 A1 (12) DEMANDE DE BREVET EUROPEEN (43) Date de publication: 18.02.1 Bulletin 1/08 (1) Int Cl.: H04L 29/06 (06.01) G06F 21/ (13.01) (21) Numéro de dépôt: 141781.4

Plus en détail

Vérification audiovisuelle de l identité

Vérification audiovisuelle de l identité Vérification audiovisuelle de l identité Rémi Landais, Hervé Bredin, Leila Zouari, et Gérard Chollet École Nationale Supérieure des Télécommunications, Département Traitement du Signal et des Images, Laboratoire

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061

Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061 Value at Risk 27 février & 13 mars 20061 CNAM Gréory Taillard CNAM Master Finance de marché et estion de capitaux 2 Value at Risk Biblioraphie Jorion, Philippe, «Value at Risk: The New Benchmark for Manain

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Université de Rennes 1

Université de Rennes 1 Blin Sébastien, Collin Pierre-Henri, Louarn Amaury Université de Rennes 1 Campus de Beaulieu Licence STS Cycle Préparatoire Ingénieur Rennes 1 - Informatique et Télécommunications Rapport de Travail d

Plus en détail

Evaluation de la variabilité d'un système de mesure

Evaluation de la variabilité d'un système de mesure Evaluation de la variabilité d'un système de mesure Exemple 1: Diamètres des injecteurs de carburant Problème Un fabricant d'injecteurs de carburant installe un nouveau système de mesure numérique. Les

Plus en détail

Cours 7 : Utilisation de modules sous python

Cours 7 : Utilisation de modules sous python Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est

Plus en détail