Applications en imagerie cérébrale (MEG/EEG)

Dimension: px
Commencer à balayer dès la page:

Download "Applications en imagerie cérébrale (MEG/EEG)"

Transcription

1 EEG : mesure du potentiel électrique Ordre de grandeur : qq µ-volts Capteurs : électrodes MEG : mesure du champ magnétique Ordre de grandeur : Tesla Capteurs SQUID couplés à des bobines VI. Applications en imagerie cérébrale (MEG/EEG) VI. Applications en imagerie cérébrale 2 Problème direct/inverse en (MEG/EEG) Électroencéphalographie (EEG) Activité électrique neuronale Résolution temporelle : 1ms Magnétoencéphalographie (MEG)

2 VI. Applications en imagerie cérébrale 3 MEG/EEG : courants macroscopiques Mesure à l échelle du cm 2 de l activité électrique des cellules pyramidales synchrone temporellement et spatialement Dipôle de courant Macro-colonne corticale 10 5 neurones pyramidaux Q = I d 10 nam Dipôles sur la surface corticale VI. Applications en imagerie cérébrale 4 Les réponses de la MEG et de l EEG Données spatio-temporelles

3 VI. Applications en imagerie cérébrale 5 Réponse simultanée MEG et EEG Réponse auditive 100 millisecondes après l arrivée du son VI. Applications en imagerie cérébrale 6 MEG/EEG : Réponses topographiques Champ <0 Champ >0 Potentiel >0 Réponse dipolaire direction dipôle Réponse dipolaire à direction dipôle

4 VI. Applications en imagerie cérébrale 7 Imagerie MEG/EEG : localisation Reconstruire dans le temps et l espace les sources neuronales j à l origine des signaux MEG et EEG mesurés en surface Nécessité de résoudre le problème direct et le problème inverse VI. Applications en imagerie cérébrale 8 Problème direct en MEG/EEG Déf. : Connaissant la distribution des sources de courant j, calculer le champ électromagnétique ( E(r), B(r)), r S scalp Loi physiques : éq. de Maxwell, régime quasi-statique car f < 100 Hz Courants dans la tête : j = Courants primaires { }} { j p + Courants de conduction { }} { j c Loi d Ohm : jc = σ E = σ V Conservation de la charge : j = 0 (σ V ) = j p Loi Biot et Savart : r point de mesure à l extérieur de la tête (vol. conducteur) r : point à l intérieur du volume B( r) = µ 0 ( j 4π p + j r c )( r r ) r r 3 dv V tete

5 VI. Applications en imagerie cérébrale 9 Problème direct en MEG/EEG Difficultés : complexité du milieu physique [Hämäläinen et coll. 1993] Prise en compte de la géométrie des tissus (peau/os/lcr/subst. blanche) Connaissance imparfaite des conductivités : mesures in vivo difficiles Milieu homogène par morceaux (cas sphérique) B( r) = B 0 ( r) µ 0 4π n (σ j σ j+1 ) j=1 avec B0 ( r) = µ 0 4π V tete S j V ( r ) n( r ) jp ( r ) r r r r 3 dv r r r r 3 ds j Composante radiale calculée par B( r) n et n r le 2ème terme s annule B indépendant des conductivités Sources radiales silencieuses : j p n B 0 ( r) n = 0 [Sarvas 1987] VI. Applications en imagerie cérébrale 10 Problème direct en MEG/EEG : mileux homogènes Potentiel en un point appartenant à une surface [Hämäläinen et coll. 1993] σ j + σ j+1 V ( r) = σ n V 0 ( r) 2 avec r S j et V 0 ( r) = 1 4πσ n n j=1 V tete σ j σ j+1 4π jp ( r ) S j V ( r ) n( r ) r r r r 3 dv r r r r 3 ds j Solution analytique dans cas sphérique uniquement Modèle de source dipolaire : dipôle de courant équivalent q Activation en r p et observation en r j p ( r ) = qδ( r r p )avec q = j p ( r ) dv Conséquences cas sphérique : B0 ( r) n = µ 0 r r p 4π r r p 3 q

6 VI. Applications en imagerie cérébrale 11 Problème direct en MEG/EEG : Modèle de tête réaliste Calcul des champs sur un espace discret [Ermer et coll. 2001] m(r) = p g(r, r q p ) t q p, q p = [ q x p, q y p, q z p g(r, r qp ) : champ de sensibilité du capteur placé en r vis-à-vis du dipôle q p en r qp m = [m(r 1 ),..., m(r N )] t : potentiels/champs aux électrodes/capteurs, resp. g(r 1, r q1 ) t g(r 1, r qp ) t q 1 m = = G q g(r N, r q1 ) t g(r N, r qp ) t q P ] t Intégrales de frontières σ homogène isotrope Éléments/Différences fini(e)s σ variable VI. Applications en imagerie cérébrale 12 Modèles spatio-temporels k = 1,..., K, m tk = G q tk + b tk M = GQ avec M = [m t1 m tk ] q 1 (t) q avec Q = [ q t1... q tk ] t p x (t 1 ) q x p (t K ). =. et q p (t) = qp(t y 1 ) qp(t y K ) q P (t) qp(t z 1 ) qp(t z K ) Contrainte sur les dipôles : orientation u p fixe p = 1,..., P u x p q p (t) = u y p [s p (t 1 ),..., s p (t K )] = u p s t p, u = 1 u z p g(r 1, r q1 ) t u 1 g(r 1, r qp ) t u P s t 1 M = = A({r p, u p })S t g(r N, r q1 ) t u 1 g(r N, r qp ) t u P s t P Paramètres des sources : position/orientation {r p, u p } fixes au cours du temps

7 VI. Applications en imagerie cérébrale 13 Problème inverse MEG/EEG : approche Déf. : Reconstruire dans le temps et l espace les dipôles de courant neuronaux à partir des signaux MEG et EEG bruités mesurés en surface Difficultés : problème mal posé Non unicité de la solution (loi fondamentales de la physique, (Helmholtz 1853)) A chaque instant, nombre données faible (< 300) Instabilité due au bruit restreindre espace des solutions par régularisation par contrôle de dimension : modèles dipolaires ou paramétriques par pénalisation : modèles distribués VI. Applications en imagerie cérébrale 14 Problème inverse MEG/EEG : modèles dipolaires Identifier {r p, u p } et S t à partir de M = A({r p, u p })S t + N Hypothèse très forte : nombre de sources P connu a priori (P 10)! Méthode des moindres carrés arg min { J ({r p, u p }, S) = M A({r p, u p })S t 2 F }, Norme Frobenius 1 Linéaire en fonction des amplitudes S : calcul solution inverse généralisé {r p, u p }, fixé, ŜIG = A M avec A A = I et A = A({r p, u p }) 2 Problème non/quasi linéaire vis-à-vis de la position {r p }/orientation {u p } [ arg min J ({rp, u p }) = (I AA )M) 2 ] F = arg min P A M 2 r p,u p r p,u p Minimisation : algorithme du simplexe, de Levenberg-Marquart Quand P non convexité de J ({r p, u p }) Approche la plus utilisée en MEG/EEG sur données expérimentales et cliniques

8 VI. Applications en imagerie cérébrale 15 Résolution du problème inverse : modèle distribué Estimation des ampltiudes de dipôles de courant distribués au préalable sur la surface corticale (source distribuées) Imagerie de la densité corticale de courant Extraction de la surface corticale par segmentation de l IRM anatomique [Mangin et coll. 1995] Positions {r p } et orientations {u p } fixées :r p S cortex et u p S cortex Estimation des amplitudes S : pb linéaire mais indéterminé + mal conditionné! Approche bayésienne : estimateur du Maximum A Posteriori Ŝ = arg max p(s M) = arg max ln p(m S) + ln p(s) VI. Applications en imagerie cérébrale 16 Résolution du problème inverse : modèle distribué Méthodes linéaires : a priori spatial Gaussien S t N (0, C 1 { Ŝ t = arg min M AS t 2 + λtr [ SC 1 C 1 S S t] } ) N Ŝ t = F λ M avec F = C 1 N S ) A t (AC 1 N A t + λc 1 N ) Méthode de norme minimale/pondérée : C S = I ou C S = diagw, w p = A p 2 [Okada 1983, Jeffs et coll. 1987] Dérivée spatiale 1er ordre C 1 S = D t (1) D (1) [Wang 1993] Laplacien (Loreta) : C 1 S = D t (2) D (2) [Pascual-Marqui et coll. 1994] Limite des approches linéaires Manque de réalité neurophysiologique (solutions basse résolution) Interface entre régions fonctionnelles différentes mal gérée car norme L 2 Indépendance temporelle a priori

9 VI. Applications en imagerie cérébrale 17 Problème inverse : comparaison modèles distribués (Logiciel Curry) Dans le volume entier Surface corticale L 2 Norme minimale Loreta L 1 VI. Applications en imagerie cérébrale 18 Résolution du problème inverse : modèle distribué A priori spatiaux non gaussiens Solution sparses et focales : norme L p, p < 2 [Matsuura et Okabe 1995] A priori markoviens [Geman et Geman 1984, Idier 2001] ln p(s) = Ω(S) = J φ c ( (j) S c ) c C j=1 Exemple : champ de Markov d ordre 1, i.e., aux plus proches voisins Ω(S) = φ(s r s q ) {r,q} C C = {{r, q}, r q = 1} = {, } N s =

10 VI. Applications en imagerie cérébrale 19 Résolution du problème inverse : modèle distribué φ 22 (s) = s 2 φ 21 (s) = τ 2 + s 2 τ φ 20 (s) = min{s 2, τ 2 } Application en MEG/EEG j = 1, C = C : φ c ( S c ) = [Baillet et Garnero 1997, Geman et McClure 1987] K φ c ( x s c (t k )) + φ c ( y s 2 s c (t k )), avec φ c (s) = 1 + s 2 /τc 2 k=1 A priori spatio-temporel markovien [Baillet et coll. 1999] K Ω S,T (S) = Ω S (S) + β P t k 1 S tk 2 ou S tk : k ème col. de S, k=1 P t k 1 = I S tk 1 S t t k 1 / S tk 1 2 : projecteur sur hyperplan orthogonal à S tk 1 VI. Applications en imagerie cérébrale 20 Validation ST-MAP sur fantôme [Baillet et coll. 2001] Acquisition Crâne + gélatine + 6 sources Casque à 61 éléctrodes Traitement Cortex virtuel Norme minimale ST-MAP

11 VI. Applications en imagerie cérébrale 21 Données réelles MEG : somesthésie Somatotopie des doigts Contrôle VI. Applications en imagerie cérébrale 22 Modèles distribués : somesthésie ST-MAP et focalisation [Gavit et coll. 2001] Doigt 1 Doigt 3 Doigt 2 Doigt 5

12 Bibliographie 23 Bibliographie 24 [Baillet et Garnero 1997] S. Baillet et L. Garnero (1997), < A Bayesian approach to introducing Anatomo-functional priors in the EEG/MEG inverse problem >, IEEE Transactions on Biomedical Engineering, 44, 5, pages [Baillet et coll. 1999] S. Baillet, L. Garnero, G. Marin et J.-P. Hugonin (1999), < Combining MEG and EEG source imaging by minimization of mutual information >, IEEE Transactions on Biomedical Engineering, 46, 5, pages [Baillet et coll. 2001] S. Baillet, J.-J. Riera, G. Marin, J.-F. Mangin, J. Aubert et L. Garnero (2001), < Evaluation of Inverse Methods and Head Models for EEG Source Localization Using a Human Skull Phantom >, Physics in Medicine and Biology, 46. [Ermer et coll. 2001] J. J. Ermer, J. C. Mosher, S. Baillet et R. M. Leahy (2001), < Rapidly Re-computable EEG Forward Models for Realistic Head Shapes >, Physics in Medicine and Biology, 46, 4, pages [Gavit et coll. 2001] L. Gavit, S. Baillet, J.-F. Mangin, J. Pescatore et L. Garnero (2001), < A Multiresolution framework to the MEG/EEG source imaging >, IEEE Transactions on Biomedical Engineering, 48, 10, pages [Geman et Geman 1984] S. Geman et D. Geman (1984), < Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images >, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 6, pages

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Quelques points de traitement du signal

Quelques points de traitement du signal Quelques points de traitement du signal Introduction: de la mesure au traitement Source(s) BRUIT BRUIT Système d acquisition Amplitude (Pa) Temps (s) Amplitude (Pa) Mesure Opérations mathématiques appliquées

Plus en détail

Champ électromagnétique?

Champ électromagnétique? Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques

Plus en détail

Séparation de sources en ingénierie biomédicale

Séparation de sources en ingénierie biomédicale http://perso.univ-rennes1.fr/laurent.albera/ Séparation de sources en ingénierie biomédicale Laurent Albera SAS en SRM Conclusion 1 I. Applications, signaux et méthodes 1. Modalités d acquisitions 2. Problèmes

Plus en détail

Que mesure la neuro-imagerie fonctionnelle :

Que mesure la neuro-imagerie fonctionnelle : Que mesure la neuro-imagerie fonctionnelle : IRMf, TEP & MEG? O. Go s s e r i e s (1), A. De m e rt z i (1), Q. No i r ho m m e (1), J. Ts h i ba n d a (6), M. Bo ly (1), M. Op d e Be e c k (2), R. Hu

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

-ii- APPLICATION DES PROPRIETES DE RESONANCE

-ii- APPLICATION DES PROPRIETES DE RESONANCE -ii- APPLICATION DES PROPRIETES DE RESONANCE Michel ZANCA, CHU Montpellier Signification de la résonance et relation de Larmor ω eff = 2 π ν eff = γ B eff La RMN détecte très précisément la fréquence ν

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Calculatrice vocale basée sur les SVM

Calculatrice vocale basée sur les SVM Calculatrice vocale basée sur les SVM Zaïz Fouzi *, Djeffal Abdelhamid *, Babahenini MohamedChaouki*, Taleb Ahmed Abdelmalik**, * Laboratoire LESIA, Département d Informatique, Université Mohamed Kheider

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

GYROSCANFIELD. Courbe radar de l objet sous test. Comparaison mesure et simulation d une antenne WiFi

GYROSCANFIELD. Courbe radar de l objet sous test. Comparaison mesure et simulation d une antenne WiFi Produits 2015-2016 GYROSCANFIELD Le Gyroscanfield permet de mesurer et de visualiser en 3D et en temps réel le rayonnement électromagnétique d un objet sous test de manière simple et rapide. Il est fabriqué

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 Le compressed sensing pour l holographie acoustique de champ proche II: Mise en œuvre expérimentale. Antoine Peillot 1, Gilles Chardon 2, François

Plus en détail

I - Quelques propriétés des étoiles à neutrons

I - Quelques propriétés des étoiles à neutrons Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est

Plus en détail

AUTRES ASPECTS DU GPS. Partie I : tolérance de Battement Partie II : tolérancement par frontières

AUTRES ASPECTS DU GPS. Partie I : tolérance de Battement Partie II : tolérancement par frontières AUTRES ASPECTS DU GPS Partie I : tolérance de Battement Partie II : tolérancement par frontières 1 Partie I Tolérance de battement Défaut de Battement Défautconjuguéde forme, orientation et position, constatélorsde

Plus en détail

IMAGERIE PAR TOMOGRAPHIE ÉLECTRIQUE RÉSISTIVE DE LA DISTRIBUTION DES PHASES DANS UNE COLONNE À BULLES

IMAGERIE PAR TOMOGRAPHIE ÉLECTRIQUE RÉSISTIVE DE LA DISTRIBUTION DES PHASES DANS UNE COLONNE À BULLES IMAGERIE PAR TOMOGRAPHIE ÉLECTRIQUE RÉSISTIVE DE LA DISTRIBUTION DES PHASES DANS UNE COLONNE À BULLES E. Fransolet, M. Crine, G. L Homme, Laboratoires de Génie Chimique, P. Marchot, D. Toye. Université

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Magnétisme - Electromagnétisme

Magnétisme - Electromagnétisme Magnétisme - Electromagnétisme D re Colette Boëx, PhD, Ingénieur biomédical Neurologie, HUG et Faculté de médecine Figures principalement issues de : - "Physics for scientists and engineers, with modern

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

SESSION 2013 MPP2008! PHYSIQUE 2. Durée : 4 heures!

SESSION 2013 MPP2008! PHYSIQUE 2. Durée : 4 heures! SESSION 2013 MPP2008 EPREUVE SPECIFIQUE - FILIERE MP " PHYSIQUE 2 Durée : 4 heures " N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

Fiche technique expérimentale 5. Notions sur l acquisition numérique

Fiche technique expérimentale 5. Notions sur l acquisition numérique Fiche technique expérimentale 5 Notions sur l acquisition numérique D.Malka MPSI 2014-2015 Lycée Saint-Exupéry Ce bref guide traite de quelques éléments important sur l acquisition numérique des signaux

Plus en détail

Les fondements de la directive européenne : de la science à la réglementation pour la sécurité sanitaire.

Les fondements de la directive européenne : de la science à la réglementation pour la sécurité sanitaire. IMEP-LAHC Les fondements de la directive européenne : de la science à la réglementation pour la sécurité sanitaire. Anne Perrin Salon Microwave & RF- CNIT Paris la Défense Session 20 mars 2014 «Expositions

Plus en détail

GYROSCANFIELD. Courbe radar de l objet sous test. Comparaison mesure et simulation d une antenne WiFi

GYROSCANFIELD. Courbe radar de l objet sous test. Comparaison mesure et simulation d une antenne WiFi Produits 2014-2015 GYROSCANFIELD PRÉSENTATION Le Gyroscanfield permet de mesurer et de visualiser en 3D et en temps réel le rayonnement électromagnétique d un objet sous test de manière simple et rapide.

Plus en détail

Approche hybride de reconstruction de facettes planes 3D

Approche hybride de reconstruction de facettes planes 3D Cari 2004 7/10/04 14:50 Page 67 Approche hybride de reconstruction de facettes planes 3D Ezzeddine ZAGROUBA F. S.T, Dept. Informatique. Lab. d Informatique, Parallélisme et Productique. Campus Universitaire.

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche Cemagref - CIRAD - ENGREF Master ère année Analyse spatiale, analyse géographique, spatialité des sociétés Master

Plus en détail

Les mécanismes de la récupération neurologique. PPradat-Diehl DU de Rehabilitation neuropsychologique 2007

Les mécanismes de la récupération neurologique. PPradat-Diehl DU de Rehabilitation neuropsychologique 2007 Les mécanismes de la récupération neurologique PPradat-Diehl DU de Rehabilitation neuropsychologique 2007 Introduction Plasticité cérébrale / Récupération après lésion cérébrale Récupération spontanée

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Une fréquence peut-elle être instantanée?

Une fréquence peut-elle être instantanée? Fréquence? Variable? Instantané vs. local? Conclure? Une fréquence peut-elle être instantanée? Patrick Flandrin CNRS & École Normale Supérieure de Lyon, France Produire le temps, IRCAM, Paris, juin 2012

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Rapport. Mesures de champ de très basses fréquences à proximité d antennes de stations de base GSM et UMTS

Rapport. Mesures de champ de très basses fréquences à proximité d antennes de stations de base GSM et UMTS Rapport Mesures de champ de très basses fréquences à proximité d antennes de stations de base GSM et UMTS A.AZOULAY T.LETERTRE R. DE LACERDA Convention AFSSET / Supélec 2009-1 - 1. Introduction Dans le

Plus en détail

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux pressesagro.gembloux@ulg.ac.be www.pressesagro.be

Plus en détail

Les atouts et faiblesses des caméras TEP dédiées, TEP corps entier, TEP-CT, TEMP pour la quantification

Les atouts et faiblesses des caméras TEP dédiées, TEP corps entier, TEP-CT, TEMP pour la quantification Les atouts et faiblesses des caméras TEP dédiées, TEP corps entier, TEP-CT, TEMP pour la quantification Irène Buvat U494 INSERM CHU Pitié-Salpêtrière, Paris buvat@imed.jussieu.fr http://www.guillemet.org/irene

Plus en détail

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste

Plus en détail

Foscolo (1), J Felblinger (2), S Bracard (1) CHU Hôpital central, service de neuroradiologie, Nancy (1) CHU BRABOIS, Centre d investigation clinique

Foscolo (1), J Felblinger (2), S Bracard (1) CHU Hôpital central, service de neuroradiologie, Nancy (1) CHU BRABOIS, Centre d investigation clinique S A l (1) G H (2) S S Aptel (1), G Hossu (2), S Foscolo (1), J Felblinger (2), S Bracard (1) CHU Hôpital central, service de neuroradiologie, Nancy (1) CHU BRABOIS, Centre d investigation clinique innovation

Plus en détail

Analyse des déplacements des objets mobiles : définition de comportements types

Analyse des déplacements des objets mobiles : définition de comportements types Analyse des déplacements des objets mobiles : définition de comportements types Thomas Devogele Université François Rabelais (Tours) thomas.devogele@univ-tours.fr Les déplacements L analyse des déplacements

Plus en détail

Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires

Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires M. Bergounioux & E. Trélat MAPMO Université d Orléans Journées du GDR - MOA Porquerolles 19-21 Octobre

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Sur les vols en formation.

Sur les vols en formation. Sur les vols en formation. Grasse, 8 Février 2006 Plan de l exposé 1. Missions en cours et prévues 2. Le problème du mouvement relatif 2.1 Positionnement du problème 2.2 Les équations de Hill 2.2 Les changements

Plus en détail

Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos.

Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos. Master Mathématiques et Applications Spécialité : Ingénierie mathématique et modélisation Parcours : Mathématique et Informatique : Statistique, Signal, Santé (MI3S) 2015-2016 RÉSUMÉ DES COURS : (dernière

Plus en détail

Visibilité polygone à polygone :

Visibilité polygone à polygone : Introduction Visibilité polygone à polygone : calcul, représentation, applications Frédéric Mora Université de Poitiers - Laboratoire SIC 10 juillet 2006 1 La visibilité Introduction Contexte L espace

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

Commande auto-adaptative par auto-séquencement, avec application à un avion instable

Commande auto-adaptative par auto-séquencement, avec application à un avion instable Commande auto-adaptative par auto-séquencement, avec application à un avion instable Patrice ANTOINETTE 1 2 Gilles FERRERES 1 1 ONERA-DCSD, Toulouse 2 ISAE, Toulouse GT MOSAR, 4 juin 2009 Plan Introduction

Plus en détail

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez

Plus en détail

Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre

Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre Reconstruction d images binaires par l estimation moindres carrés et l optimisation valeur propre Stéphane Chrétien & Franck Corset Université de Franche-Comté, UMR6623, Département Mathématiques 16 route

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

TP N 57. Déploiement et renouvellement d une constellation de satellites

TP N 57. Déploiement et renouvellement d une constellation de satellites TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Fouille de données orientée motifs, méthodes et usages.

Fouille de données orientée motifs, méthodes et usages. Fouille de données orientée motifs, méthodes et usages. François RIOULT GREYC - Équipe Données-Documents-Langues CNRS UMR 6072 Université de Caen Basse-Normandie France Résumé La fouille de données orientée

Plus en détail

Fouille de données dans des bases parcellaires (cadre projet PayOTe)

Fouille de données dans des bases parcellaires (cadre projet PayOTe) Fouille de données dans des bases parcellaires (cadre projet PayOTe) Thomas Guyet AGROCAMPUS-OUEST IRISA Équipe DREAM 01 mars 2010, Nancy Équipe DREAM : axes de recherche Diagnosing, recommending actions

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Microscopie de fluorescence Etat de l art

Microscopie de fluorescence Etat de l art Etat de l art Bibliométrie (Web of sciences) CLSM GFP & TPE EPI-FLUORESCENCE 1 Fluorescence Diagramme de JABLONSKI S2 S1 10-12 s Excitation Eex Eem 10-9 s Émission Courtoisie de C. Spriet

Plus en détail

Méthodes de Caractérisation des Matériaux. Cours, annales http://www.u-picardie.fr/~dellis/

Méthodes de Caractérisation des Matériaux. Cours, annales http://www.u-picardie.fr/~dellis/ Méthodes de Caractérisation des Matériaux Cours, annales http://www.u-picardie.fr/~dellis/ 1. Symboles standards et grandeurs électriques 3 2. Le courant électrique 4 3. La résistance électrique 4 4. Le

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

TP Cours Ferromagnétisme - Transformateur

TP Cours Ferromagnétisme - Transformateur TP Cours Ferromagnétisme - Transformateur 1. PROPRIETES DES MILIEUX FERROMAGNETIQUES La réalisation de transformateurs nécessite l utilisation de matériaux fortement aimantables. Ce sont les ferromagnétiques.

Plus en détail

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Algèbre 1 : (Volume horaire total : 63 heures) UE1 : Analyse et algèbre

Plus en détail

Master Informatique Aix-Marseille Université

Master Informatique Aix-Marseille Université Aix-Marseille Université http://masterinfo.univ-mrs.fr/ Département Informatique et Interactions UFR Sciences Laboratoire d Informatique Fondamentale Laboratoire des Sciences de l Information et des Systèmes

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007

Modèles GARCH et à volatilité stochastique Université de Montréal 14 mars 2007 Université de Montréal 14 mars 2007 Christian FRANCQ GREMARS-EQUIPPE, Université Lille 3 Propriétés statistiques des modèles GARCH Outline 1 Identification 2 Test de bruit blanc faible Test d homoscédaticité

Plus en détail

Le logiciel EduAnatomist.

Le logiciel EduAnatomist. Le logiciel EduAnatomist. Les travaux de l équipe ACCES (Actualisation Continue des Connaissances des Enseignants en Sciences) de l INRP restent, hélas, largement méconnus des enseignants de SVT. Pourtant,

Plus en détail

Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE

Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE LAURENT Rémy laurent@clermont.in2p3.fr http://clrpcsv.in2p3.fr Journées des LARD Septembre 2007 M2R

Plus en détail

Introduction à l informatique temps réel Pierre-Yves Duval (cppm)

Introduction à l informatique temps réel Pierre-Yves Duval (cppm) Introduction à l informatique temps réel Pierre-Yves Duval (cppm) Ecole d informatique temps réel - La Londes les Maures 7-11 Octobre 2002 -Définition et problématique - Illustration par des exemples -Automatisme:

Plus en détail

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 2 Discrimination Invariance Expressions faciales Age Pose Eclairage 11/12/2012 3 Personne Inconnue Identité

Plus en détail

Tutorat 2 de Mathématiques (1ère année)

Tutorat 2 de Mathématiques (1ère année) Tutorat 2 de Mathématiques (ère année) 9//200 Transformée de Radon et Tomographie par Rayons X Compte-rendu à déposer svp le casier de mon bureau. N hésitez pas à me contacter en cas de difficultés majeures

Plus en détail

Et en 2 e et 3 e, on pourrait mettre d autres questions éternellement débattues comme celle de la conscience ou du rapport nature/culture

Et en 2 e et 3 e, on pourrait mettre d autres questions éternellement débattues comme celle de la conscience ou du rapport nature/culture La question qui va nous intéresser aujourd hui figure parmi ce qu on pourrait appeler les débats vieux comme le monde. Je dirais même qu elle figure dans les premières places, si ce n est pas la première!

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux

Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux hétérogènes Laurent Déjean Thales Airborne Systems/ENST-Bretagne Le 20 novembre 2006 Laurent Déjean Détection en

Plus en détail

Amplificateur et commande

Amplificateur et commande CAPTEURS Bibliographie : [1]. G.Asch Les capteurs en instrumentation industrielle [2]. R Duffait, JP Lievre Expériences d électronique (chap ) [3]. Collection Durandeau 1èreS option Sciences expérimentales

Plus en détail

Les machines électriques Électricité 2 Électrotechnique Christophe Palermo IUT de Montpellier Département Mesures Physiques & Institut d Electronique du Sud Université Montpellier 2 e-mail : Christophe.Palermo@univ-montp2.fr

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Sujets présentés par le Professeur Olivier CUSSENOT

Sujets présentés par le Professeur Olivier CUSSENOT ANAMACaP Association Nationale des Malades du Cancer de la Prostate 17, bis Avenue Poincaré. 57400 SARREBOURG Sujets présentés par le Professeur Olivier CUSSENOT Place des nouvelles techniques d imagerie

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

Plan du chapitre «Milieux diélectriques»

Plan du chapitre «Milieux diélectriques» Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation

Plus en détail

Sources d information : lexicale. Sources d information : phonotactique. Sources d information : prosodie (2/3) Sources d information : prosodie (1/3)

Sources d information : lexicale. Sources d information : phonotactique. Sources d information : prosodie (2/3) Sources d information : prosodie (1/3) Organisation de la présentation Reconnaissance automatique des langues RMITS 28 http://www.irit.fr/~jerome.farinas/rmits28/ Jérôme Farinas jerome.farinas@irit.fr Équipe SAMOVA (Structuration, Analyse et

Plus en détail

Mécanismes cérébraux de la lecture. Second Cours. Vers une physiologie de la lecture

Mécanismes cérébraux de la lecture. Second Cours. Vers une physiologie de la lecture Mécanismes cérébraux de la lecture Stanislas Dehaene Chaire de Psychologie Cognitive Expérimentale Second Cours Vers une physiologie de la lecture Résumé du premier cours et plan du second cours La lecture

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE par S. CANTOURNET 1 ELASTICITÉ Les propriétés mécaniques des métaux et alliages sont d un grand intérêt puisqu elles conditionnent

Plus en détail

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail