Applications en imagerie cérébrale (MEG/EEG)

Dimension: px
Commencer à balayer dès la page:

Download "Applications en imagerie cérébrale (MEG/EEG)"

Transcription

1 EEG : mesure du potentiel électrique Ordre de grandeur : qq µ-volts Capteurs : électrodes MEG : mesure du champ magnétique Ordre de grandeur : Tesla Capteurs SQUID couplés à des bobines VI. Applications en imagerie cérébrale (MEG/EEG) VI. Applications en imagerie cérébrale 2 Problème direct/inverse en (MEG/EEG) Électroencéphalographie (EEG) Activité électrique neuronale Résolution temporelle : 1ms Magnétoencéphalographie (MEG)

2 VI. Applications en imagerie cérébrale 3 MEG/EEG : courants macroscopiques Mesure à l échelle du cm 2 de l activité électrique des cellules pyramidales synchrone temporellement et spatialement Dipôle de courant Macro-colonne corticale 10 5 neurones pyramidaux Q = I d 10 nam Dipôles sur la surface corticale VI. Applications en imagerie cérébrale 4 Les réponses de la MEG et de l EEG Données spatio-temporelles

3 VI. Applications en imagerie cérébrale 5 Réponse simultanée MEG et EEG Réponse auditive 100 millisecondes après l arrivée du son VI. Applications en imagerie cérébrale 6 MEG/EEG : Réponses topographiques Champ <0 Champ >0 Potentiel >0 Réponse dipolaire direction dipôle Réponse dipolaire à direction dipôle

4 VI. Applications en imagerie cérébrale 7 Imagerie MEG/EEG : localisation Reconstruire dans le temps et l espace les sources neuronales j à l origine des signaux MEG et EEG mesurés en surface Nécessité de résoudre le problème direct et le problème inverse VI. Applications en imagerie cérébrale 8 Problème direct en MEG/EEG Déf. : Connaissant la distribution des sources de courant j, calculer le champ électromagnétique ( E(r), B(r)), r S scalp Loi physiques : éq. de Maxwell, régime quasi-statique car f < 100 Hz Courants dans la tête : j = Courants primaires { }} { j p + Courants de conduction { }} { j c Loi d Ohm : jc = σ E = σ V Conservation de la charge : j = 0 (σ V ) = j p Loi Biot et Savart : r point de mesure à l extérieur de la tête (vol. conducteur) r : point à l intérieur du volume B( r) = µ 0 ( j 4π p + j r c )( r r ) r r 3 dv V tete

5 VI. Applications en imagerie cérébrale 9 Problème direct en MEG/EEG Difficultés : complexité du milieu physique [Hämäläinen et coll. 1993] Prise en compte de la géométrie des tissus (peau/os/lcr/subst. blanche) Connaissance imparfaite des conductivités : mesures in vivo difficiles Milieu homogène par morceaux (cas sphérique) B( r) = B 0 ( r) µ 0 4π n (σ j σ j+1 ) j=1 avec B0 ( r) = µ 0 4π V tete S j V ( r ) n( r ) jp ( r ) r r r r 3 dv r r r r 3 ds j Composante radiale calculée par B( r) n et n r le 2ème terme s annule B indépendant des conductivités Sources radiales silencieuses : j p n B 0 ( r) n = 0 [Sarvas 1987] VI. Applications en imagerie cérébrale 10 Problème direct en MEG/EEG : mileux homogènes Potentiel en un point appartenant à une surface [Hämäläinen et coll. 1993] σ j + σ j+1 V ( r) = σ n V 0 ( r) 2 avec r S j et V 0 ( r) = 1 4πσ n n j=1 V tete σ j σ j+1 4π jp ( r ) S j V ( r ) n( r ) r r r r 3 dv r r r r 3 ds j Solution analytique dans cas sphérique uniquement Modèle de source dipolaire : dipôle de courant équivalent q Activation en r p et observation en r j p ( r ) = qδ( r r p )avec q = j p ( r ) dv Conséquences cas sphérique : B0 ( r) n = µ 0 r r p 4π r r p 3 q

6 VI. Applications en imagerie cérébrale 11 Problème direct en MEG/EEG : Modèle de tête réaliste Calcul des champs sur un espace discret [Ermer et coll. 2001] m(r) = p g(r, r q p ) t q p, q p = [ q x p, q y p, q z p g(r, r qp ) : champ de sensibilité du capteur placé en r vis-à-vis du dipôle q p en r qp m = [m(r 1 ),..., m(r N )] t : potentiels/champs aux électrodes/capteurs, resp. g(r 1, r q1 ) t g(r 1, r qp ) t q 1 m = = G q g(r N, r q1 ) t g(r N, r qp ) t q P ] t Intégrales de frontières σ homogène isotrope Éléments/Différences fini(e)s σ variable VI. Applications en imagerie cérébrale 12 Modèles spatio-temporels k = 1,..., K, m tk = G q tk + b tk M = GQ avec M = [m t1 m tk ] q 1 (t) q avec Q = [ q t1... q tk ] t p x (t 1 ) q x p (t K ). =. et q p (t) = qp(t y 1 ) qp(t y K ) q P (t) qp(t z 1 ) qp(t z K ) Contrainte sur les dipôles : orientation u p fixe p = 1,..., P u x p q p (t) = u y p [s p (t 1 ),..., s p (t K )] = u p s t p, u = 1 u z p g(r 1, r q1 ) t u 1 g(r 1, r qp ) t u P s t 1 M = = A({r p, u p })S t g(r N, r q1 ) t u 1 g(r N, r qp ) t u P s t P Paramètres des sources : position/orientation {r p, u p } fixes au cours du temps

7 VI. Applications en imagerie cérébrale 13 Problème inverse MEG/EEG : approche Déf. : Reconstruire dans le temps et l espace les dipôles de courant neuronaux à partir des signaux MEG et EEG bruités mesurés en surface Difficultés : problème mal posé Non unicité de la solution (loi fondamentales de la physique, (Helmholtz 1853)) A chaque instant, nombre données faible (< 300) Instabilité due au bruit restreindre espace des solutions par régularisation par contrôle de dimension : modèles dipolaires ou paramétriques par pénalisation : modèles distribués VI. Applications en imagerie cérébrale 14 Problème inverse MEG/EEG : modèles dipolaires Identifier {r p, u p } et S t à partir de M = A({r p, u p })S t + N Hypothèse très forte : nombre de sources P connu a priori (P 10)! Méthode des moindres carrés arg min { J ({r p, u p }, S) = M A({r p, u p })S t 2 F }, Norme Frobenius 1 Linéaire en fonction des amplitudes S : calcul solution inverse généralisé {r p, u p }, fixé, ŜIG = A M avec A A = I et A = A({r p, u p }) 2 Problème non/quasi linéaire vis-à-vis de la position {r p }/orientation {u p } [ arg min J ({rp, u p }) = (I AA )M) 2 ] F = arg min P A M 2 r p,u p r p,u p Minimisation : algorithme du simplexe, de Levenberg-Marquart Quand P non convexité de J ({r p, u p }) Approche la plus utilisée en MEG/EEG sur données expérimentales et cliniques

8 VI. Applications en imagerie cérébrale 15 Résolution du problème inverse : modèle distribué Estimation des ampltiudes de dipôles de courant distribués au préalable sur la surface corticale (source distribuées) Imagerie de la densité corticale de courant Extraction de la surface corticale par segmentation de l IRM anatomique [Mangin et coll. 1995] Positions {r p } et orientations {u p } fixées :r p S cortex et u p S cortex Estimation des amplitudes S : pb linéaire mais indéterminé + mal conditionné! Approche bayésienne : estimateur du Maximum A Posteriori Ŝ = arg max p(s M) = arg max ln p(m S) + ln p(s) VI. Applications en imagerie cérébrale 16 Résolution du problème inverse : modèle distribué Méthodes linéaires : a priori spatial Gaussien S t N (0, C 1 { Ŝ t = arg min M AS t 2 + λtr [ SC 1 C 1 S S t] } ) N Ŝ t = F λ M avec F = C 1 N S ) A t (AC 1 N A t + λc 1 N ) Méthode de norme minimale/pondérée : C S = I ou C S = diagw, w p = A p 2 [Okada 1983, Jeffs et coll. 1987] Dérivée spatiale 1er ordre C 1 S = D t (1) D (1) [Wang 1993] Laplacien (Loreta) : C 1 S = D t (2) D (2) [Pascual-Marqui et coll. 1994] Limite des approches linéaires Manque de réalité neurophysiologique (solutions basse résolution) Interface entre régions fonctionnelles différentes mal gérée car norme L 2 Indépendance temporelle a priori

9 VI. Applications en imagerie cérébrale 17 Problème inverse : comparaison modèles distribués (Logiciel Curry) Dans le volume entier Surface corticale L 2 Norme minimale Loreta L 1 VI. Applications en imagerie cérébrale 18 Résolution du problème inverse : modèle distribué A priori spatiaux non gaussiens Solution sparses et focales : norme L p, p < 2 [Matsuura et Okabe 1995] A priori markoviens [Geman et Geman 1984, Idier 2001] ln p(s) = Ω(S) = J φ c ( (j) S c ) c C j=1 Exemple : champ de Markov d ordre 1, i.e., aux plus proches voisins Ω(S) = φ(s r s q ) {r,q} C C = {{r, q}, r q = 1} = {, } N s =

10 VI. Applications en imagerie cérébrale 19 Résolution du problème inverse : modèle distribué φ 22 (s) = s 2 φ 21 (s) = τ 2 + s 2 τ φ 20 (s) = min{s 2, τ 2 } Application en MEG/EEG j = 1, C = C : φ c ( S c ) = [Baillet et Garnero 1997, Geman et McClure 1987] K φ c ( x s c (t k )) + φ c ( y s 2 s c (t k )), avec φ c (s) = 1 + s 2 /τc 2 k=1 A priori spatio-temporel markovien [Baillet et coll. 1999] K Ω S,T (S) = Ω S (S) + β P t k 1 S tk 2 ou S tk : k ème col. de S, k=1 P t k 1 = I S tk 1 S t t k 1 / S tk 1 2 : projecteur sur hyperplan orthogonal à S tk 1 VI. Applications en imagerie cérébrale 20 Validation ST-MAP sur fantôme [Baillet et coll. 2001] Acquisition Crâne + gélatine + 6 sources Casque à 61 éléctrodes Traitement Cortex virtuel Norme minimale ST-MAP

11 VI. Applications en imagerie cérébrale 21 Données réelles MEG : somesthésie Somatotopie des doigts Contrôle VI. Applications en imagerie cérébrale 22 Modèles distribués : somesthésie ST-MAP et focalisation [Gavit et coll. 2001] Doigt 1 Doigt 3 Doigt 2 Doigt 5

12 Bibliographie 23 Bibliographie 24 [Baillet et Garnero 1997] S. Baillet et L. Garnero (1997), < A Bayesian approach to introducing Anatomo-functional priors in the EEG/MEG inverse problem >, IEEE Transactions on Biomedical Engineering, 44, 5, pages [Baillet et coll. 1999] S. Baillet, L. Garnero, G. Marin et J.-P. Hugonin (1999), < Combining MEG and EEG source imaging by minimization of mutual information >, IEEE Transactions on Biomedical Engineering, 46, 5, pages [Baillet et coll. 2001] S. Baillet, J.-J. Riera, G. Marin, J.-F. Mangin, J. Aubert et L. Garnero (2001), < Evaluation of Inverse Methods and Head Models for EEG Source Localization Using a Human Skull Phantom >, Physics in Medicine and Biology, 46. [Ermer et coll. 2001] J. J. Ermer, J. C. Mosher, S. Baillet et R. M. Leahy (2001), < Rapidly Re-computable EEG Forward Models for Realistic Head Shapes >, Physics in Medicine and Biology, 46, 4, pages [Gavit et coll. 2001] L. Gavit, S. Baillet, J.-F. Mangin, J. Pescatore et L. Garnero (2001), < A Multiresolution framework to the MEG/EEG source imaging >, IEEE Transactions on Biomedical Engineering, 48, 10, pages [Geman et Geman 1984] S. Geman et D. Geman (1984), < Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images >, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 6, pages

Michel Dojat INSERM U836, Grenoble Institut des Neurosciences, Fr

Michel Dojat INSERM U836, Grenoble Institut des Neurosciences, Fr La Neuroimagerie : une fenêtre ouverte sur le fonctionnement du cerveau Michel Dojat INSERM U836, Grenoble Institut des Neurosciences, Fr [S. Polyak The Vertebrate Visual System 1957] Etude du fonctionnement

Plus en détail

Prospection Géophysique : Méthode Electromagnétique

Prospection Géophysique : Méthode Electromagnétique Prospection Géophysique : Méthode Electromagnétique Romain Brossier romain.brossier@ujf-grenoble.fr ISTerre, Université Joseph Fourier Grenoble L3P PPRS 2013-2014 R. Brossier (ISTerre, UJF) Méthode EM

Plus en détail

Localisation de sources en MEG/EEGÊ

Localisation de sources en MEG/EEGÊ Localisation de sources en MEG/EEGÊ Line GARNERO Laboratoire de Neurosciences Cognitives et Imagerie CŽrŽbrale CNRS-UPR640-LENA INTRODUCTION Seule la possibilitž de localiser les sources des signaux MEG

Plus en détail

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation?

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation? Analyse d images, vision par ordinateur Traitement d images Segmentation : partitionner l image en ses différentes parties. Reconnaissance : étiqueter les différentes parties Partie 6: Segmentation d images

Plus en détail

Interfaces cerveau-machine

Interfaces cerveau-machine Interfaces cerveau-machine Introduction - plan I. Pourquoi des interfaces cerveau machine (BCI)? II. La chaîne mise en jeu Pourquoi des BCI? Moyen de communication Pourquoi des BCI? Moyen de communication

Plus en détail

Neuro-MS/D Stimulateur magnétique transcranien

Neuro-MS/D Stimulateur magnétique transcranien Neuro-MS/D Stimulateur magnétique transcranien Stimulation 20 Hz à intensité de 100% Pic champ magnétique - jusqu à 4 T Refroidissement performant : jusqu à 10000 impulsions pendant 1 session Programme

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

Modèles numériques anthropomorphiques pour les simulations en TEMP et TEP

Modèles numériques anthropomorphiques pour les simulations en TEMP et TEP Modèles numériques anthropomorphiques pour les simulations en TEMP et TEP Irène Buvat et Simon Stute Imagerie et Modélisation en Neurobiologie et Cancérologie UMR 8165 CNRS - Paris 7 - Paris 11 buvat@imnc.in2p3.fr

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Identification de conditions limites en flux par thermographie infrarouge appliquée à la caractérisation de moyens d essai thermique à haut flux

Identification de conditions limites en flux par thermographie infrarouge appliquée à la caractérisation de moyens d essai thermique à haut flux Identification de conditions limites en flux par thermographie infrarouge appliquée à la caractérisation de moyens d essai thermique à haut flux J.C. BATSALE*, JP LASSERRE**, A. DESCUNS*,**, G. LAMOTHE*,**

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Modèle réduit pour la DSC : Application aux solutions binaires

Modèle réduit pour la DSC : Application aux solutions binaires Modèle réduit pour la DSC : Application aux solutions binaires Stéphane GIBOUT 1, Erwin FRANQUET 1, William MARÉCHAL 1, Jean-Pierre BÉDÉCARRATS 1, Jean-Pierre DUMAS 1 1 Univ. Pau & Pays Adour, LaTEP-EA

Plus en détail

Champ électromagnétique?

Champ électromagnétique? Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

Dispositifsd'imageriemédicale. Master Images, Sciences et Technologies de l'information

Dispositifsd'imageriemédicale. Master Images, Sciences et Technologies de l'information Dispositifsd'imageriemédicale Master Images, Sciences et Technologies de l'information Intervenants : A. Daurat, V. Noblet, F. Rousseau Accès depuis la page web des intervenants LSIIT, équipe MIV http://lsiit-miv.u-strasbg.fr/miv

Plus en détail

Décodage de l activité neuronale

Décodage de l activité neuronale Décodage de l activité neuronale Neurophysiologie et neuro-prosthétique Musallan et al, 2004 Utiliser les signaux physiologiques pour activer des prothèses distantes, plus ou moins intelligentes Neurophysiologie

Plus en détail

Optimisation de la géométrie du voisinage pour la segmentation d images texturées

Optimisation de la géométrie du voisinage pour la segmentation d images texturées Optimisation de la géométrie du voisinage pour la segmentation d images texturées Pierre Beauseroy & André Smolarz Institut des Sciences et Technologies de l Information de Troyes (FRE 73) Université de

Plus en détail

Quelques points de traitement du signal

Quelques points de traitement du signal Quelques points de traitement du signal Introduction: de la mesure au traitement Source(s) BRUIT BRUIT Système d acquisition Amplitude (Pa) Temps (s) Amplitude (Pa) Mesure Opérations mathématiques appliquées

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Partie I : Implantation d un réseau de neurones RBF sur des systèmes embarqués : la détection et la reconnaissance de visages en temps réel

Partie I : Implantation d un réseau de neurones RBF sur des systèmes embarqués : la détection et la reconnaissance de visages en temps réel 1 Partie I : Implantation d un réseau de neurones RBF sur des systèmes embarqués : la détection et la reconnaissance de visages en temps réel F.Yang M.Paindavoine GDR-ISIS 20 Janvier 2005 Paris 2 Plan

Plus en détail

Chapitre 4 : Les bases du magnétisme application à la RMN. Dr. Hervé GUILLOU

Chapitre 4 : Les bases du magnétisme application à la RMN. Dr. Hervé GUILLOU UE 3-1: Physique Chapitre 4 : Les bases du magnétisme application à la RMN Dr. Hervé GUILLOU Année universitaire 2014/2015 Université Joseph Fourier (UJF) Grenoble I - Tous droits réservés Finalité du

Plus en détail

Troisième Cours. Mesure du décours temporel des opérations cognitives

Troisième Cours. Mesure du décours temporel des opérations cognitives L'imagerie cérébrale en psychologie cognitive Stanislas Dehaene Chaire de Psychologie Cognitive Expérimentale Troisième Cours Mesure du décours temporel des opérations cognitives Pourquoi la psychologie

Plus en détail

Cours d électrocinétique EC4-Régime sinusoïdal

Cours d électrocinétique EC4-Régime sinusoïdal Cours d électrocinétique EC4-Régime sinusoïdal 1 Introduction Dans les premiers chapitres d électrocinétique, nous avons travaillé sur les régimes transitoires des circuits comportant conducteur ohmique,

Plus en détail

Séparation de sources en ingénierie biomédicale

Séparation de sources en ingénierie biomédicale http://perso.univ-rennes1.fr/laurent.albera/ Séparation de sources en ingénierie biomédicale Laurent Albera SAS en SRM Conclusion 1 I. Applications, signaux et méthodes 1. Modalités d acquisitions 2. Problèmes

Plus en détail

Informatique visuelle - Vision par ordinateur. Pré-traitement d images

Informatique visuelle - Vision par ordinateur. Pré-traitement d images Informatique visuelle - Vision par ordinateur Pré-traitement d images Elise Arnaud elise.arnaud@imag.fr cours inspiré par X. Descombes, J. Ros, A. Boucher, A. Manzanera, E. Boyer, M Black, V. Gouet-Brunet

Plus en détail

Champ magnétique de la barre aimantée.

Champ magnétique de la barre aimantée. Module expérimental : Etude de la loi de Faraday Étude de la loi de Faraday Objectif Etude expérimentale de la loi de Faraday de l induction. La loi de Faraday de l induction est abordée par l observation

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

Equipe ACCES Neurosciences

Equipe ACCES Neurosciences Equipe ACCES Neurosciences Programme de 1 ère S : Référentiel : Le cortex sensoriel et la plasticité du système nerveux central (illustration grâce { des images d activation du cortex somesthésique ou

Plus en détail

Imagerie par résonance magnétique

Imagerie par résonance magnétique Imagerie par résonance magnétique Principes, techniques et contrôle de qualité Ir. Laurent Hermoye Unité de radiodiagnostic Nécessité Eviter une utilisation «presse bouton» de l IRM Optimisation des séquences

Plus en détail

l Intelligence Artificielle

l Intelligence Artificielle 1 Introduction à l Intelligence Artificielle Antoine Cornuéjols antoine@lri.fr http://www.iie.cnam.fr/~cornuejols/ I.I.E. & L.R.I., Université d Orsay Intelligence Artificielle : plan 2 1-2- 3-4- 5-6-

Plus en détail

-ii- APPLICATION DES PROPRIETES DE RESONANCE

-ii- APPLICATION DES PROPRIETES DE RESONANCE -ii- APPLICATION DES PROPRIETES DE RESONANCE Michel ZANCA, CHU Montpellier Signification de la résonance et relation de Larmor ω eff = 2 π ν eff = γ B eff La RMN détecte très précisément la fréquence ν

Plus en détail

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m EEl 1 ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS MESURE DU RAPPORT e/m 1. THEORIE 1.1. Effet d un champ électrique sur une charge électrique Dans un champ électrique E une

Plus en détail

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Stéréoscopie par minimisation d'énergie Frédéric Devernay d'après le cours de Richard Szeliski Mise en correspondance stéréo Quels algorithmes possibles? mettre en correspondance

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Segmentation conjointe d images et copules Joint image segmentation and copulas

Segmentation conjointe d images et copules Joint image segmentation and copulas Segmentation conjointe d images et copules Joint image segmentation and copulas Stéphane Derrode 1 et Wojciech Pieczynski 2 1 École Centrale Marseille & Institut Fresnel (CNRS UMR 6133), 38, rue F. Joliot-Curie,

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Imagerie cérébrale. Licence de Psychologie (L3S6). 2015. Florence Perrin

Imagerie cérébrale. Licence de Psychologie (L3S6). 2015. Florence Perrin Licence de Psychologie (L3S6). 2015 Imagerie cérébrale Florence Perrin Integrative Biology of Neuroregeneration INSERM U1051 Institut des Neurosciences de Montpellier Université Montpellier Web site: http://www.ibn-lab.com/

Plus en détail

Segmentation non supervisée d images par chaîne de Markov couple

Segmentation non supervisée d images par chaîne de Markov couple Segmentation non supervisée d images par chaîne de Markov couple Stéphane Derrode 1 et Wojciech Pieczynski 2 1 École Nationale Supérieure de Physique de Marseille, Groupe Signaux Multidimensionnels, laboratoire

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

UNE APPLICATION POSSIBLE : LA LOCALISATION DES ACTIVITÉS EPILEPTIQUES DANS L ÉVALUATION DES ÉPILEPSIES PARTIELLES.

UNE APPLICATION POSSIBLE : LA LOCALISATION DES ACTIVITÉS EPILEPTIQUES DANS L ÉVALUATION DES ÉPILEPSIES PARTIELLES. 6. UNE APPLICATION POSSIBLE : LA LOCALISATION DES ACTIVITÉS EPILEPTIQUES DANS L ÉVALUATION DES ÉPILEPSIES PARTIELLES. 1. Avant-propos Pourquoi avoir choisi l épilepsie? Ce choix est intervenu alors que

Plus en détail

BESOINS MEDICAUX EN NEUROPHYSIOLOGIE CLINIQUE

BESOINS MEDICAUX EN NEUROPHYSIOLOGIE CLINIQUE BESOINS MEDICAUX EN NEUROPHYSIOLOGIE DR F. CHELIOUT-HERAUT (M.D. Ph.D) Université Versailles St Quentin (UVSQ) DATE 20/11/2012 Cluster and project funding partners BESOINS EN NEUROPHYSIOLOGIE ELECTROENCEPHALOGRAPHIE

Plus en détail

Chapitre 1 : PROPRIETES GENERALES DES CAPTEURS

Chapitre 1 : PROPRIETES GENERALES DES CAPTEURS ELEC 2811 : Instrumentation et capteurs 2011-2012 Chapitre 1 : PROPRIETES GENERALES DES CAPTEURS 1. INTRODUCTION 2. NOTIONS ET TERMINOLOGIE 2.1. Distinction entre grandeurs et paramètres physiques 2.2.

Plus en détail

Formes et Optimisation en Vision par Ordinateur. Renaud Keriven Ecole des Ponts / ENS

Formes et Optimisation en Vision par Ordinateur. Renaud Keriven Ecole des Ponts / ENS Formes et Optimisation en Vision par Ordinateur Renaud Keriven Ecole des Ponts / ENS Journées Images et Modélisations Mathématiques Rennes, décembre 2006-1- Contexte (i) Snakes [Kass et al. 88] Contours

Plus en détail

ANALYSE DE L HYDRATATION DE LA PEAU AVEC LE SPECTROPHOTOMETRE PROCHE INFRAROUGE PORTABLE LABSPEC PRO

ANALYSE DE L HYDRATATION DE LA PEAU AVEC LE SPECTROPHOTOMETRE PROCHE INFRAROUGE PORTABLE LABSPEC PRO ANALYSE DE L HYDRATATION DE LA PEAU AVEC LE SPECTROPHOTOMETRE PROCHE INFRAROUGE PORTABLE LABSPEC PRO Présentation Introduction I. Matériel et Méthode II. Résultats III. Discussion Comparaison avec d autres

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Jean-René Duhamel. Institut des Sciences Cognitives CNRS - Université Claude-Bernard Lyon

Jean-René Duhamel. Institut des Sciences Cognitives CNRS - Université Claude-Bernard Lyon Jean-René Duhamel Institut des Sciences Cognitives CNRS - Université Claude-Bernard Lyon Neurophysiologie des fonctions visuelles supérieures 1. Introduction 2. Le système visuel cortical 3. Perception

Plus en détail

ECHOGRAPHE ET CAPTEUR. D.I.U. d Echocardiographie module 1

ECHOGRAPHE ET CAPTEUR. D.I.U. d Echocardiographie module 1 ECHOGRAPHE ET CAPTEUR D.I.U. d Echocardiographie module 1 Plan Généralités Capteur Echographe Traitement du signal Stockage Transport Généralités Historique the blue goose 1970 180 cm Généralités Historique

Plus en détail

Que mesure la neuro-imagerie fonctionnelle :

Que mesure la neuro-imagerie fonctionnelle : Que mesure la neuro-imagerie fonctionnelle : IRMf, TEP & MEG? O. Go s s e r i e s (1), A. De m e rt z i (1), Q. No i r ho m m e (1), J. Ts h i ba n d a (6), M. Bo ly (1), M. Op d e Be e c k (2), R. Hu

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Le cortex cérébral et la plasticité du SNC

Le cortex cérébral et la plasticité du SNC 1 CHAPITRE D Le cortex cérébral et la plasticité du SNC 2 Les précédents chapitres nous ont permis de constater que le SN est organisé comme un réseau très complexe de neurones, au sein duquel circulent

Plus en détail

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012 Cours d électricité Dipôles simples en régime alternatif Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année: 2011-2012 Plan du

Plus en détail

QUANTIFICATION DES EXAMENS ONCOLOGIQUES AU FLUORO-DÉOXYGLUCOSE EN TOMOGRAPHIE PAR ÉMISSION DE POSITONS

QUANTIFICATION DES EXAMENS ONCOLOGIQUES AU FLUORO-DÉOXYGLUCOSE EN TOMOGRAPHIE PAR ÉMISSION DE POSITONS Journées Jeunes Chercheurs d Aussois d - Décembre D 2003 U494 QUANTIFICATION DES EXAMENS ONCOLOGIQUES AU FLUORO-DÉOXYGLUCOSE OXYGLUCOSE EN TOMOGRAPHIE PAR ÉMISSION DE POSITONS Juliette FEUARDENT Thèse

Plus en détail

Résolution d un problème d assimilation variationnelle 4D-VAR par des modèles réduits POD adaptatifs

Résolution d un problème d assimilation variationnelle 4D-VAR par des modèles réduits POD adaptatifs Résolution d un problème d assimilation variationnelle 4D-VAR par des modèles réduits POD adaptatifs G. TISSOT, L. CORDIER, B. R. NOACK Institut Pprime, Dpt. Fluides, Thermique et Combustion, 8636 Poitiers

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

GVF (Gradient Vector Flow) et ses applications. Introduction au. Antonio Moreno Ingelmo. par

GVF (Gradient Vector Flow) et ses applications. Introduction au. Antonio Moreno Ingelmo. par Introduction au GVF (Gradient Vector Flow) et ses applications par Antonio Moreno Ingelmo Plan Introduction Les contours actifs Définition de GVF Force externe traditionnelle vs. GVF Limites du GVF Un

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

Plan de la séance. Partie 4: Restauration. Restauration d images. Restauration d images. Traitement d images. Thomas Oberlin

Plan de la séance. Partie 4: Restauration. Restauration d images. Restauration d images. Traitement d images. Thomas Oberlin Plan de la séance Traitement d images Partie 4: Restauration Thomas Oberlin Signaux et Communications, RT/ENSEEHT thomasoberlin@enseeihtfr 1 ntroduction 2 Modélisation des dégradations Modèles de bruit

Plus en détail

Chap.3 Lentilles minces sphériques

Chap.3 Lentilles minces sphériques Chap.3 Lentilles minces sphériques 1. Les différents types de lentilles minces sphériques 1.1. Les différentes formes de lentilles sphériques 1.2. Lentilles minces Centre optique 1.3. Lentille convergente

Plus en détail

Calibration de systèmes de levé mobiles

Calibration de systèmes de levé mobiles 1/30 Calibration de systèmes de levé mobiles S. Levilly, N. Seube ENSTA Bretagne Brest, FRANCE et CIDCO Rimouski Qc, CANADA Journées AFHy, Juin 2014 Les systèmes mobiles Ils sont généralement constitués

Plus en détail

Statistiques fonctionnelles pour l imagerie hyperspectrale

Statistiques fonctionnelles pour l imagerie hyperspectrale Statistiques fonctionnelles pour l imagerie hyperspectrale Laurent Delsol Cécile Louchet MAPMO 17e journée CASCIMODOT 6 décembre 2012 Plan Introduction Modélisation des spectres via les statistiques fonctionnelles

Plus en détail

Calculatrice vocale basée sur les SVM

Calculatrice vocale basée sur les SVM Calculatrice vocale basée sur les SVM Zaïz Fouzi *, Djeffal Abdelhamid *, Babahenini MohamedChaouki*, Taleb Ahmed Abdelmalik**, * Laboratoire LESIA, Département d Informatique, Université Mohamed Kheider

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Différents protocoles expérimentaux pour l estimation de la diffusivité thermique de matériaux anisotropes par méthode flash

Différents protocoles expérimentaux pour l estimation de la diffusivité thermique de matériaux anisotropes par méthode flash Différents protocoles expérimentaux pour l estimation de la diffusivité thermique de matériaux anisotropes par méthode flash Emmanuel RUFFIO *, Didier SAURY, Daniel PETIT, Catherine FUENTES, André PITEAU

Plus en détail

Plan du chapitre «Milieux magnétiques»

Plan du chapitre «Milieux magnétiques» Plan du chapitre «Milieux magnétiques» 1. Sources microscopiques de l aimantation en régime statique 2. Etude macroscopique de l aimantation en régime statique 3. Aimantation en régime variable 4. Les

Plus en détail

Quantification Vectorielle

Quantification Vectorielle Quantification Vectorielle Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 14 Décembre 2012 M. Cagnazzo Quantification Vectorielle 1/65 Plan Introduction 1 Introduction

Plus en détail

Cours S6. Formation d une image

Cours S6. Formation d une image Cours S6 Formation d une image David Malka MPSI 2015-2016 Lycée Saint-Exupéry http://www.mpsi-lycee-saint-exupery.fr Table des matières 1 Le miroir plan 1 1.1 Le miroir plan...............................................

Plus en détail

Caractérisation risation thermique photothermiques périodiques

Caractérisation risation thermique photothermiques périodiques Journée «Contrôle non destructif par voie optique infrarouge : De nouvelles techniques et de nouvelles applications». Salon Mesurexpo, Paris-Expo, Porte de Versailles, Jeudi Caractérisation risation thermique

Plus en détail

Support Vector Machines

Support Vector Machines Support Vector Machines Séparateurs à vaste marge Arnaud Revel revel.arnaud@gmail.com Plan 1 Introduction 2 Formalisation 3 Utilisation des noyaux 4 Cas multi-classes 5 Applications des SVM 6 Bibliographie

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

Modélisation et simulation de l activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis

Modélisation et simulation de l activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis Modélisation et simulation de l activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis Charles Pierre Laboratoire de Mathématiques Jean Leray, Université de Nantes

Plus en détail

Champ de Markov couple pour la segmentation d images texturées

Champ de Markov couple pour la segmentation d images texturées Champ de Markov couple pour la segmentation d images texturées Juliette Blanchet INRIA Rhône-Alpes Equipes Mistis et Lear 1 Segmention d images par champ de Markov caché 2 Segmentation de textures 3 Résultats

Plus en détail

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle

Plus en détail

STIMULATION MAGNETIQUE REPETITIVE TRANSCRANIENNE

STIMULATION MAGNETIQUE REPETITIVE TRANSCRANIENNE STIMULATION MAGNETIQUE REPETITIVE TRANSCRANIENNE M. LEBLANC, G. VALERO, A. COSTANTINI, G. CABELGUEN. SERVICE DE NEUROPHYSIOLOGIE CLINIQUE DR.GUEGUEN Centre Hospitalier Sainte Anne.75014 PARIS HISTORIQUE

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

Recalage Multimodal par Maximisation de l Information Mutuelle

Recalage Multimodal par Maximisation de l Information Mutuelle SETIT 2009 5 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 22-26, 2009 TUNISIA Recalage Multimodal par Maximisation de l Information Mutuelle

Plus en détail

OntoCATI et CATISchema Une ontologie et un schéma pour fédérer les ressources informatiques du Centre d Acquisition et de Traitement des Images (CATI)

OntoCATI et CATISchema Une ontologie et un schéma pour fédérer les ressources informatiques du Centre d Acquisition et de Traitement des Images (CATI) OntoCATI et CATISchema Une ontologie et un schéma pour fédérer les ressources informatiques du Centre d Acquisition et de Traitement des Images (CATI) B. Batrancourt 1, S. Poret 1, L. Edward 1, Y. Cointepas

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques. Détection par effet mirage Mesures photothermiques

Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques. Détection par effet mirage Mesures photothermiques 1 Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques 1 Introduction Détection par effet mirage Mesures photothermiques La méthode de détection par effet mirage fait partie de méthodes

Plus en détail

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes CNES Paris - 22/05/2003 Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes Michel DHOME LASMEA UMR 6602CNRS/UBP Clermont-Ferrand Etat de l art (communauté vision artificielle)

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Document 1 : modélisation d un appareil photographique

Document 1 : modélisation d un appareil photographique PCSI1-Lycée Michelet 2014-2015 APPROCHE DOCUMENTAIRE : appareil photo numérique Extrait du programme : en comparant des images produites par un appareil photographique numérique, discuter l influence de

Plus en détail

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Table des matières 1 Graph Kernels for Molecular Structure-Activity Relationship Analysis

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Tournez la page S.V.P.

Tournez la page S.V.P. 17 Tourne la page S.V.P. Le problème est constitué de quatre parties indépendantes La mesure de l intensité d un courant électrique peut nécessiter des méthodes très éloignées de celle utilisée dans un

Plus en détail

Livre blanc Système d imagerie LLI (Long-Length Imaging) CARESTREAM DirectView DR avec assemblage automatique et manuel

Livre blanc Système d imagerie LLI (Long-Length Imaging) CARESTREAM DirectView DR avec assemblage automatique et manuel Un traitement de l image avancé avec un assemblage automatique et des fonctions d ajustement pour une image composite complète, sans ligne de jonction Analyse de la géométrie dans le cas d une imagerie

Plus en détail

Ingénierie d aide à la décision

Ingénierie d aide à la décision Ingénierie d aide à la décision Maria Malek 1 er septembre 2009 1 Objectifs et débouchés Nous proposons dans cette option deux grands axes pour l aide à la décision : 1. La recherche opérationnelle ; 2.

Plus en détail

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens.

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Objectifs Connaître les caractéristiques de la structure gaussienne d un faisceau laser (waist, longueur

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 Le compressed sensing pour l holographie acoustique de champ proche II: Mise en œuvre expérimentale. Antoine Peillot 1, Gilles Chardon 2, François

Plus en détail

Automatisation d une scie à ruban

Automatisation d une scie à ruban Automatisation d une scie à ruban La machine étudiée est une scie à ruban destinée à couper des matériaux isolants pour leur conditionnement (voir annexe 1) La scie à lame verticale (axe z ), et à tête

Plus en détail

IMAGERIE PAR TOMOGRAPHIE ÉLECTRIQUE RÉSISTIVE DE LA DISTRIBUTION DES PHASES DANS UNE COLONNE À BULLES

IMAGERIE PAR TOMOGRAPHIE ÉLECTRIQUE RÉSISTIVE DE LA DISTRIBUTION DES PHASES DANS UNE COLONNE À BULLES IMAGERIE PAR TOMOGRAPHIE ÉLECTRIQUE RÉSISTIVE DE LA DISTRIBUTION DES PHASES DANS UNE COLONNE À BULLES E. Fransolet, M. Crine, G. L Homme, Laboratoires de Génie Chimique, P. Marchot, D. Toye. Université

Plus en détail

Caractérisation des composantes constitutives de la courbe de charge électrique cas du secteur résidentiel

Caractérisation des composantes constitutives de la courbe de charge électrique cas du secteur résidentiel Caractérisation des composantes constitutives de la courbe de charge électrique cas du secteur résidentiel Mabrouka El Guedri (Thèse CIFRE) G. Fleury : directeur de thèse C. Lajaunie : co-directeur de

Plus en détail

GYROSCANFIELD. Courbe radar de l objet sous test. Comparaison mesure et simulation d une antenne WiFi

GYROSCANFIELD. Courbe radar de l objet sous test. Comparaison mesure et simulation d une antenne WiFi Produits 2015-2016 GYROSCANFIELD Le Gyroscanfield permet de mesurer et de visualiser en 3D et en temps réel le rayonnement électromagnétique d un objet sous test de manière simple et rapide. Il est fabriqué

Plus en détail

Approche inverse pour la restauration de l information cristallographique

Approche inverse pour la restauration de l information cristallographique Approche inverse pour la restauration de l information cristallographique Ferréol Soulez INSA CNDRI, Centre de Quantimétrie Lyon 1 1 / 19 Principe 2 / 19 Diffraction des rayon X Diffraction des rayons

Plus en détail