Cours 2012: Le cerveau statisticien:

Dimension: px
Commencer à balayer dès la page:

Download "Cours 2012: Le cerveau statisticien:"

Transcription

1 Cours 2012: Le cerveau statisticien: La révolution Bayésienne en sciences cognitives Stanislas Dehaene Chaire de Psychologie Cognitive Expérimentale Cours n 7 Le cerveau vu comme un système prédictif

2 La notion de «codage prédictif» (predictive coding) Mumford, 1992; Rao & Ballard, 1999; Friston, 2005 L hypothèse du «cerveau Bayésien» suggère que notre cerveau infère, à partir des entrées sensorielles, un partir des entrées sensorielles, un modèle interne du monde extérieur. A son tour, ce modèle interne peut être utilisé pour créer des anticipations sur utilisé pour créer des anticipations sur les entrées sensorielles et un effet de surprise liée à l erreur de prédiction quand celles ci sont violées. quand celles ci sont violées

3 La notion de «codage prédictif» (predictive coding) L idée que le cerveau n est pas un dispositif passif d entrée sortie, mais un système actif capable de générer des prédictions et d en vérifier la validité, a une longue histoire dans les domaines de l éthologie, de la psychologie, et des neurosciences. voir par exemple ee pees les concepts cepts de copie efférente (von Helmholtz, von Holst), de critique interne (Sutton & Barto) ou de prédiction de la récompense (Schultz) Les avantages en sont nombreux: gagner du temps: anticiper, c est avoir l information à l avance, parfois avant même qu elleatteigne nosrécepteurssensoriels sensoriels filtrer les entrées: utiliser le passé pour prédire le présent, c est bénéficier d un filtre optimal qui peut aider à interpréter une entrée bruitée, voire remplacer totalement un stimulus masqué, manqué ou absent. simplifier l architecture et le traitement des données: il n est pas la peine de représenter ou de transmettre ce que l on peut prédire. tirer des inférences optimales: maximiser i la vraisemblance p(h e) d un modèle des entrées sensorielles implique de minimiser l erreur de prédiction sur ces entrées e. (Mumford, 1992; Rao & Ballard, 1999; Friston, 2005).

4 Le cerveau, l algorithme E M et le principe de l énergie libre Friston, K. (2010). The free-energy principle: a unified brain theory? Nat Rev Neurosci, 11(2), Pour Karl Friston, l hypothèse du codage prédictif s inscrit dans un cadre théorique beaucoup plus large, le principe de minimisation de l énergie libre: «tout système auto organisé en équilibre avec son environnement doit minimiser son énergie libre» Le principe de l énergie libre est une «formulation mathématique de la manière dont les agents biologiques résistent à la tendance naturelle au désordre» : ils «maintiennent leur état dans un environnement changeant». Les états de l organisme doivent donc être de basse entropie : «les agents biologiques doivent minimiser i i la moyenne à long terme de la surprise». L énergie libre est une équation mathématique qui donne une borne supérieure sur la surprise: «si les agents minimisent l énergie libre, ils minimisent implicitement la surprise». Dansledomaine de laperception, leprincipe conduit à optimiser les inférences perceptives. «L agent infère ou représente, de façon implicite, les causes de ses entrées sensorielles selon les principes de l inférence Bayésienne optimale» L énergie Lénergie librepeutêtre maximiséeparl'algorithme algorithme EM (Expectation Maximisation), proposé par Dempster et al. (1977): une procédure itérative qui, en alternant deux étapes (E et M) de façon répétée, permet de trouver le maximum de vraisemblance ou le maximum a posteriori des paramètres d un dun modèle probabiliste. Friston propose que le cerveau utilise un algorithme EM, ce qui, si le modèle générateur est Gaussien, revient à propager des erreurs de prédiction.

5 Vers une théorie générale de l organisation du cortex? Friston, K. (2005). A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci, 360(1456), Nos sensations sont générées par un réseau complexe et hiérarchique de causes. Notre cortex cherche à inverser ce modèle (au sens de Bayes): inférer les causes cachées de nos sensations à tous les niveaux. La formalisation de ce problème invite à (1) assigner à chaque niveau d inférence causale une aire spécifique (2) utiliser un algorithme bidirectionnel de passation de messages. Les L neurones des couches inférieures implémentent la représentation des causes. Les connections descendantes implémentent le modèle prédictif (forward model): la prédiction du niveau n, sur la base des connaissances au niveau n+1. Les connections ascendantes, issues des couches supérieures du cortex, transmettent l erreur de prédiction: la différence entre l entrée reçue et sa prédiction.

6 Quelques phénomènes empiriques qui peuvent être capturés par le modèle du «codage prédictif» La «Mismatch negativity»: après plusieurs répétitions, la présentation d un son déviant, inattendu, évoque une réponse cérébrale à la nouveauté. Garrido, M. I., Kilner, J. M., Kiebel, S. J., & Friston, K. J. (2009). Dynamic causal modeling of the response to frequency deviants. J Neurophysiol, 101(5),

7 Quelques phénomènes empiriques qui peuvent être capturés par le modèle du «codage prédictif» La «Mismatch negativity»: après plusieurs répétitions, la présentation d un son déviant, inattendu, évoque une réponse cérébrale à la nouveauté. De nombreuses autres réponses cérébrales ééb sont évoquées é par des stimulis inattendus ou qui violent une règle (MMN auditives à différents niveaux, visuelles, somatosensorielles, ELAN, N400, P3a et P3b). «Repetition suppression»: l activation cérébrale ééb diminue i lorsqu une image est répétée (Miller & Desimone, 1991; Grill Spector et al, 2001; Naccache & Dehaene, 2001) Débat: S agit il d une simple habituation, ou d une authentique erreur de prédiction? De nombreuses données récentes militent en faveur de l hypothèse du codage prédictif: 1. Une réponse auditive est évoquée par l absence d un son attendu. 2. La MMNpeut êtreévoquée parlarépétition répétition d un dun stimulusdansun un paradigme ABABA où c est l alternance qui est attendue. Horvath, J., & Winkler, I. (2004). How the human auditory system treats repetition amongst change. Neurosci Lett, 368(2), De même, Chris Summerfield montre que la repetition suppression est modulée par les attentes du sujet. Elle est fortement réduite lorsque les stimuli alternent et que c est la répétition qui constitue un événement surprenant. Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M. M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nat Neurosci, 11(9),

8 Sensibilité à l anticipation de la répétition dans le cortex auditif Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study. J Neurosci, 31(25), Présentation d un ou deux sons successifs (1000 Hz, 5 ms), séparés de 500 ms Deux types de blocs distincts: 75% de paires, 25% de sons uniques; ou l inverse EnregistrementMEGchez l homme attentif (détection de rares déviants à 1200 Hz)

9 Sensibilité à l anticipation de la répétition dans le cortex auditif Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study. J Neurosci, 31(25), Dans l espace temps fréquence, les réponses à un second stimulus sont fortement réduites lorsque le stimulus est anticipé. i

10 Sensibilité à l anticipation de la répétition dans le cortex auditif Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study. J Neurosci, 31(25), Inversement, l omission d un stimulus attendu se traduit par une vigoureuse décharge prolongée, particulièrement dans la bande gamma (>40 Hz). Serait ce la trace de la prédiction elle même? Ou de la surprise évoquée par l omission?

11 Sensibilité à la probabilité de transition dans le cortex inféro temporal du singe macaque Meyer, T., & Olson, C. R. (2011). Statistical learning of visual transitions in monkey inferotemporal cortex. Proc Natl Acad Sci U S A, 108(48), Les décharges des neurones du cortex inféro temporal sont elles affectées par la prédictabilité des images? Fixation passive chez le singe éveillé Présentation de paires d images avec une forte probabilité de transition Présence de rares paires dans laquelle cette transition probable est violée.

12 Sensibilité à la probabilité de transition dans le cortex inféro temporal du singe macaque Décharge moyenne de la population de neurones: La réponse à l image prévisible est atténuée pratiquement dès le début En proportion p directe de la réponse à l image non prédite. La décharge neuronale contient plus d information décodable sur l image lorsqu elle est imprévisible que lorsqu elle est prédite.

13 Sensibilité à la probabilité de transition dans le cortex inféro temporal du singe macaque La réponse à l image 2 est toujours plus lente que pour l image 1 (probablement parce qu une une image remplace lautre) l autre) La réponse à l image prédite est légèrement accélérée L effet de surprise survient exactement en même temps que la réponse à l image non prédite la génération de l «effet de surprise» semble instantanée! Cette observation n est pas compatible avec un traitement sériel (identification de l image, puis de sa nouveauté), mais semble nécessiter un codage prédictif.

14 Sensibilité à la probabilité de transition dans le cortex inféro temporal du singe macaque L habituation (ou adaptation) neuronale peut elle expliquer l effet? Non, elle semble ne pas jouer un rôle important dans l effet observé: La réponse à la deuxième image ne dépend absolument pas de l amplitude la réponse à la première image.

15 Sensibilité à la probabilité de transition dans le cortex inféro temporal du singe macaque A B (ordre appris) B A (ordre inverse) L effet est directionnel: l image A n prédit l image B n, mais pas l inverse. Conclusion: la réponse du cortex inféro temporal traduit une anticipation du stimulus à venir les décharges neuronales reflètent l erreur lerreur de prédiction.

16 Une implémentation neuronale du codage prédictif Memory trace (synfire chain) hi) Neuron index Wacongne, C., Changeux, J. P., & Dehaene, S. (2012). A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci, in press. Predictive Population Layer 2/3 P(A) P(B) time Learning : modification of synaptic weights Prediction Errror layer4 (A) ( ) (B) ( ) Error signal NMDA dependent Spike Timing Dependent Plasticity Thalamic Input A B

17 Une implémentation neuronale du codage prédictif Wacongne, C., Changeux, J. P., & Dehaene, S. (2012). A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci, in press.

18 Oddball Standard Anticipation de A : Predictive résultat de l apprentissage Population Layer 2/3 Résultats de la simulation Erreur de prédiction résiduelle Prediction Errror layer4 Thalamic Input

19 Oddball Deviant Anticipation de A : Predictive résultat de l apprentissage Population Layer 2/3 Résultats de la simulation Erreur de prédiction résiduelle Prediction Errror layer4 Thalamic Input

20 Oddball Difference L effet de Mismatch Negativity Predictive Population Layer 2/3 Prediction Errror layer4

21 Oddball Effet 1 : existence L effet de Mismatch Negativity Predictive Population Layer 2/3 Prediction Errror layer4 Effet 1 Existence of a difference between the responses to standard and deviant sounds

22 Origine corticale de la MMN, et rôle du récepteur NMDA Oddball Effet 1 : existence Effet 2 : localisation Predictive Population Layer 2/3 Experimental data (CSD) Javitt et al. (1996) Prediction Errror layer4 Effet 2 Maximal difference in supragranular layer (Javitt 1996)

23 Oddball Effet 1 : existence Effet 2 : localisation Effet 3 : frequency Effet de la fréquence des déviants Predictive Population Layer 2/3 Experimental Data (ERP) 10% 20% 30% Prediction Errror layer4 Sato et al. (2000) Effet 3 Increase in MMN amplitude if the deviant is less frequent(sato 2000)

24 La probabilité de transition entre les stimuli est directement internalisée dans les poids synaptiques

25 La réponse à une répétition inattendue: le paradigme ABAB ABABAAB.. Effet 1 : existence Effet 2 : localisation Effet 3 : frequency Effet 4: MMN to repetition Effet 5 MMN to repetition in an alternate sequence

26 AB AB A_ Effet 1 : existence Effet 2 : localisation Effet 3 : frequency Effet 4: MMN to repetition Effet 5: MMN to omission La réponse à une omission inattendue Effet 5 MMN to omission

27 Codage prédictif ou habituation? Un nouveau test en MEG Wacongne, C., Changeux, J. P., & Dehaene, S. (2012). A neuronal model of predictive coding accounting for the mismatch negativity. i J Neurosci, in press. Idée: exposer l organisme à des paires AB, puis tester la surprise évoquée par AA, BA, BB. Pour réfuter une éventuelle habituation de neurones sensibles à la paire AB, espacer ces paires de 10 à 20 secondes. Prédictions:

28 Une hiérarchie de prédictions dans le cortex Bekinschtein, T. A., Dehaene, S., Rohaut, B., Tadel, F., Cohen, L., & Naccache, L. (2009). Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci U S A, 106(5), règle xxxxx 20% Erreur 80% La présentation d une note rare, au sein d une séquence répétée, évoque une MMN. règle xxxxy 80% 20% Erreur «locale» Erreur «globale» Que se passerait il si la séquence toute entière devenait prévisible? La MMN persiste elle reflète un système de prédiction local et aveugle. Mi Mais une seconde réponse à la nouveauté, la P3b, disparaît c est tà présent tle stimulus monotone qui évoque la P3b. Il existe une hiérarchie de prédictions dans le cortex. La P3b pourrait refléter le niveau de la prédiction consciente.

29 Une hiérarchie de prédictions dans le cortex Bekinschtein, T. A., Dehaene, S., Rohaut, B., Tadel, F., Cohen, L., & Naccache, L. (2009). Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci U S A, 106(5), règle xxxxy 80% 20% Erreur «locale» Erreur «globale»

30 L omission démontre l existence d une hiérarchie de prédictions Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc Natl Acad Sci U S A, 108(51), règle xxxxy 80% 20% Erreur «locale» Erreur «globale» Reconsidérons le cas de la règle xxxxy. Au niveau supérieur, ce n est pas une surprise qu il y ait une surprise! La surprise, c est qu il n y en ait pas. Le modèle hiérarchique implique que l erreur locale (de niveau 1) est elle même prédite et «effacée» par une prédiction de plus haut niveau (de niveau 2). Une idée simple: en omettant le dernier stimulus, nous pouvons enregistrer ce pur signal de prédiction. Stimulus Prédiction Différence

31 L omission démontre l existence d une hiérarchie de prédictions Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc Natl Acad Sci U S A, 108(51), règle xxxxy 80% 20% Erreur «locale» Erreur «globale» Reconsidérons le cas de la règle xxxxy. Au niveau supérieur, ce n est pas une surprise qu il y ait une surprise! La surprise, c est qu il n y en ait pas. Le modèle hiérarchique implique que l erreur locale (de niveau 1) est elle même prédite et «effacée» par une prédiction de plus haut niveau (de niveau 2). Une idée simple: en omettant le dernier stimulus, nous pouvons enregistrer ce pur signal de prédiction. Prédiction: l effet d omission est deux fois plus important pour la règle xxxxy que pour la règle xxxxx, Stimulus Prédiction Différence

32 Une hiérarchie de prédictions dans le cortex auditif Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011). Evidence for a hierarchyh of predictions i and prediction errors in human cortex. Proc Natl Acad Sci U S A, 108(51),

33 L effet d omission en MEG Différence entre les omissions: La réponse à l omission du cinquième son est effectivement plus grande dans la règle xxxxy que dans la règle xxxxx.

34 Reconstruction des sources corticales des activations observées source temporale supérieure source précentrale Remarquer à nouveau l ordre des réponses: d abord dabord l effet leffet d omission ensuite l effet de nouveauté locale enfin l activation aux sons prédits

35 Le comportement humain suggère que les adultes et les enfants possèdent une vaste capacité d inférence statistique à de multiples niveaux (perception, action, lexique, causalité ) L architecture du cortex pourrait s expliquer par la réplication d un circuit neuronal Bayésien (avec des variantes locales). Conclusion du cours 2012 L hypothèse du cerveau Bayésien commence à rendre compte de quelques unes des questions les plus pressantes en sciences cognitives: Le problème de l induction des règles abstraites La détection des erreurs La réaction de surprise Les compétences des enfants et l apprentissage précoce

Troisième Cours. Mesure du décours temporel des opérations cognitives

Troisième Cours. Mesure du décours temporel des opérations cognitives L'imagerie cérébrale en psychologie cognitive Stanislas Dehaene Chaire de Psychologie Cognitive Expérimentale Troisième Cours Mesure du décours temporel des opérations cognitives Pourquoi la psychologie

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Mécanismes cérébraux de la lecture. Second Cours. Vers une physiologie de la lecture

Mécanismes cérébraux de la lecture. Second Cours. Vers une physiologie de la lecture Mécanismes cérébraux de la lecture Stanislas Dehaene Chaire de Psychologie Cognitive Expérimentale Second Cours Vers une physiologie de la lecture Résumé du premier cours et plan du second cours La lecture

Plus en détail

Les Neurones Miroirs 1

Les Neurones Miroirs 1 Les Neurones Miroirs 1 Plan du Cours Action vs. Perception Théorie de la «théorie de l esprit» vs. Théorie de la simulation Données expérimentales sur l espace péripersonnel, l affordance et les neurones

Plus en détail

Présenter par Vincent Slythe dans le cadre du cours Électrophysiologie de l attention. 12 janvier 2011

Présenter par Vincent Slythe dans le cadre du cours Électrophysiologie de l attention. 12 janvier 2011 Présenter par Vincent Slythe dans le cadre du cours Électrophysiologie de l attention. 12 janvier 2011 Buts et perspectives Histoire de la méthode des potentiels évoqués relatif Exemple d une expérience

Plus en détail

Bases neurales de la conscience et de l esthétique

Bases neurales de la conscience et de l esthétique Bases neurales de la conscience et de l esthétique Qu est-ce-que la conscience? Multiples définitions Etymologiquement : connaissance partagée Pour les neurobiologistes, fonction qui se situe au niveau

Plus en détail

Concepts et méthodes en psychologie cognitive

Concepts et méthodes en psychologie cognitive Concepts et méthodes en psychologie cognitive La psychologie cognitive La pensée très peu (voir AT, S2) organisation des processus mentaux mémoire, perception, decision, action Carte de route Conceptes

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite): Paramétrisation. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite): Paramétrisation. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite): Paramétrisation Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale Paramétrisation Distances

Plus en détail

Source analysis of the N2 in a cued G0/NoGo task. Evelijne M. Bekker, J. Leon Kenemans, Marinus N. Verbaten

Source analysis of the N2 in a cued G0/NoGo task. Evelijne M. Bekker, J. Leon Kenemans, Marinus N. Verbaten Source analysis of the N2 in a cued G0/NoGo task Evelijne M. Bekker, J. Leon Kenemans, Marinus N. Verbaten Introduction Méthodologie Sujets Tâches et procédures Enregistrements électrophysiologiques Analyse

Plus en détail

Lucie Charles. Etude en neuroimagerie de l influence de la conscience sur les processus de traitement de l erreur.

Lucie Charles. Etude en neuroimagerie de l influence de la conscience sur les processus de traitement de l erreur. Rapport de Stage M2 Cogmaster 2009 Lucie Charles Etude en neuroimagerie de l influence de la conscience sur les processus de traitement de l erreur Stanislas Dehaene Neurospin, Unité de Neuroimagerie Cognitive

Plus en détail

Interfaces cerveau-machine

Interfaces cerveau-machine Interfaces cerveau-machine Introduction - plan I. Pourquoi des interfaces cerveau machine (BCI)? II. La chaîne mise en jeu Pourquoi des BCI? Moyen de communication Pourquoi des BCI? Moyen de communication

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Introduction générale au codage de canal

Introduction générale au codage de canal Codage de canal et turbo-codes 15/9/2 1/7 Introduction générale au codage de canal Table des matières Table des matières... 1 Table des figures... 1 1. Introduction... 2 2. Notion de message numérique...

Plus en détail

Trouble du traitement de l information sensorielle (SPD) Définition générale

Trouble du traitement de l information sensorielle (SPD) Définition générale Trouble du traitement de l information sensorielle (SPD) Définition générale Le traitement de l information sensorielle, parfois nommé intégration sensorielle, réfère au processus par lequel le cerveau

Plus en détail

PJE : Analyse de comportements avec Twitter Classification supervisée

PJE : Analyse de comportements avec Twitter Classification supervisée PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe arnaud.liefooghe@univ-lille1.fr Master 1 Informatique PJE2 2015-16 B. Derbel L. Jourdan A. Liefooghe 1 2 Agenda Partie

Plus en détail

Le cortex cérébral et la plasticité du SNC

Le cortex cérébral et la plasticité du SNC 1 CHAPITRE D Le cortex cérébral et la plasticité du SNC 2 Les précédents chapitres nous ont permis de constater que le SN est organisé comme un réseau très complexe de neurones, au sein duquel circulent

Plus en détail

CHAPITRE 9 COMMUNICATION NERVEUSE. Le système nerveux forme dans l organisme un réseau de communication qui permet à la fois :

CHAPITRE 9 COMMUNICATION NERVEUSE. Le système nerveux forme dans l organisme un réseau de communication qui permet à la fois : CHAPITRE 9 COMMUNICATION NERVEUSE Le système nerveux forme dans l organisme un réseau de communication qui permet à la fois : De recueillir des informations en provenance de l environnement et des structures

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Les grands principes de l apprentissage

Les grands principes de l apprentissage Les grands principes de l apprentissage Stanislas Dehaene Collège de France et Unité itéinserm CEA de Neuro NeuroSpin Center, Saclay, France www.unicog.org Sciences cognitives et éducation: L ouverture

Plus en détail

Support Vector Machines

Support Vector Machines Support Vector Machines Séparateurs à vaste marge Arnaud Revel revel.arnaud@gmail.com Plan 1 Introduction 2 Formalisation 3 Utilisation des noyaux 4 Cas multi-classes 5 Applications des SVM 6 Bibliographie

Plus en détail

L'intelligence artificielle

L'intelligence artificielle Texte de la 263 e conférence de l'université de tous les savoirs donnée le 19 septembre 2000. L'intelligence artificielle par JEAN-PAUL HATON Dès le début de l intelligence artificielle (IA) dans les années

Plus en détail

Equipe ACCES Neurosciences

Equipe ACCES Neurosciences Equipe ACCES Neurosciences Programme de 1 ère S : Référentiel : Le cortex sensoriel et la plasticité du système nerveux central (illustration grâce { des images d activation du cortex somesthésique ou

Plus en détail

Neuro-MS/D Stimulateur magnétique transcranien

Neuro-MS/D Stimulateur magnétique transcranien Neuro-MS/D Stimulateur magnétique transcranien Stimulation 20 Hz à intensité de 100% Pic champ magnétique - jusqu à 4 T Refroidissement performant : jusqu à 10000 impulsions pendant 1 session Programme

Plus en détail

Audition : du neurone à la conscience

Audition : du neurone à la conscience Réunion de la Société de Psychophysiologie et Neurosciences Cognitives 27 et 28 septembre 2012, Lyon Salle de conférence du bâtiment INSERM 151 Cours Albert Thomas 69003 LYON Audition : du neurone à la

Plus en détail

Quinzaine Bloc 9 Psychologie Cognitive Partie 1. 1. Anatomie. Comparaisons entre cerveaux. cerveau. L oeil Le cerveau Les modules

Quinzaine Bloc 9 Psychologie Cognitive Partie 1. 1. Anatomie. Comparaisons entre cerveaux. cerveau. L oeil Le cerveau Les modules Quinzaine Bloc 9 Psychologie Cognitive Partie 1 1. Anatomie 2. Mesure: les champs récepteurs 3. Inférence: choix de l histoire le plus apte 4. Attention 5. Architecture 1. Anatomie L oeil Le cerveau Les

Plus en détail

Théorie des Jeux Et ses Applications

Théorie des Jeux Et ses Applications Théorie des Jeux Et ses Applications De la Guerre Froide au Poker Clément Sire Laboratoire de Physique Théorique CNRS & Université Paul Sabatier www.lpt.ups-tlse.fr Quelques Définitions de la Théorie des

Plus en détail

Jean-René Duhamel. Institut des Sciences Cognitives CNRS - Université Claude-Bernard Lyon

Jean-René Duhamel. Institut des Sciences Cognitives CNRS - Université Claude-Bernard Lyon Jean-René Duhamel Institut des Sciences Cognitives CNRS - Université Claude-Bernard Lyon Neurophysiologie des fonctions visuelles supérieures 1. Introduction 2. Le système visuel cortical 3. Perception

Plus en détail

Références. Compter les mots. Le langage comme donnée. Communication Langagière Ingénierie des langues et de la parole

Références. Compter les mots. Le langage comme donnée. Communication Langagière Ingénierie des langues et de la parole Communication Langagière Ingénierie des langues et de la parole 1. Introduction générale 2. Ingénierie des langues 2.1 Représentation et codage des textes 2.2 Théorie de l information et probabilités 2.3

Plus en détail

NECO Pr Nicole Fiori NEUROSCIENCES COGNITIVES DU LANGAGE

NECO Pr Nicole Fiori NEUROSCIENCES COGNITIVES DU LANGAGE Université Paris-Descartes M2 RECHERCHE PSYCHOLOGIE COGNITIVE NECO Pr Nicole Fiori NEUROSCIENCES COGNITIVES DU LANGAGE Ouvrage recommandé : Fiori N. (2006). Les Neurosciences Cognitives. Armand Colin,

Plus en détail

ENSIIE - Intelligence Artificielle (RIIA) - 1er cours

ENSIIE - Intelligence Artificielle (RIIA) - 1er cours ENSIIE - Intelligence Artificielle (RIIA) - 1er cours Benjamin PIWOWARSKI 28 septembre 2015 Benjamin PIWOWARSKI IA - 1er cours 28 septembre 2015 1 / 53 Introduction Plan 1 Introduction 2 Définitions 3

Plus en détail

Chapitre 2 : De la rétine au cerveau

Chapitre 2 : De la rétine au cerveau Chapitre 2 : De la rétine au cerveau Document illusions d optique Les illusions d'optique nous montrent que l'image que nous percevons ne correspond pas toujours à la réalité. En fait, l'œil reçoit les

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

Psychoacoustique. Daniel Pressnitzer (Ircam, UMR CNRS 9912 et DEC, Equipe Audition, Paris) Daniel.Pressnitzer@ircam.fr

Psychoacoustique. Daniel Pressnitzer (Ircam, UMR CNRS 9912 et DEC, Equipe Audition, Paris) Daniel.Pressnitzer@ircam.fr Psychoacoustique. Daniel Pressnitzer (Ircam, UMR CNRS 9912 et DEC, Equipe Audition, Paris) Daniel.Pressnitzer@ircam.fr I. Bref rappel d acoustique. Nature du signal sonore Représentations (temporelles,

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Utilisation pédagogique des données de neuroimagerie (IRM) Exemple de la vision

Utilisation pédagogique des données de neuroimagerie (IRM) Exemple de la vision Utilisation pédagogique des données de neuroimagerie (IRM) Exemple de la vision Formation Continue, enseignants SVT Académie de Montpellier, avril 2012 L encéphale d après Vésale De humani corporis fabrica

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

Apprentissage de structure dans les réseaux bayésiens pour

Apprentissage de structure dans les réseaux bayésiens pour Apprentissage de structure dans les réseaux bayésiens pour la détection d événements vidéo Siwar Baghdadi 1, Claire-Hélène Demarty 1, Guillaume Gravier 2, et Patrick Gros 3 1 Thomson R&D France, 1 av Belle

Plus en détail

Modulation de l activité cérébrale pendant une tâche de tapping après exposition àun champ magnétique de 3000 μtà60 Hz

Modulation de l activité cérébrale pendant une tâche de tapping après exposition àun champ magnétique de 3000 μtà60 Hz Modulation de l activité cérébrale pendant une tâche de tapping après exposition àun champ magnétique de 3000 μtà60 Hz Alexandre Legros alegros@lawsonimaging.ca Bioelectromagnetics Group, Imaging Program,

Plus en détail

Méthodes d apprentissage statistique («Machine Learning»)

Méthodes d apprentissage statistique («Machine Learning») Méthodes d apprentissage statistique («Machine Learning») Journées d Etudes IARD Niort, 21 Mars 2014 Fabrice TAILLIEU Sébastien DELUCINGE Rémi BELLINA 2014 Milliman. All rights reserved Sommaire Introduction

Plus en détail

Quelles sont les caractéristiques de la perception tactile manuelle chez les jeunes enfants et leurs conséquences cognitives?

Quelles sont les caractéristiques de la perception tactile manuelle chez les jeunes enfants et leurs conséquences cognitives? Quelles sont les caractéristiques de la perception tactile manuelle chez les jeunes enfants et leurs conséquences cognitives? Par Edouard GENTAZ Professeur de Psychologie, Université de Genève Habituellement,

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Chapitre 2 : La propagation du message nerveux

Chapitre 2 : La propagation du message nerveux Partie 4 : système nerveux Chapitre 2 : La propagation du message nerveux L arc réflexe est constitué par un réseau de neurones connectés au niveau de synapses. Le message nerveux prend naissance au niveau

Plus en détail

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI)

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Chapter 1 Groupe Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Nous avons choisi d implémenter le projet avec le langage Javascript. L avantage offert

Plus en détail

Chapitre 2 : Systèmes radio mobiles et concepts cellulaires

Chapitre 2 : Systèmes radio mobiles et concepts cellulaires Chapitre 2 : Systèmes radio mobiles et concepts cellulaires Systèmes cellulaires Réseaux cellulaires analogiques de 1ère génération : AMPS (USA), NMT(Scandinavie), TACS (RU)... Réseaux numériques de 2ème

Plus en détail

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires Chapitre I Probabilités Bcpst 1 2 novembre 2015 I Exemples d expériences aléatoires Une expérience aléatoire est une expérience dont on ne peut pas prédire le résultat avant de l avoir réalisée... ce qui

Plus en détail

Expérience 3 Formats de signalisation binaire

Expérience 3 Formats de signalisation binaire Expérience 3 Formats de signalisation binaire Introduction Procédures Effectuez les commandes suivantes: >> xhost nat >> rlogin nat >> setenv DISPLAY machine:0 >> setenv MATLABPATH /gel/usr/telecom/comm_tbx

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Chapitre 1. L algorithme génétique

Chapitre 1. L algorithme génétique Chapitre 1 L algorithme génétique L algorithme génétique (AG) est un algorithme de recherche basé sur les mécanismes de la sélection naturelle et de la génétique. Il combine une stratégie de survie des

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

APF, IRME, ALARME, AFIGAP. Quel avenir pour les. homme-machine? interfaces. F. Clarac, F. Chavane, 17 novembre 2007

APF, IRME, ALARME, AFIGAP. Quel avenir pour les. homme-machine? interfaces. F. Clarac, F. Chavane, 17 novembre 2007 Quel avenir pour les interfaces homme-machine? F. Clarac, F. Chavane, 17 novembre 2007 APF, IRME, ALARME, AFIGAP Réparer ou substituer! La politique de L IRME a été depuis plus de vingt ans de soutenir

Plus en détail

Méthodes d apprentissage :

Méthodes d apprentissage : Méthodes d apprentissage : application au tri de complexes protéines-protéines Jérôme Azé Apprentissage: tâches Apprentissage non supervisé (Eisen, ) Apprentissage supervisé (arbres de décision, k-ppv,

Plus en détail

Le cerveau est-il une machine Bayésienne?

Le cerveau est-il une machine Bayésienne? Chapitre pour le livre dʼisabelle Drouet sur le Bayésianisme ------------------------------------------------------------------------------------------------------------------------------------------------

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

2. Stimulations sensorielles

2. Stimulations sensorielles 2. Stimulations sensorielles 2.1. Introduction Position spatiale et orientation «Route» map «Survey» map Trajet défini Exécution motrice 2.1. Introduction Mémoire spatio-temporelle du trajet Position spatiale

Plus en détail

Codages des messages sonores, des redondances aux contradictions, ou de l audition naturelle à l audition prothétique

Codages des messages sonores, des redondances aux contradictions, ou de l audition naturelle à l audition prothétique Codages des messages sonores, des redondances aux contradictions, ou de l audition naturelle à l audition prothétique Paul Avan Laboratoire de biophysique sensorielle Clermont-Ferrand (bio)physique ou

Plus en détail

La mémoire (en bref)

La mémoire (en bref) Lamémoire(enbref) Les modèles développés en psychologie cognitive conçoivent l individu comme une «entité»quitraitedel information.danscestraitements,lamémorisationtientuneplace particulièrement importante

Plus en détail

Ensemble d informations codées au sein d un système de manière à permettre leur conservation et leur rappel MÉMOIRE(S) Mémoire à Court Terme MCT

Ensemble d informations codées au sein d un système de manière à permettre leur conservation et leur rappel MÉMOIRE(S) Mémoire à Court Terme MCT Ensemble d informations codées au sein d un système de manière à permettre leur conservation et leur rappel Capacité à se rappeler ou à reconnaître une expérience antérieure MÉMOIRE(S) Mémoire (Sensorielle)

Plus en détail

Recherche De Coalescences Binaires Étalonnage Du Détecteur

Recherche De Coalescences Binaires Étalonnage Du Détecteur Recherche De Coalescences Binaires Étalonnage Du Détecteur Fabrice Beauville Journées Jeunes Chercheurs 18/12/2003 Les Coalescences Binaires & VIRGO Système binaire d objets compacts (étoiles à neutrons,

Plus en détail

ISO/CEI 11172-3 NORME INTERNATIONALE

ISO/CEI 11172-3 NORME INTERNATIONALE NORME INTERNATIONALE ISO/CEI 11172-3 Première édition 1993-08-01 Technologies de l information - Codage de l image animée et du son associé pour les supports de stockage numérique jusqu à environ Ii5 Mbit/s

Plus en détail

Machine de Turing. Informatique II Algorithmique 1

Machine de Turing. Informatique II Algorithmique 1 Machine de Turing Nous avons vu qu un programme peut être considéré comme la décomposition de la tâche à réaliser en une séquence d instructions élémentaires (manipulant des données élémentaires) compréhensibles

Plus en détail

Contexte et motivations Les techniques envisagées Evolution des processus Conclusion

Contexte et motivations Les techniques envisagées Evolution des processus Conclusion Vérification de logiciels par analyse statique Contexte et motivations Les techniques envisagées Evolution des processus Conclusion Contexte et motivations Specification Design architecture Revues and

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Détection et Correction d erreurs

Détection et Correction d erreurs Chapitre 4 Détection et Correction d erreurs 4.1 La couche liaison de données La couche 3 (couche réseau) a pour mission, entre autres, de trouver le meilleur chemin pour acheminer le message. Cette tâche

Plus en détail

Modélisation de petits systèmes biophysiques Dynamique des algorithmes de recherche

Modélisation de petits systèmes biophysiques Dynamique des algorithmes de recherche Modélisation de petits systèmes biophysiques Dynamique des algorithmes de recherche Habilitation à Diriger des Recherches Simona Cocco Laboratoire Physique Statistique ENS, Paris (Laboratoire de Dynamique

Plus en détail

Les 6èmes Journées Francophones sur les Réseaux Bayésiens

Les 6èmes Journées Francophones sur les Réseaux Bayésiens Les 6èmes Journées Francophones sur les Réseaux Bayésiens 11 13 Mai 2012, Îles de Kerkennah, Tunisie Vers des Réseaux Bayésiens pour la Classification des Causes de Défaillances PRÉSENTÉ PAR: MOHAMMED

Plus en détail

Module 4 - Ordonnancement Processus. Lecture: Chapitre 5

Module 4 - Ordonnancement Processus. Lecture: Chapitre 5 Module 4 - Ordonnancement Processus Lecture: Chapitre 5 1 Aperçu du module Concepts de base Critères d ordonnancement Algorithmes d ordonnancement Ordonnancement de multiprocesseurs Évaluation d algorithmes

Plus en détail

Des neurosciences aux traitements : Le pharmacien face aux addictions

Des neurosciences aux traitements : Le pharmacien face aux addictions Des neurosciences aux traitements : Le pharmacien face aux addictions Colloque national de pharmacie Marrakech, 2 février 2013 Jalil Bennani Psychiatre et psychanalyste (Rabat) Habilité à diriger les recherches

Plus en détail

Quelles sont les caractéristiques de l image d un journal? Pourquoi l œil ne distingue-t-il pas la trame de l image?

Quelles sont les caractéristiques de l image d un journal? Pourquoi l œil ne distingue-t-il pas la trame de l image? TP spécialité élec. N 1Conversion d une image en signal électrique. Principe de la TV. 1 / 7 I- Perception des images. 1)- La perception. - Une image est destinée à être vue par l œil. La prise de vue,

Plus en détail

Transmission d informations sur le réseau électrique

Transmission d informations sur le réseau électrique Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en

Plus en détail

SY09 Rapport TP4 : Analyse discriminante, régression logistique

SY09 Rapport TP4 : Analyse discriminante, régression logistique UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE SY09 Rapport TP4 : Analyse discriminante, régression logistique CUNI Frédéric 15 juin 2015 Objectifs du TP : Le but de ce TP est l application de l analyse discriminante

Plus en détail

Commande H prédictive pour l asservissement par vision d un stabilisateur cardiaque actif

Commande H prédictive pour l asservissement par vision d un stabilisateur cardiaque actif Commande H prédictive pour l asservissement par vision d un stabilisateur cardiaque actif W. Bachta, E. Laroche, P. Renaud, J. Gangloff LSIIT, CNRS, Université de Strasbourg, INSA de Strasbourg, France

Plus en détail

Une origine évolutive ancienne UNE ORIGINE ÉVOLUTIVE ANCIENNE 01/10/2014 LES SCHÉMAS NEUROBIOLOGIQUES DU CIRCUIT DE LA RÉCOMPENSE

Une origine évolutive ancienne UNE ORIGINE ÉVOLUTIVE ANCIENNE 01/10/2014 LES SCHÉMAS NEUROBIOLOGIQUES DU CIRCUIT DE LA RÉCOMPENSE 01/10/2014 Journées d études de l Institut des Actuaires et du SACEI LES SCHEMAS NEUROBIOLOGIQUES DE LA PRISE DE RISQUE Marion Noulhiane, PhD Neurosciences. Journées d études de l Institut des Actuaires

Plus en détail

Psychologie cognitive, Neurosciences et Conscience. Gilles Lafargue http://eugrafal.free.fr

Psychologie cognitive, Neurosciences et Conscience. Gilles Lafargue http://eugrafal.free.fr Psychologie cognitive, Neurosciences et Conscience Gilles Lafargue http://eugrafal.free.fr 1. Introduction : l expérience consciente comme objet d étude scientifique 2. Quelle(s) méthode(s) pour étudier

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Bureau : 238 Tel : 04 76 82 58 90 Email : dominique.muller@upmf-grenoble.fr

Bureau : 238 Tel : 04 76 82 58 90 Email : dominique.muller@upmf-grenoble.fr Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : 04 76 82 58 90 Email : dominique.muller@upmf-grenoble.fr Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/

Plus en détail

APPRENDRE À LIRE. Animation de circonscription Brest Iroise

APPRENDRE À LIRE. Animation de circonscription Brest Iroise APPRENDRE À LIRE Animation de circonscription Brest Iroise Sylvaine Talarmin, CPC, Avril 2013 ENJEUX DE LA FORMATION S informer des connaissances scientifiques sur les neurosciences cognitives de la lecture

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1 Modélisation stochastique des données à partir d essais sur matériaux Pr. Denys Breysse Université Bordeaux 1 Hasard cause fictive de ce qui arrive sans raison apparente ou explicable (Petit Robert). Ce

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

L'apprentissage. La majeure partie des conduites sociales n est pas innée mais acquise par apprentissage.

L'apprentissage. La majeure partie des conduites sociales n est pas innée mais acquise par apprentissage. L'apprentissage 1 Définitions a. Approche globale La majeure partie des conduites sociales n est pas innée mais acquise par apprentissage. Un apprentissage est l acquisition d un nouveau savoir. Dans la

Plus en détail

l Intelligence Artificielle

l Intelligence Artificielle 1 Introduction à l Intelligence Artificielle Antoine Cornuéjols antoine@lri.fr http://www.iie.cnam.fr/~cornuejols/ I.I.E. & L.R.I., Université d Orsay Intelligence Artificielle : plan 2 1-2- 3-4- 5-6-

Plus en détail

I - Introduction à La psychologie Expérimentale

I - Introduction à La psychologie Expérimentale LA METHODE EXPERIMENTALE I - Introduction à La psychologie Expérimentale I.1. Introduction I.2. Critiques concernant l utilisation de la méthode expérimentale en psychologie I.2.A. Critiques morales I.2.A.

Plus en détail

La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS

La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS Rev. Energ. Ren. : Chemss 2000 39-44 La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS D.K. Mohamed, A. Midoun et F. Safia Département

Plus en détail

Les bases théoriques du numérique

Les bases théoriques du numérique Les bases théoriques du numérique 1. Différences entre signaux analogiques et signaux numériques L analogique et le numérique sont deux procédés pour transporter et stocker des données. (de type audio,

Plus en détail

Calculatrice vocale basée sur les SVM

Calculatrice vocale basée sur les SVM Calculatrice vocale basée sur les SVM Zaïz Fouzi *, Djeffal Abdelhamid *, Babahenini MohamedChaouki*, Taleb Ahmed Abdelmalik**, * Laboratoire LESIA, Département d Informatique, Université Mohamed Kheider

Plus en détail

MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln.

MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln. MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln.fr Plan Introduction Généralités sur les systèmes de détection d intrusion

Plus en détail

L intuition mathématique: du bébé à l adulte. Véronique Izard Laboratoire Psychologie de la Perception, CNRS & Université Paris Descartes

L intuition mathématique: du bébé à l adulte. Véronique Izard Laboratoire Psychologie de la Perception, CNRS & Université Paris Descartes L intuition mathématique: du bébé à l adulte Véronique Izard Laboratoire Psychologie de la Perception, CNRS & Université Paris Descartes Collège de France, 7 février 2012 Notre salle d observation à la

Plus en détail

Chapitre 2 La rétine : les photorécepteurs rétiniens génèrent des messages sensoriels

Chapitre 2 La rétine : les photorécepteurs rétiniens génèrent des messages sensoriels Chapitre 2 La rétine : les photorécepteurs rétiniens génèrent des messages sensoriels La rétine constitue l organe sensitif de l œil : c est elle qui capte les signaux lumineux et les transmet au cerveau

Plus en détail

Apprentissage par renforcement (1a/3)

Apprentissage par renforcement (1a/3) Apprentissage par renforcement (1a/3) Bruno Bouzy 23 septembre 2014 Ce document est le chapitre «Apprentissage par renforcement» du cours d apprentissage automatique donné aux étudiants de Master MI, parcours

Plus en détail

Théorie de l information : historique

Théorie de l information : historique Théorie de l information : historique Développée dans les années quarante par Claude Shannon. Objectif : maximiser la quantité d information pouvant être transmise par un canal de communication imparfait.

Plus en détail

Instrumentation électronique

Instrumentation électronique Instrumentation électronique Le cours d électrocinétique donne lieu à de nombreuses études expérimentales : tracé de caractéristiques statique et dynamique de dipôles, étude des régimes transitoire et

Plus en détail

Analyse d'un système de mesure pour le suivi des mouvements des bébés

Analyse d'un système de mesure pour le suivi des mouvements des bébés Antwerpen Celestijnenlaan 300C, bus 04026 Brussel-Bruxelles BE-3001 Heverlee Charleroi tel. : +32 16 32 25 91 Gent fax : +32 16 32 29 84 Hasselt info@sirris.be Leuven www.sirris.be Liège date 10-06-2015

Plus en détail

Cours 2014: Fondements cognitifs des apprentissages scolaires

Cours 2014: Fondements cognitifs des apprentissages scolaires Cours 2014: Fondements cognitifs des apprentissages scolaires Stanislas Dehaene Chaire de Psychologie Cognitive Expérimentale Cours n 4 La consolidation des apprentissages et l importance du sommeil Quatre

Plus en détail

Les matériaux de départ

Les matériaux de départ Codage DONNER DU SENS Les matériaux de départ Notes d observation (carnet) Entretiens Focus Matériel documentaire Enregistrements personnels du chercheur (idées) Notes de terrain(chronologies) Transcrire

Plus en détail

Modèles neuronaux pour la modélisation statistique de la langue

Modèles neuronaux pour la modélisation statistique de la langue Modèles neuronaux pour la modélisation statistique de la langue Introduction Les modèles de langage ont pour but de caractériser et d évaluer la qualité des énoncés en langue naturelle. Leur rôle est fondamentale

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Définitions Approches managériales Approches psychologiques

Définitions Approches managériales Approches psychologiques Séminaire [CID] : Créativité, Innovation, Décision Partie B : DECISION Définitions Approches managériales Approches psychologiques www.evoreg.eu M2i : Management International de l Innovation Emmanuel

Plus en détail