NOM : DROITE DES MILIEUX 4ème

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "NOM : DROITE DES MILIEUX 4ème"

Transcription

1 Exercice 1 Soit ABCD un carré de côté 8cm. On appelle I le milieu de [AB] et L le milieu de [DA]. 1) Faire une figure. 2) Montrer que les droites (IL) et (BD) sont parallèles. 3) En utilisant les propriétés du carré, en déduire que (IL) est perpendiculaire à (AC). D C L A I B D. LE FUR 1/ 50

2 Exercice 2 Soit RST un triangle tel que RT = 8cm, RS = 7cm et ST = 6cm. 1) Faire une figure en vraie grandeur. 2) a) Construire la médiatrice (d) du segment [ST ]. Cette droite coupe le segment [ST ] en un point P. b) Rappeler les deux définitions de la médiatrice (d). c) Que représente alors le point P? 3) Placer le milieu M du segment [RS]. 4) Montrer que les droites (P M) et (RT ) sont parallèles. 5) Calculer la longueur P M. S M P R T D. LE FUR 2/ 50

3 Exercice 3 Construire un triangle ABC. Soient I, J et K, les milieux respectifs des segments [BC], [AC] et [AB]. Soit M un point quelconque. E est le symétrique de M dans la symétrie de centre I. F est le symétrique de M dans la symétrie de centre J. G est le symétrique de M dans la symétrie de centre K. On obtient alors un triangle EF G. 1) Faire une figure en plaçant le point M à l intérieur du triangle ABC. 2) a) Faire cette construire avec Geogebra. b) Déplacer les sommets du triangle ABC. c) Déplacer le point M en le plaçant notamment à l extérieur du triangle ABC. Imprimer pour deux positions différentes. d) Quelle conjecture peut-on faire sur les longueurs EF et AB? e) Quelle conjecture peut-on faire sur les triangles ABC et EF G? 3) a) Montrer que IJ = 1 2 AB. b) Montrer que IJ = 1 2 EF. c) Que peut-on en déduire? 4) De même, on peut montrer que AC = EG et BC = F G. Que peut-on en déduire sur les triangles ABC et EF G? A G F K J M B I C E D. LE FUR 3/ 50

4 Exercice 4 N «Dans le triangle F EU ci-contre,...» F A I L E 1) Recopier puis compléter les texte ci-dessus pour qu un camarade qui ne voit pas la figure puisse la tracer entièrement. 2) Démontrer que (F E) et (AL) sont parallèles. U 3) Démontrer que I est le milieu de [NL]. D. LE FUR 4/ 50

5 Exercice 5 ABCD est un parallélogramme. E est un point du segment [AD]. F est le symétrique du point A dans la symétrie de centre B. Le segment [EF ] coupe le segment [BC] en un point G. 1) Faire un dessin à main levé complet (codage, couleurs). 2) Montrer que le point G est le milieu du segment [EF ]. D C E G A B F D. LE FUR 5/ 50

6 Exercice 6 T Sur cette figure, les points A, E et I sont alignés. R A S E I V 1) Montrer que (AE) est parallèle à (RS). 2) Montrer que (EI) est parallèle à (T V ). 3) En déduire que le quadrilatère RSV T est un trapèze. D. LE FUR 6/ 50

7 Exercice 7 Soit le parallélogramme MAT H de centre S et O le milieu de [MA]. Justifier que les droites (OS) et (M H) sont parallèles. H T S M O A D. LE FUR 7/ 50

8 Exercice 8 B S 1) Montrer que les droites (BC) et (SA) sont parallèles. 2) Montrer que C est le milieu de [RA]. R C A T D. LE FUR 8/ 50

9 Exercice 9 B C E ABCD est un parallélogramme de centre O. La parallèle à la droite (AC) passant par D coupe (BC) en E. 1) Compléter la figure ci-contre (couleur, codage). 2) Le point C est-il le milieu de [BE]? O A D D. LE FUR 9/ 50

10 Exercice 10 Dans un rectangle KLMN, les points P, Q, R et S sont les milieux respectifs des segments [KL], [LM], [MN] et [KN], et T est le milieu du segment [RS]. Quelle fraction de l aire du rectangle KLMN représente l aire du triangle P QT? N R M T S Q K P L N R M T S Q K P L D. LE FUR 10/ 50

11 Exercice 11 ABCD est un rectangle de centre O tel que AB = 6 cm et AD = 2 cm. F est le symétrique du point A par rapport à B. 1) Faire une figure en vraie grandeur. 2) Que sait-on des diagonales d un rectangle? 3) Montrer que les droites (OB) et (CF ) sont parallèles. D C O A B F D. LE FUR 11/ 50

12 Exercice 12 Soit un triangle ABC rectangle en A tel que AB = 7 cm et BC = 12 cm. 1) Faire une figure en vraie grandeur. Attention à l ordre des points! 2) Soit I le milieu du segment [BC]. Placer I et calculer la longueur AI. 3) Soit J le milieu de segment [AB]. Placer J et calculer la longueur IJ. B J I A C D. LE FUR 12/ 50

13 Exercice 13 B A J L K I C NB : pour chaque question, on fera un dessin à main levée du triangle utilisé. Sur la figure ci-contre, on a AB = 8 cm et BC = 6 cm. 1) Démontre que les droites (IJ) et (BC) sont parallèles et calcule la longueur IJ. 2) Démontre que les droites (LK) et (AB) sont parallèles et calcule la longueur LK. D. LE FUR 13/ 50

14 Exercice 14 ABCD est un parallélogramme de centre O. La parallèle à la droite (DC) passant par O coupe la droite (AD) en E. 1) Faire une figure. 2) Que peut-on dire des diagonales d un parallélogramme? 3) Que peut-on dire du point E? Justifie la réponse. D C E O A B D. LE FUR 14/ 50

15 Exercice 15 1) Construire un triangle RST tel que RS = 11 cm, RT = 8 cm et ST = 7 cm. 2) Placer le point I milieu du segment [RS]. 3) La droite parallèle à (ST ) passant par I coupe la droite (RT ) en J. 4) Faire une conjecture sur le point J. La démontrer. 5) Calculer IJ. T J R I S D. LE FUR 15/ 50

16 Exercice 16 1) Construire un triangle GHK tel que : GH = 50 mm, HK = 38 mm et KG = 22 mm. 2) Placer le milieu M de [HK] et le milieu N du côté [KG]. 3) Calculer le périmètre du triangle KMN. K N M G H D. LE FUR 16/ 50

17 Exercice 17 Tracer un triangle ABC. Le point D est le symétrique du point A par rapport à B. Le point E est le symétrique du point A par rapport à C. Les droites (BC) et (DE) sont-elles parallèles? D. LE FUR 17/ 50

18 Exercice 18 D. LE FUR 18/ 50

19 Exercice 19 D. LE FUR 19/ 50

20 Exercice 20 D. LE FUR 20/ 50

21 Exercice 21 D. LE FUR 21/ 50

22 Exercice 22 D. LE FUR 22/ 50

23 Exercice 23 D. LE FUR 23/ 50

24 Exercice 24 D. LE FUR 24/ 50

25 Exercice 25 D. LE FUR 25/ 50

26 Exercice 26 D. LE FUR 26/ 50

27 Exercice 27 D. LE FUR 27/ 50

28 Exercice 28 D. LE FUR 28/ 50

29 Exercice 29 D. LE FUR 29/ 50

30 Exercice 30 D. LE FUR 30/ 50

31 Exercice 31 D. LE FUR 31/ 50

32 Exercice 32 D. LE FUR 32/ 50

33 Exercice 33 D. LE FUR 33/ 50

34 Exercice 34 D. LE FUR 34/ 50

35 Exercice 35 D. LE FUR 35/ 50

36 Exercice 36 D. LE FUR 36/ 50

37 Exercice 37 D. LE FUR 37/ 50

38 Exercice 38 D. LE FUR 38/ 50

39 Exercice 39 D. LE FUR 39/ 50

40 Exercice 40 D. LE FUR 40/ 50

41 Exercice 41 D. LE FUR 41/ 50

42 Exercice 42 D. LE FUR 42/ 50

43 Exercice 43 D. LE FUR 43/ 50

44 Exercice 44 D. LE FUR 44/ 50

45 Exercice 45 D. LE FUR 45/ 50

46 Exercice 46 D. LE FUR 46/ 50

47 Exercice 47 D. LE FUR 47/ 50

48 Exercice 48 D. LE FUR 48/ 50

49 Exercice 49 D. LE FUR 49/ 50

50 Exercice 50 D. LE FUR 50/ 50

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX Pour prendre un bon départ Initiation à la démonstration 1 ) Lire la partie A de la synthèse : «Notion de démonstration» 2 ) Complète les raisonnements

Plus en détail

QUADRILATERES. Exercice 1. Sur la figure ci-contre, on a : (AC) (AB) et (BD) (AB). 1) Montrer que (AC) et (ED) sont parallèles.

QUADRILATERES. Exercice 1. Sur la figure ci-contre, on a : (AC) (AB) et (BD) (AB). 1) Montrer que (AC) et (ED) sont parallèles. Exercice 1 Sur la figure ci-contre, on a : (AC) (AB) et (BD) (AB). 1) Montrer que (AC) et (ED) sont parallèles. A B 70 E 2) Montrer que (AE) et (CD) sont parallèles. 3) En déduire que AEDC est un parallélogramme.

Plus en détail

NOM : THALES 4ème. Exercice 1

NOM : THALES 4ème. Exercice 1 Exercice 1 1) Construire un triangle RST tel que RT = 7cm et RS = 6cm. 2) Placer le point A sur le segment [RS] tel que RA = 2cm. Tracer la parallèle à la droite (ST ) passant par A : elle coupe le segment

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

THEOREMES DES MILIEUX DROITES PARALLELES Exercices 1/7

THEOREMES DES MILIEUX DROITES PARALLELES Exercices 1/7 DROITES PARALLELES Exercices 1/7 01 Citer les deux théorèmes des milieux. 02 Soit un triangle ABC. Soit I le milieu de [ AB ] et J le milieu de [ ] est parallèle à la droite (BC). BC. Démontrer que la

Plus en détail

6 ème exercices : Introduction à la géométrie

6 ème exercices : Introduction à la géométrie Droites, demi-droites et segments. Exercice 1 Réponse 1 Placer trois points A, B et C non alignés. Tracer la droite qui passe par les points B et C. Tracer le segment d extrémités A et B. Tracer la demi-droite

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

Ex 1 : Vrai ou faux CM1

Ex 1 : Vrai ou faux CM1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. b)si trois points sont sur

Plus en détail

Exercice 1 : On considère la figure ci-contre où ABCD est un parallélogramme :

Exercice 1 : On considère la figure ci-contre où ABCD est un parallélogramme : Exercice 1 : On considère la figure ci-contre où est un parallélogramme : 1) Quelle est la longueur du segment [AB]? ) Quelle est la mesure de l angle BCD? Exercice : Sur la figure ci-contre, et BCEF sont

Plus en détail

TRIANGLE RECTANGLE ET CERCLE

TRIANGLE RECTANGLE ET CERCLE THEME : TRIANGLE RECTANGLE ET CERCLE Exercice 1 : Brevet des Collèges Groupe Est - 2005 Tracer un segment [EF] de 10 cm de longueur puis un demi-cercle de diamètre [EF]. Placer le point G sur ce demi-cercle,

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très

Plus en détail

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique 4 ème D DS4 triangles : milieux, parallèles sujet 1 2009-2010 Agrandissement - réduction NOM : Prénom : Note : 20 Objectif Acquis En cours Non Acquis d acquisition Connaître et utiliser les théorèmes relatifs

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

ÉTAPE 1 : Construction de perpendicualires et de parallèles sur papier uni, introduction des propriétés 1 et 2

ÉTAPE 1 : Construction de perpendicualires et de parallèles sur papier uni, introduction des propriétés 1 et 2 ÉTAPE 1 : Construction de perpendicualires et de parallèles sur papier uni, introduction des propriétés 1 et 2 Exercice des 24 h du Mans Une voiture part de la ligne de départ. Elle se déplace en ligne

Plus en détail

1) Construire un parallélogramme et le point, symétrique du point par rapport au point. 2) Démontrer que est un parallélogramme.

1) Construire un parallélogramme et le point, symétrique du point par rapport au point. 2) Démontrer que est un parallélogramme. Seconde Exercices sur les vecteurs Page 1 Définition, égalité de vecteurs ---------------------------------------------------------------------------------------------------- Exercice 1 : A vue d œil,

Plus en détail

Transformations du plan (exercices)

Transformations du plan (exercices) Exercice 1 : Transformations du plan (exercices) 1. Construire les symétriques de cette figure par rapport aux trois axes tracés (horizontal, vertical puis oblique ) 2. Construire les symétriques de la

Plus en détail

DROITES REMARQUABLES DU TRIANGLE

DROITES REMARQUABLES DU TRIANGLE Exercices 1/8 01 Donner la définition d une : - médiane - médiatrice - hauteur - bissectrice 02 Nommer les droites suivantes : (AC) : (BC) : (BD) : (BE) :. 03 Compléter les phrases relatives aux propriétés

Plus en détail

NOM : GEOMETRIE 4ème

NOM : GEOMETRIE 4ème Exercice 1 Soit une droite (d) et un point G situé en dehors de la droite (d). On veut construire la parallèle à la droite (d) passant par le point G. Dans chacun des cas suivants, faire une figure, en

Plus en détail

Citer les propriétés qui permettent de justifier chacune des affirmations suivantes :

Citer les propriétés qui permettent de justifier chacune des affirmations suivantes : Exercice 1 : Citer les propriétés qui permettent de justifier chacune des affirmations suivantes : 1) ABCD est un parallélogramme donc les longueurs AB et CD sont égales. 2) MINE est un losange donc les

Plus en détail

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE].

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE]. Corrigé des programmes de construction de la séance 2 du jeudi 15/09/11 1) Trace un carré ABCD de 3 cm de côté. 2) Trace la diagonale [BD]. 3) Place E et F respectivement les milieux de [AD] et [AB]. 4)

Plus en détail

TRIANGLES ET PARALLELES (DROITE DES MILIEUX - PROPRIETE DE THALES) II- Droite passant par le milieu d'un côté et parallèle à un deuxième côté:

TRIANGLES ET PARALLELES (DROITE DES MILIEUX - PROPRIETE DE THALES) II- Droite passant par le milieu d'un côté et parallèle à un deuxième côté: TRIANGLES ET PARALLELES (DROITE DES MILIEUX - PROPRIETE DE THALES) I- Droite passant par les milieux de deux côtés : Soit ABC un triangle, M le milieu de [AB], N le milieu de [AC] Alors (MN) est parallèle

Plus en détail

Droites parallèles et perpendiculaires Groupe 1

Droites parallèles et perpendiculaires Groupe 1 Droites parallèles et perpendiculaires Groupe 1 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite perpendiculaire à la droite d et qui passe par le point C.

Plus en détail

3 ème Cours : Théorème de Thalès

3 ème Cours : Théorème de Thalès I Points alignés : Deux droites sont parallèles si elles n ont aucun point commun ou si elles sont confondues. Conséquence : Si deux droites sont parallèles et possèdent un point commun alors elles sont

Plus en détail

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : ABC est un triangle rectangle en A. Le point I est le milieu du segment [BC]. Le point J est le milieu du segment [AB]. Démontrer que les droites (IJ) et (AB) sont perpendiculaires. Note

Plus en détail

COLLEGE ROLAND DORGELES 75018 PARIS. GEOMETRIE EN 3ème

COLLEGE ROLAND DORGELES 75018 PARIS. GEOMETRIE EN 3ème COLLEGE ROLAND DORGELES 75018 PARIS GEOMETRIE EN 3ème Démontrer qu'un point est le milieu d un segment... 2 Démontrer qu'un point est le centre du cercle circonscrit d un triangle... 3 Démontrer qu'un

Plus en détail

LES DROITES PARALLELES

LES DROITES PARALLELES LES DROITES PARALLELES D. LE FUR Lycée Pasteur, São Paulo Le théorème de Thalès Les configurations de Thalès Le triangle N B O M A Les configurations de Thalès Le triangle La figure papillon N B B O M

Plus en détail

Les parallélogrammes particuliers

Les parallélogrammes particuliers Les parallélogrammes particuliers I Une histoire de famille Le parallélogramme fait partie de la famille des quadrilatères: Ce sont des polygones à 4 cotés, 4 angles, 2 diagonales et c'est tout. Ils peuvent

Plus en détail

Le théorème de Thalès et droite des milieux

Le théorème de Thalès et droite des milieux Le théorème de Thalès et droite des milieux A) Droite des milieux. 1. Théorème de la droite des milieux. Théorème : Dans un triangle, si une droite passe par le milieu d un côté et est parallèle à un second

Plus en détail

Géométrie et Mesures CM1 Période 1

Géométrie et Mesures CM1 Période 1 Géométrie et Mesures CM1 Période 1 Ecris la lettre des figures qui sont des polygones. A B En utilisant ton compas, trouve tous les segments qui ont la même longueur que le segment [AB]. C D Avec ta règle

Plus en détail

Définition : Un quadrilatère est une figure géométrique qui a quatre côtés.. Il peut se nommer :. R, O, S et E sont les quatre...

Définition : Un quadrilatère est une figure géométrique qui a quatre côtés.. Il peut se nommer :. R, O, S et E sont les quatre... Définition et vocabulaire : Définition : Un quadrilatère est une figure géométrique qui a quatre côtés. Vocabulaire : R. Ce quadrilatère est un quadrilatère non croisé.. Il peut se nommer :. R,, S et E

Plus en détail

Exercice 1. Tracer un triangle RST tel que RS = 6 cm, RT = 8 cm et ST = 11 cm. Construire ses médiatrices et son cercle circonscrit.

Exercice 1. Tracer un triangle RST tel que RS = 6 cm, RT = 8 cm et ST = 11 cm. Construire ses médiatrices et son cercle circonscrit. Exercice 1 Tracer un triangle RST tel que RS = 6 cm, RT = 8 cm et ST = 11 cm. Construire ses médiatrices et son cercle circonscrit. On fera attention à la propreté et à la précision de la figure. R S T

Plus en détail

BREVET BLANC. Lundi 28 Février. Mathématiques 3 ème. La calculatrice est autorisée. L épreuve dure 2 heures

BREVET BLANC. Lundi 28 Février. Mathématiques 3 ème. La calculatrice est autorisée. L épreuve dure 2 heures Mathématiques 3 ème Lundi 28 Février BREVET BLANC La calculatrice est autorisée. L épreuve dure 2 heures La rédaction et la présentation seront notées sur 4 points Page 1 Activités Numériques (12 points)

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. b)on nomme un segment entre

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. b)on nomme un segment entre Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points

Plus en détail

Chapitre 1 : Géométrie repérée dans le plan

Chapitre 1 : Géométrie repérée dans le plan Chapitre 1 : Géométrie repérée dans le plan I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ ]. On appelle médiatrice du segment [ ] la droite perpendiculaire en I à ( ). Propriétés

Plus en détail

Seconde Suite du cours sur les vecteurs Page 1 sur 9

Seconde Suite du cours sur les vecteurs Page 1 sur 9 Seconde Suite du cours sur les vecteurs Page 1 sur 9 III) Somme de vecteurs : 3) Somme de vecteurs et configurations : a) Parallélogramme Propriété : Parallélogramme Si ABCD est un parallélogramme alors

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE I) SYMETRIE AXIALE. 1) SYMETRIQUE D UN POINT PAR RAPPORT A UNE DROITE. a) Définition. On dit que A est le symétrique de A par rapport à (d). Remarque :

Plus en détail

TD d exercices sur les vecteurs et la géométrie analytique.

TD d exercices sur les vecteurs et la géométrie analytique. TD d exercices sur les vecteurs et la géométrie analytique. Exercice 1 : (Brevet 2006) 1) Placer les points A (-3 ; 1), B (-l,5 ; 2,5) et C (3 ; -2) dans un repère orthonormé (O, I, J). 2) Montrer que

Plus en détail

Chapitre24 Parallélogrammes particuliers 1. Rectangles 1.1 Définition Un rectangle est un quadrilatère qui a quatre angles droits.

Chapitre24 Parallélogrammes particuliers 1. Rectangles 1.1 Définition Un rectangle est un quadrilatère qui a quatre angles droits. Chapitre24 Parallélogrammes particuliers 1. Rectangles 1.1 Définition Un rectangle est un quadrilatère qui a quatre angles droits. Le quadrilatère ABCD a quatre angles droits ; c'est un rectangle 1.2 rectangles

Plus en détail

Lexique illustré de géométrie.

Lexique illustré de géométrie. 1 Lexique illustré de géométrie. LEXIQUE GÉOMÉTRIE COLLÈGE A Abscisse K Sur un axe gradué L Le point K a pour abscisse -6. Le point L a pour abscisse 3,5 Dans un repère Le point A a pour abscisse 3,5.

Plus en détail

Translations et vecteurs

Translations et vecteurs Translations et vecteurs A) Translation. 1. Définition. Soient trois points A, B et M. L image du point M par la translation qui transforme A en B est le point M tel que ABM M, dans cet ordre, soit un

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Cinquième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Troisième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Activités 1, 2 et 3 sur les translations I ) Vecteurs 1) Qu est ce qu un vecteur? Idée à retenir : «Un vecteur sert à décrire un déplacement» Un vecteur

Plus en détail

Chapitre 2 Triangle rectangle - Cours -

Chapitre 2 Triangle rectangle - Cours - - Cours - Définition : Dans un triangle rectangle, le côté opposé à l'angle droit est appelé l'hypoténuse. C'est le côté le plus long. I. Cercle circonscrit à un triangle rectangle Rappel : Le cercle circonscrit

Plus en détail

Corrigé des exercices sur les vecteurs. Septembre 2010

Corrigé des exercices sur les vecteurs. Septembre 2010 Septembre 2010 Exercice 1 Soient un triangle ABC et les points I et J tels que AI = 1 AB et AJ = 3 AC 3 1 Exprimer le vecteur BJ en fonction des vecteurs BA et AC. 2 Exprimer le vecteur IC en fonction

Plus en détail

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 2 sur 6 II) Vecteurs : 1) Qu est ce qu un vecteur? Un vecteur ( non nul ) est la donnée de trois éléments : 1) une

Plus en détail

EXERCICES DE GÉOMÉTRIE. Exercice 2. Déterminer tous les axes et centres de symétrie des gures suivantes :

EXERCICES DE GÉOMÉTRIE. Exercice 2. Déterminer tous les axes et centres de symétrie des gures suivantes : EXERIES E GÉOMÉTRIE Exercice 1. ans un triangle, tracer : a) la hauteur passant par, b) la médiane passant par, c) la bissectrice de l'angle Â, d) la médiatrice du segment []. Exercice 2. éterminer tous

Plus en détail

Réponse BC² = AB² + AC. Réponse

Réponse BC² = AB² + AC. Réponse 1 Théorème de Pythagore Si un triangle est rectangle alors le carré de son hypoténuse est égal à la somme des carrés des côtés de l angle droit. Si un triangle est rectangle alors le carré de son hypoténuse

Plus en détail

Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 BF. AD? BC. 1) Placer les points A(4 ;-2) B(-1 ;3,5) I (3 ;2) dans un repère orthonormé.

Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 BF. AD? BC. 1) Placer les points A(4 ;-2) B(-1 ;3,5) I (3 ;2) dans un repère orthonormé. Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 Exercice 1 : (4 points) ABCDEF est un hexagone régulier de centre O. Répondre aux questions suivantes en utilisant uniquement les points de la figure. 1) Trouver

Plus en détail

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES LIVRET 3 LUNDI 15 JUIN. savoir écrire mathématiques grandeurs HISTORIQUE ET GÉOGRAPHIQUE

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES LIVRET 3 LUNDI 15 JUIN. savoir écrire mathématiques grandeurs HISTORIQUE ET GÉOGRAPHIQUE ÉPREUVE EXTERNE COMMUNE CEB2015 SOLIDES ET FIGURES LIVRET 3 LUNDI 15 JUIN FRANÇAIS SAVOIR ÉCOUTER français SAVOIR ÉCRIRE savoir MATHÉMATIQUES écouter GRANDEURS savoir écrire SOLIDES ET mathématiques FIGURES

Plus en détail

De la symétrie centrale au parallélogramme

De la symétrie centrale au parallélogramme La géométrie en 5 doit nous permettre de passer de l identification perceptive (la reconnaissance par la vue) de figures et de configurations à leur caractérisation par des propriétés (passage du dessin

Plus en détail

1 Translation. 2 Vecteurs

1 Translation. 2 Vecteurs Lycée assini ours : Vecteurs du plan seconde 6 1 Translation Définition Soient et deux points du plan. On appelle translation qui transforme en la transformation qui à tout point du plan associe l unique

Plus en détail

Parallélogrammes particuliers

Parallélogrammes particuliers Parallélogrammes particuliers C H A P I T R E 16 Énigme du chapitre. Construire un parallélogramme ABCD de périmètre 36 cm de périmètre et dont la longueur AB est le double de la longueur BC. Objectifs

Plus en détail

,=L'ESPACE=AU=BAC=2015fe

,=L'ESPACE=AU=BAC=2015fe 31 France métropolitaine Asie juin 005 septembre 014 35 points ans l espace muni d un repère orthonormé (O; i, j, k), on considère le tétraèdre ABC dont les sommets ont pour coordonnées : ; A 1 ; 3 ; 0

Plus en détail

Fichier de géométrie

Fichier de géométrie Fichier de géométrie Sommaire F1 F2 F3 F4 Périmètres Aires Volumes Tableaux de conversions F5 F6 Comment démontrer que deux droites sont parallèles Comment démontrer que deux droites sont perpendiculaires

Plus en détail

Figures usuelles et axes de symétrie

Figures usuelles et axes de symétrie Chapitre 4 Figures usuelles et axes de symétrie I. Figures usuelles 1) Triangles un triangle est un polygone ayant 3 côtés. Vocabulaire : ABC est un triangle. A A, B et C sont ses 3 sommets. [AB], [AC]

Plus en détail

Repères et coordonnées dans le plan

Repères et coordonnées dans le plan A Repères et coordonnées dans le plan Repères et coordonnées dans le plan A-1 Définir un repère et les coordonnées d un point Dans un plan (P), on considère 3 points non alignés O, I, J. les droites (OI)

Plus en détail

Évaluations nationales Annales CM

Évaluations nationales Annales CM Évaluations nationales Annales CM symétrie Axes de symétrie 1 / Entoure les figures pour lesquelles la droite en pointillés te semble être un axe de symétrie. (Évaluations nationales 2004) 3 / Entoure

Plus en détail

THEME : THEOREME DE THALES. Exercices corriges

THEME : THEOREME DE THALES. Exercices corriges THEME : THEOREME DE THALES Exercices corriges Exercice 1 : On sait que les droites (BC) et (MP) sont parallèles De plus, on a : AP = AM = 5 et AC = 6. Calculer AB. Dans les triangles ACB et APM P [AC]

Plus en détail

POLYGONES REGULIERS. Pentagone régulier Hexagone régulier Octogone régulier

POLYGONES REGULIERS. Pentagone régulier Hexagone régulier Octogone régulier I- Définition: On dit qu'un polygone est régulier si: - tous ses côtés ont la même longueur - tous ses angles sont égaux POLYGONES REGULIERS II- Exemples: 1) Un polygone régulier à 3 côtés est un triangle

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

Chapitre 14 Propriétés de Thalès

Chapitre 14 Propriétés de Thalès Chapitre 14 Propriétés de Thalès Pour les exercices 1 et 2, écrire les égalités données par le théorème de Thalès sans rédiger la justification. 1 a. Les droites (NP) et (QM) sont parallèles. b. Les droites

Plus en détail

Conclusion : KI = KC et LC = LI. Donc KI = KC = CL = LI..

Conclusion : KI = KC et LC = LI. Donc KI = KC = CL = LI.. Fiche d'exercices EXERCICES Exercice 1 a) Rappeler la définition de la bissectrice d un angle. b) Construire et faire la liste des données de la figure suivante : BAC est un triangle rectangle en A. La

Plus en détail

Cahier de pratique La géométrie

Cahier de pratique La géométrie Nom : Groupe : Cahier de pratique La géométrie Éléments de géométrie 1- Réponds aux questions suivantes. a) Combien de droites peut-on faire passer par un point? b) Combien de droites peut-on faire passer

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu.

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Symétrie Axiale 1 Médiatrice d un segment. 1 a Définition La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Exemple : (d) est la médiatrice du segment [AB]

Plus en détail

GEOMETRIE DANS L ESPACE EXERCICES CORRIGES

GEOMETRIE DANS L ESPACE EXERCICES CORRIGES GEOMETRIE DANS L ESPACE EXERCICES CORRIGES Parallélisme Exercice n 1. ABCDEFGH est un pavé droit. 1) Démontrez que la droite (AE) est parallèle au plan (BFHD). 2) Démontrez que la droite (EH) est parallèle

Plus en détail

Les quadrilatères. Table des matières. 1 Polygones. Paul Milan. Professeurs des écoles le 29 septembre 2009. 1.1 Définition TABLE DES MATIÈRES 1

Les quadrilatères. Table des matières. 1 Polygones. Paul Milan. Professeurs des écoles le 29 septembre 2009. 1.1 Définition TABLE DES MATIÈRES 1 TABLE DES MATIÈRES 1 Les quadrilatères Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Polygones 1 1.1 Définition.................................. 1 1.2 Différentes sortes

Plus en détail

DIFFÉRENTS TYPES DE RAISONNEMENT RENCONTRÉS AU COLLÈGE. sixième. Nombres et calculs. Critères de divisibilité. Comparaison des décimaux

DIFFÉRENTS TYPES DE RAISONNEMENT RENCONTRÉS AU COLLÈGE. sixième. Nombres et calculs. Critères de divisibilité. Comparaison des décimaux DIFFÉRENTS TYPES DE RAISONNEMENT RENCONTRÉS AU COLLÈGE sixième Organisation de données Nombres et calculs Critères de divisibilité Propriétés des droites parallèles et perpendiculaires Propriétés de la

Plus en détail

Classe de 4ème. Les théorèmes de la droite des milieux Théorème de Thalès

Classe de 4ème. Les théorèmes de la droite des milieux Théorème de Thalès lasse de 4ème hapitre 4 Les théorèmes de la droite des milieux Théorème de Thalès. Milieu d un segment Définition : Le point est le milieu du segment [] signifie que les points, et sont alignés dans cet

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

D.S. n 9 : Vecteurs 2 nde 7

D.S. n 9 : Vecteurs 2 nde 7 D.S. n 9 : Vecteurs nde 7 Vendredi 6 avril 013, 55 min. Ce sujet est à rendre avec la copie. SUJET D Nom :.................... Prénom :................. Communication: + ± Technique : + ± Raisonnement

Plus en détail

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure.

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Exercice 1 ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Illustration D. Le Fur 1/?? Exercice 2 ABCD est un parallélogramme de centre

Plus en détail

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS Thème N 17 : NGLE INSRIT - NGLE U ENTRE PLYGNES REGULIERS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Pour prendre un bon départ Exercice n 1 : n considère

Plus en détail

Géométrie C.M.1. Ecole primaire de Provenchères sur Fave

Géométrie C.M.1. Ecole primaire de Provenchères sur Fave Géométrie C.M.1 Ecole primaire de Provenchères sur Fave Sommaire Dans le plan Le point p. 03 La droite p. 04 La demi-droite p. 05 Le segment de droite p. 06 Droites sécantes p. 07 Droites perpendiculaires

Plus en détail

CHAPITRE 12 TRANSFORMATIONS GEOMETRIQUES

CHAPITRE 12 TRANSFORMATIONS GEOMETRIQUES CHAPITRE 12 TRANSFORMATIONS GEOMETRIQUES TRANSFORMATIONS SUR QUADRILLAGES... 258 PAVAGES DU PLAN... 260 LES TRANSFORMATIONS - RAPPELS... 262 EXERCICES... 264 CORRIGÉS DES EXERCICES... 271 Transformations

Plus en détail

Théorèmes et réciproques de Pythagore et Thales

Théorèmes et réciproques de Pythagore et Thales Théorèmes et réciproques de Pythagore et Thales I) Théorème de Pythagore : Soit ABC un triangle rectangle en B : Théorème de Pythagore : Si ABC est un triangle rectangle en B alors AC² = AB² + BC² Exemple

Plus en détail

Chapitre 4 - Les triangles

Chapitre 4 - Les triangles Chapitre 4 - Les triangles I- Définitions et triangles particuliers Un triangle est un polygone qui a trois côtés. Dessiner trois triangles : un quelconque (classique), un qui est équilatéral et un qui

Plus en détail

Brevet blanc, à rendre le 30 avril 2012

Brevet blanc, à rendre le 30 avril 2012 Brevet blanc, à rendre le 30 avril 2012 Partie Numérique Exercice 1. QCM, Brevet France Métropolitaine, Septembre 2010 [5 points] Exercice 2. Brevet centre étranger, juin 2010 [2 points] La fusée Ariane

Plus en détail

Figure de l exercice 4. Devoir Surveillé de Mathématiques n 1 Exercice n 1 En détaillant les calculs, donne les valeurs des expressions suivantes :

Figure de l exercice 4. Devoir Surveillé de Mathématiques n 1 Exercice n 1 En détaillant les calculs, donne les valeurs des expressions suivantes : evoir Surveillé de Mathématiques n 1 401S1 Exercice n 1 En détaillant les calculs, donne les valeurs des expressions suivantes : Figure de l exercice 4 A = 10 + 7 ( 4) B = ( 2) 3 C = ( 4) ( 5) E = ( 4)

Plus en détail

Thème N 13: SYMETRIE ( 3 ) - PARALLELOGRAMME (2) - DEMONSTRATION (2) - QUADRILATERES - ANGLES

Thème N 13: SYMETRIE ( 3 ) - PARALLELOGRAMME (2) - DEMONSTRATION (2) - QUADRILATERES - ANGLES Thème N 13: SYMTR ( 3 ) - PRLLLOGRMM (2) - MONSTRTON (2) - QURLTRS - NGLS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * TVT 1: O 1 er PROPRT: n utilisant

Plus en détail

VII. Lieux géométriques.

VII. Lieux géométriques. VII. Lieux géométriques.. Généralités. Définition. Un lieu géométrique est un ensemble de points qui vérifient une propriété géométrique déterminée.. Méthodes. Pour déterminer un lieu géométriques, différentes

Plus en détail

RECTANGLE. I- Définition: Le quadrilatère ABCD a quatre angles droits. ABCD est un rectangle

RECTANGLE. I- Définition: Le quadrilatère ABCD a quatre angles droits. ABCD est un rectangle RECTANGLE I- Définition: Le quadrilatère ABCD a quatre angles droits ABCD est un rectangle Un rectangle est un quadrilatère ayant quatre angles droits II- Remarque: Si ABCD un rectangle, alors (AB) est

Plus en détail

I.1 ) LES EXERCICES. ENONCES.

I.1 ) LES EXERCICES. ENONCES. 1 Seconde. Géométrie plane. Exercices et problèmes I.1 ) LES EXERCICES. ENONCES. Exercice n 1 ABC, AC et AE sont trois triangles équilatéraux disposés comme sur la figure ci-contre émontrer que le triangle

Plus en détail

cm², soit environ 21,33 cm².

cm², soit environ 21,33 cm². Exercice p 97, n 4 : SABCD est une pyramide dont la base est le rectangle ABCD. On place sur sa hauteur [ SA ] le point A tel que SA = 6cm. En coupant la pyramide SABCD par un plan passant par le point

Plus en détail

3 ème BREVET THEOREME DE THALES

3 ème BREVET THEOREME DE THALES Exercice 1 1 Construire un triangle ABC tel que AB = 6 cm AC = 7,2 cm et BC = 10 cm Placer les points R, T et E tels que : R [AB] et AR = 4,5 cm T [AC] et (RT) // (BC) E [AB) et E [AB] et BE = 2 cm 1 2

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

Groupe seconde chance Feuille d exercices numéro 5

Groupe seconde chance Feuille d exercices numéro 5 Groupe seconde chance Feuille d exercices numéro 5 Exercice Ecrire chacun des nombres ci-dessous sous forme d une puissance d un nombre entier. On laissera visible les étapes du calcul. = 2 0 x 4 3 = 3

Plus en détail

CH.III LES ISOMETRIES

CH.III LES ISOMETRIES CH.III LES ISOMETRIES 1. Isométries et figures superposables Activités 1. Les six drapeaux suivants sont parfaitement superposables deux à deux. Complète le tableau ci-dessous : Du drapeau n vers le n

Plus en détail

Exercices sur les vecteurs

Exercices sur les vecteurs Exercices sur les vecteurs Exercice 1 : Associativité de la somme de trois vecteurs. On donne trois vecteurs u, v et w. Sur les deux figures suivantes tracer la somme u + v + w de deux manières : u + v

Plus en détail

Devoir Surveillé n 8.

Devoir Surveillé n 8. 5 ème B Devoir Surveillé n 8. Mathématiques NOM : PRENOM : DATE : Durée : 1 heure. Usage de la calculatrice : interdite. Les questions sont interdites pendant l évaluation. Le devoir doit être rédigé au

Plus en détail

CH. V LES ISOMETRIES

CH. V LES ISOMETRIES CH. V LES ISOMETRIES 1. Rappels des transformations du plan Connecte-toi sur le site de mathinverses et regarde les 4 vidéos présentes dans l onglet Isométries -> rappels Si tu veux t'exercer sur feuille

Plus en détail

Dossier d exercices de révisions en Mathématique (Pâques-2016)

Dossier d exercices de révisions en Mathématique (Pâques-2016) Pour faire le point sur les différents points de matière, nous te proposons de remplir ce dossier. Il est important d'étudier régulièrement et de refaire un maximum d'exercices. A toi de savoir si tu as

Plus en détail

DIPLÔME NATIONAL DU BREVET SERIE TECHNOLOGIQUE. MATHEMATIQUES Durée : 2 heures. PREMIERE PARTIE ( 12 points )

DIPLÔME NATIONAL DU BREVET SERIE TECHNOLOGIQUE. MATHEMATIQUES Durée : 2 heures. PREMIERE PARTIE ( 12 points ) MATHEMATIQUES Durée : 2 heures L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation et de la rédaction entrent pour 4 points dans l appréciation des copies. PREMIERE PARTIE

Plus en détail

LES VECTEURS : Un exemple de cours.

LES VECTEURS : Un exemple de cours. LES VECTEURS : Un exemple de cours. I) De la translation Du latin transfere transporter aux vecteurs Du latin vector véhicule, de vehere transporter Introduction : Activités de groupe. Objectif : utiliser

Plus en détail

Périmètres et aires. Objectifs du chapitre. Énigme du chapitre. Comparer géométriquement des périmètres

Périmètres et aires. Objectifs du chapitre. Énigme du chapitre. Comparer géométriquement des périmètres Périmètres et aires C H A P I T R E 16 Énigme du chapitre. On partage ce champ rectangulaire en trois pacerelles de même aire. Une est triangulaire et les deux autres sont des trapèzes. 72 m 124 m 62 m

Plus en détail

Triangle rectangle et trigonométrie

Triangle rectangle et trigonométrie Triangle rectangle et trigonométrie fiche sur le triangle rectangle : définition et propriétés (Pythagore, cercle circonscrit et trigonométrie) Prérequis 1 : Un nouveau type d équations 1) compléter avec

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

1- Parallélogramme. A savoir :

1- Parallélogramme. A savoir : 1- Parallélogramme A savoir : Connaître le vocabulaire des quadrilatères : sommet, diagonale, consécutif, opposé Définitions et propriétés à connaître Construire un parallélogramme à partir d'un schéma

Plus en détail