1 Etude d un guide d onde
|
|
|
- Coralie Vachon
- il y a 9 ans
- Total affichages :
Transcription
1 Projet C7-1, c Patrick Ciarlet Etude d un guide d onde Dans un milieu hétérogène, le champ électromagnétique (E,B) est solution des équations de Maxwell : ε E t rot (µ 1 B) = J, B t + rot E = 0, div εe = ρ, div B = 0. (1) Physiquement, E est le champ électrique, et B l induction magnétique. Les données J et ρ sont les densités de courant et de charges. Dans la suite, on s intéresse à la propagation d une onde électromagnétique dans un domaine Ω entouré d un conducteur parfait. Ainsi, la trace tangentielle de E, et la trace normale de B, s annulent sur la frontière Ω. Si on appelle n la normale unitaire sortante à Ω, ceci correspond à : E n Ω = 0, B n Ω = 0. (2) Un guide d onde peut être vu comme un domaine cylindrique Ω R 3, par exemple Ω = Ω R, où Ω est la section transverse bidimensionnelle du guide. D après le choix du domaine, une onde électromagnétique se propage dans le guide parallèlement à la troisième direction (l axe x 3 ). Lorsqu elles se propagent sans atténuation, ces ondes vérifient (1) avec J = 0 et ρ = 0, et nous verrons que ce sont des solutions d un problème aux valeurs propres. Si nous considérons une dépendance harmonique en temps (i.e. exp( ıωt)), ainsi que la nature cylidrique de la géométrie du guide, nous recherchons des solutions qui s écrivent E(t,x) = R {e(x )exp(ı(k 3 x 3 ωt))}, (3) B(t,x) = R {b(x )exp(ı(k 3 x 3 ωt))}, (4) où k 3 > 0 définit le nombre d onde, ω la pulsation, et x = (x 1,x 2 ) sont les coordonnées transverses. D après la géométrie du guide, on peut décomposer le vecteur normal unitaire à Ω selon n = n + 0e 3, où n est le vecteur normal unitaire à Ω dans le plan (x 1,x 2 ). Nous définissons le vecteur unitaire t tangent à Ω, tel que (t,n ) soit direct. Dans la suite, nous faisons l hypothèse que ε et µ sont uniquement fonctions des coordonnées transverses x.
2 Projet C7-1, c Patrick Ciarlet Modélisation 1. Montrer que les équations (1) peuvent être réécrites sous la forme du système ci-dessous posé dans Ω : rot k3 (µ 1 b) = ıωεe, (5) rot k3 e = ıωb, (6) div k3 (εe) = 0, (7) div k3 b = 0. (8) Pour un champ de vecteurs v = v 1 e 1 + v 2 e 2 + v 3 e 3, les opérateurs rot k3 et div k3 sont définis par rot k3 v = v 3 ık 3 v 2 v 3 + ık 3 v 1 v 2 v 1, div k3 v = v 1 + v 2 + ık 3 v Exprimer les conditions aux limites satisfaites par e et b, et montrer qu elles peuvent être réécrites sous la forme : e t = 0, e 3 = 0, b n = 0, où l on a posé e = e + e 3 e 3 et b = b + b 3 e Pour quelle(s) composante(s) du champ électromagnétique manque-t-il une condition aux limites? En considérant la trace de la loi d Ampère (5) sur la frontière, retrouver la/les condition(s) manquante(s). 4. Pour l instant, les diverses inconnues sont liées entre elles. Le but de cette question est de construire des systèmes d équations ne les reliant plus toutes. En partant de (5)-(8), éliminer le champ électrique pour déterminer un système où seule l induction magnétique b apparaît. 5. De façon similaire, déterminer un système où seul le champ électrique e apparaît.
3 Projet C7-1, c Patrick Ciarlet Fréquence de coupure On suppose à partir de maintenant que le milieu est homogène, c est-à-dire que ε(x ) = ε 1 et µ(x ) = µ 1, pour tout x dans Ω. Soit c 1 = 1/ ε 1 µ Reformuler les systèmes précédents sous la forme de problèmes aux valeurs propres de l opérateur ( 2 / / 2 ) (& conditions aux limites) indépendant de ω et de k 3. Soient (λ i ) i 1 les valeurs propres associées. 2. Quelle est la relation liant k 3, ω et les valeurs propres? 3. Déterminer la pulsation de coupure ω c sous laquelle les ondes ne peuvent pas se propager. 1.3 Problème en e On se concentre maintenant sur le champ électrique e et ses composantes e et e 3. Introduisons d autres opérateurs bidimensionnels, définis sur Ω. Pour v = v 1 e 1 + v 2 e 2 et v fonctions de x, soient donc rot v = v 2 v 1, div v = v 1 + v 2, v v rot v =, grad v =, v v v = div (grad v). 1. Vérifier que le système d équations en e 3 et e est e = (k 2 3 ω2 /c 2 1 )e, (c.l. e t = 0), (9) e 3 = (k 2 3 ω2 /c 2 1 )e 3, (c.l. e 3 = 0), (10) div e = ık 3 e 3. (11) 2. Bien sûr, on peut décomposer l ensemble des solutions en e avec e 3 0, ou avec e 3 = 0! Dans le premier cas, vérifier qu il existe α C tel que e = αgrad e 3 + e 3 e 3 est une solution de (9)-(11). En d autres termes, pour déterminer e : soit on résout le problème (10) en e 3, et l on aura une solution e globale en raisonnant comme à la question précédente;
4 Projet C7-1, c Patrick Ciarlet soit on résout le problème (9) en e, avec la condition de divergence nulle div e = 0, et on aura une solution globale e = e + 0e 3. Dans le second cas, on parle d ondes guidées électriques transverses (mode TE). 1.4 Formulations variationnelles Nous allons finalement procéder à la résolution du problème en e en deux temps : en e 3, puis en mode TE e. 1. A quel espace fonctionnel e 3 appartient-il? 2. Ecrire la formulation variationnelle dont e 3 est solution. 3. A quel espace fonctionnel e appartient-il (mode TE)? 4. Quelle difficulté rencontre-t-on lorsqu on veut écrire la formulation variationnelle? Utiliser un potentiel scalaire pour contourner celleci, ie. e = rot u, avec u un potentiel scalaire. 1.5 Discrétisation Pour approcher e 3 et u, on choisit dans la suite une approche de type éléments finis. On discrétise les problèmes aux valeurs propres à l aide de l élément fini de Lagrange P 1, conforme dans H 1 (Ω ), sur des maillages triangulaires (T h ) h (h est le pas du maillage). 1. Quelle vitesse de convergence peut-on espérer pour les valeurs propres et les modes propres, en fonction de h? 2. Ecrire les formulations variationnelles discrètes, ainsi que les problèmes aux valeurs propres matriciels correspondants. 3. Pour reconstruire une approximation numérique de e à partir de celle calculée pour e 3, il suffit d approcher g = grad e 3. Ecrite dans L 2 (Ω ) 2, cette identité est équivalente à g λdω = grad e 3 λdω, λ L 2 (Ω ) 2. (12) Ω Ω Comment utiliser (12) en pratique? 4. Reprendre le raisonnement pour construire une approximation numérique pour le mode TE e = rot u.
5 Projet C7-1, c Patrick Ciarlet Mise en œuvre Pour chaque problème (en e 3 et en u), on se propose de calculer les 10 premières valeurs propres, ainsi que les 10 premiers modes propres associés, sur deux exemples de guides d onde. Le but est donc de calculer des approximations de (λ i (e 3 )) 1 i 10 et de (λ i (u)) 1 i 10, et des modes propres (e i ) i associés Cas d un guide de section rectangulaire On suppose que Ω est le rectangle ]0,5[ ]0,1[. 1. Problème en e 3 : Réaliser la mise en œuvre des schémas numériques précédemment construits, à l aide des logiciels emc2 (génération de maillage) et matlab (construction et résolution des schémas numériques ; visualisation des solutions). Réaliser les simulations numériques sur quelques maillages (respectivement formés de 500, ou triangles environ.) Analyser les résultats. 2. Reprendre la question précédente pour le problème en u Cas d un guide en H On suppose que Ω a pour sommets consécutifs (0,0), (3,0), (3,2), (6,2), (6,0), (9,0), (9,7), (6,7), (6,4), (3,4), (3,7) et (0,7). Reprendre Outils numériques et de programmation 2.1 Intégration numérique dans un triangle Soit T un triangle de sommets S 1 (x 1,y 1 ), S 2 (x 2,y 2 ), et S 3 (x 3,y 3 ). Les coordonnées barycentriques λ 1, λ 2 et λ 3 d un point (x,y) du triangle sont données par les formules suivantes : λ 1 (x,y) = 1 D (y 23(x x 3 ) x 23 (y y 3 )) λ 2 (x,y) = 1 D (y 31(x x 1 ) x 31 (y y 1 )) λ 3 (x,y) = 1 D (y 12(x x 2 ) x 12 (y y 2 ))
6 Projet C7-1, c Patrick Ciarlet où on a posé x ij = x i x j, y ij = y i y j pour i et j différents entre 1 et 3, et D = x 23 y 31 x 31 y 23. Notons que D est égal, au signe près, à deux fois la surface du triangle. On rappelle que, pour (k 1,k 2,k 3 ) N 3, λ k 1 1 λk 2 2 λk 3 3 dω = 2 k 1!k 2!k 3! (k 1 + k 2 + k 3 + 2)! aire(t). T 2.2 Lecture d un maillage Un maillage généré par emc2 au format amdba est de la forme suivante : nbs,nbt E E E E E E E E La première ligne contient le nombre de sommets Nbpt ainsi que le nombre de triangles Nbtri. Les lignes suivantes contiennent (par colonne) les coordonnées de tous les sommets Coorneu(Nbpt,2) et leurs numéros de réference Refneu(Nbpt). Enfin les lignes suivantes correspondent la numérotation des sommets de chaque triangle Numtri(Nbtri,3) ainsi que des numéros de référence des triangles Reftri(Nbtri). Les sommets situés sur la frontière ont 1 pour numéro de référence. Pour lire un maillage de type.amdba on utilisera la procédure matlab : function [Nbpt,Nbtri,Coorneu,Refneu,Numtri,Reftri]=Lectur lage(nomfile) fid = fopen(nomfile, r ) ; N = fscanf(fid, %i ) ; Nbpt = N(1) ; Nbtri = N(2) ; line = fgets(fid) ;
7 Projet C7-1, c Patrick Ciarlet tmp = fscanf(fid, %f,[4,nbpt]) ; Coorneu = tmp(2:3,:) ; Refneu = tmp(4,:) ; tmp = fscanf(fid, %i,[5,nbtri]) ; Numtri=tmp(2:4,:) ; Reftri=tmp(5,:) ; Pour éliminer dans la matrice Amat les lignes et les colonnes correspondants aux sommets situés sur la frontière (si nécessaire), écrire par exemple : Sint = find(refneu==0) ; Amat = Amat(Sint,Sint) ;
5. Les conducteurs électriques
5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Simulation numérique d un stockage de déchets nucléaires en site géologique profond
Simulation numérique d un stockage de déchets nucléaires en site géologique profond Page 1 de 12 G. Allaire, M. Briane, R. Brizzi and Y. Capdeboscq CMAP, UMR-CNRS 7641, Ecole Polytechnique 14 juin 2006
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
PHYSIQUE 2 - Épreuve écrite
PHYSIQUE - Épreuve écrite WARIN André I. Remarques générales Le sujet de physique de la session 010 comprenait une partie A sur l optique et une partie B sur l électromagnétisme. - La partie A, à caractère
Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes
Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire
Les Conditions aux limites
Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,
= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m
1 épartement de Physique, Université Laval, Québec Pierre Amiot, 1. La fonction delta et certaines de ses utilisations. Clientèle Ce texte est destiné aux physiciens, ingénieurs et autres scientifiques.
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Cours Informatique Master STEP
Cours Informatique Master STEP Bases de la programmation: Compilateurs/logiciels Algorithmique et structure d'un programme Programmation en langage structuré (Fortran 90) Variables, expressions, instructions
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker
Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker DeCarvalho Adelino [email protected] septembre 2005 Table des matières 1 Introduction
Algorithmes pour la planification de mouvements en robotique non-holonome
Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
I - Quelques propriétés des étoiles à neutrons
Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
Fonctions de plusieurs variables. Sébastien Tordeux
Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique
Caractéristiques des ondes
Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
Journées Télécom-UPS «Le numérique pour tous» David A. Madore. [email protected]. 29 mai 2015
et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech [email protected] 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
Aide - mémoire gnuplot 4.0
Aide - mémoire gnuplot 4.0 Nicolas Kielbasiewicz 20 juin 2008 L objet de cet aide-mémoire est de présenter les commandes de base pour faire rapidement de très jolis graphiques et courbes à l aide du logiciel
1 Systèmes triphasés symétriques
1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
Cours d Electromagnétisme
Année Universitaire 2012-2013 Licence de Physique (S4) Cours d Electromagnétisme Chargé du Cours : M. Gagou Yaovi Maître de Conférences, HDR à l Université de Picardie Jules Verne, Amiens [email protected]
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie
Introduction à la méthode des éléments finis
ÉCOLE NATIONALE SUPERIEURE DES MINES DE PARIS Introduction à la méthode des éléments finis Michel KERN 1 2004 2005 S3733 / S3735 1 Inria, Rocquencourt, BP 105, 78153 Le Chesnay, [email protected] 2
Exercice : la frontière des portefeuilles optimaux sans actif certain
Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué
Méthode des éléments-finis par l exemple
par l exemple Daniel Choï 1 LMNO Groupe Mécanique Modélisation Mathématique et Numérique Université de Caen, Bld Maréchal Juin, 14032 Caen Cedex, France Version Avril 2010 1. [email protected] Ce
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Sujet. calculatrice: autorisée durée: 4 heures
DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Approche d'un projecteur de diapositives...2 I.Questions préliminaires...2 A.Lentille divergente...2 B.Lentille convergente et
IV- Equations, inéquations dans R, Systèmes d équations
IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Quelleestlavaleurdel intensitéiaupointm?
Optique Ondulatoire Plan du cours [1] Aspect ondulatoire de la lumière [2] Interférences à deux ondes [3] Division du front d onde [4] Division d amplitude [5] Diffraction [6] Polarisation [7] Interférences
Aspects théoriques et algorithmiques du calcul réparti L agglomération
Aspects théoriques et algorithmiques du calcul réparti L agglomération Patrick CIARLET Enseignant-Chercheur UMA [email protected] Françoise LAMOUR [email protected] Aspects théoriques
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.
Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Approximations variationelles des EDP Notes du Cours de M2
Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation
LISTE D EXERCICES 2 (à la maison)
Université de Lorraine Faculté des Sciences et Technologies MASTER 2 IMOI, parcours AD et MF Année 2013/2014 Ecole des Mines de Nancy LISTE D EXERCICES 2 (à la maison) 2.1 Un particulier place 500 euros
Rapport du projet CFD 2010
ISAE-ENSICA Rapport du projet CFD 2010 Notice explicative des différents calculs effectués sous Fluent, Xfoil et Javafoil Tanguy Kervern 19/02/2010 Comparaison des performances de différents logiciels
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Chapitre 6 La lumière des étoiles Physique
Chapitre 6 La lumière des étoiles Physique Introduction : On ne peut ni aller sur les étoiles, ni envoyer directement des sondes pour les analyser, en revanche on les voit, ce qui signifie qu'on reçoit
Théories de champ moyen et convection à grande échelle
Chapitre Théories de champ moyen et convection à grande échelle 51 Introduction Au cours de ce travail, nous avons à plusieurs reprises été confrontés au problème de la compréhension et de la modélisation
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Hervé Oudin. HAL Id: cel-00341772 https://cel.archives-ouvertes.fr/cel-00341772v1
Méthode des éléments finis Hervé Oudin To cite this version: Hervé Oudin. Méthode des éléments finis. École d ingénieur. Ecole Centrale de Nantes, 2008, pp.63. HAL Id: cel-00341772 https://cel.archives-ouvertes.fr/cel-00341772v1
Problèmes de dénombrement.
Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers
La fonction d onde et l équation de Schrödinger
Chapitre 1 La fonction d onde et l équation de Schrödinger 1.1 Introduction En physique classique, une particule est décrite par sa position r(t). L évolution de sa position (la trajectoire de la particule)
Champ électromagnétique?
Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)
Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
SIMULATION HYBRIDE EN TEMPOREL D UNE CHAMBRE REVERBERANTE
SIMULATION HYBRIDE EN TEMPOREL D UNE CHAMBRE REVERBERANTE Sébastien LALLECHERE - Pierre BONNET - Fatou DIOUF - Françoise PALADIAN LASMEA / UMR6602, 24 avenue des landais, 63177 Aubière [email protected]
CENTRALE D ALARME SANS FILS
CENTRALE D ALARME SANS FILS Cher client, Nous vous remercions d avoir fait l acquisition de notre appareil, avant de commencer son installation veuillez lire le mode d emploi joint et prenez note de ce
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY
T.P. FLUENT Cours Mécanique des Fluides 24 février 2006 NAZIH MARZOUQY 2 Table des matières 1 Choc stationnaire dans un tube à choc 7 1.1 Introduction....................................... 7 1.2 Description.......................................
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Mickaël Bergem 25 juin 2014 Maillages et applications 1 Table des matières Introduction 3 1 La modélisation numérique de milieux urbains
Les algorithmes de base du graphisme
Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Projet de Traitement du Signal Segmentation d images SAR
Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,
Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. [email protected]
Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet [email protected] Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective
Module 7: Chaînes de Markov à temps continu
Module 7: Chaînes de Markov à temps continu Patrick Thiran 1 Introduction aux chaînes de Markov à temps continu 1.1 (Première) définition Ce module est consacré aux processus à temps continu {X(t), t R
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
Repérage de l artillerie par le son.
Repérage de l artillerie par le son. Le repérage par le son permet de situer avec précision une batterie ennemie, qu elle soit ou non bien dissimulée. Le son se propage avec une vitesse sensiblement constante,
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
LES TYPES DE DONNÉES DU LANGAGE PASCAL
LES TYPES DE DONNÉES DU LANGAGE PASCAL 75 LES TYPES DE DONNÉES DU LANGAGE PASCAL CHAPITRE 4 OBJECTIFS PRÉSENTER LES NOTIONS D ÉTIQUETTE, DE CONS- TANTE ET DE IABLE DANS LE CONTEXTE DU LAN- GAGE PASCAL.
L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun
9 L E Ç O N Marches aléatoires Niveau : Terminale S Prérequis : aucun 1 Chaînes de Markov Définition 9.1 Chaîne de Markov I Une chaîne de Markov est une suite de variables aléatoires (X n, n N) qui permet
Houda Zaidi. To cite this version: HAL Id: tel-00776931 https://tel.archives-ouvertes.fr/tel-00776931
Méthodologies pour la modélisation des couches fines et du déplacement en contrôle non destructif par courants de Foucault : application aux capteurs souples Houda Zaidi To cite this version: Houda Zaidi.
CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté
CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons
LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB
LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB 5.1 Introduction Au cours de séances précédentes, nous avons appris à utiliser un certain nombre d'outils fondamentaux en traitement du
G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction
DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner
Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel
Simulation Matlab/Simulink une machine à inuction triphasée Constitution un référentiel Capocchi Laurent Laboratoire UMR CNRS 6134 Université e Corse 3 Octobre 7 1 Table es matières 1 Introuction 3 Moélisation
Transmission d informations sur le réseau électrique
Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en
LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND
LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 0 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND SERGE HAROCHE DAVID WINELAND Le physicien français Serge Haroche, professeur
L exclusion mutuelle distribuée
L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Hervé Oudin. HAL Id: cel-00341772 https://cel.archives-ouvertes.fr/cel-00341772v3
Méthode des éléments finis Hervé Oudin To cite this version: Hervé Oudin. Méthode des éléments finis. École d ingénieur. Nantes, France. 2008, pp.74. HAL Id: cel-00341772 https://cel.archives-ouvertes.fr/cel-00341772v3
