Simulation numérique d un stockage de déchets nucléaires en site géologique profond

Dimension: px
Commencer à balayer dès la page:

Download "Simulation numérique d un stockage de déchets nucléaires en site géologique profond"

Transcription

1 Simulation numérique d un stockage de déchets nucléaires en site géologique profond Page 1 de 12 G. Allaire, M. Briane, R. Brizzi and Y. Capdeboscq CMAP, UMR-CNRS 7641, Ecole Polytechnique 14 juin 2006 Ce travail a été soutenu par le GDR MOMAS du CNRS co-financé par l ANDRA, le BRGM, le CEA, et l EDF.

2 Table des matières 1 Modèle étudié 3 2 Homogénéisation 4 3 Schéma numérique 7 4 Passage zone de stockage - champ lointain 8 5 Passage Module - Zone de stockage 8 Page 2 de 12

3 Page 3 de Modèle étudié En désignant par Ω, le domaine formé par la zone de stockage et les couches géologiques l entourant, le transport de contaminant est modélisé par le problème de type parabolique : ρ ε uε t div{aε grad u ε } + v.gradu ε = f ε dans Ω ν.(a ε gradu ε vu ε ) = 0 sur Ω (1) où f ε = ε 1 f 1 (t, x ε ) est un terme source à support dans les alvéoles. Le tenseur de diffusion effective et A ε = A 0 (x) dans les couches géologiques (2) A ε = 1 ε A 1(x) dans les alvéoles des modules. (3)

4 La concentration u d un radionucléide est supposée nulle à l instant initial : 2. Homogénéisation u ε (0, x) = u 0. (4) Le modèle asymptotique obtenu par homogénéisation est le suivant : Page 4 de 12 ρ u t div{a 0 grad u} + v.gradu = 0 dans Ω ν.(a 0 gradu vu) = 0 sur Ω (5) u = s sur Σ où Σ = Ω {Z = 0}. Les données intervenants dans l équation sont celles décrivant les couches géologiques. La solution vérifie les mêmes conditions

5 Page 5 de 12 aux limites sur le bord de Ω mais vérifie en plus une condition de Dirichlet sur Σ la limite (ε 0) de la zone de stockage. Cette condition de Dirichlet s est définie à partir de la résolution d un problème élliptique avec un second membre dépendant du temps : div{a grad s } = f dans Σ (6) s = 0 sur Σ Les coefficients effectifs sont donnés par : f(t) = f 1 (t, y) [0,1] d et A = [0,1] d 1 R χ(y)(a 1 (y)(id + P(y)))dy. Les coefficients de ce nouveau problème sont eux-mêmes définis à partir de problèmes posés dans une cellule avec des conditions de périodicité et de Neumann.

6 On obtient ainsi un découplage du problème global en problèmes posés à l intérieur des modules de stockage et un problème posé dans les couches géologiques. Page 6 de 12

7 3. Schéma numérique Comme on travaille à eps fixé, le modèle asymptotique nous indique le choix du type de couplage que l on peut introduire via les conditions aux limites trouvées. Page 7 de 12 Une fois le probème parabolique discrétisé en espace (élements finis P 1 -Lagrange) en en temps (Euler implicite), pour chaque pas de temps : Dans chaque module, on résout le probème parabolique avec conditions de périodicité en x et de Neuman sur les bords inférieur et supérieur du module. La connaissance de la solution permet de l introduire comme condition de Dirichlet dans Le problème extérieur ie dans le problème parabolique posé dans les couches géologiques. On peut alors calculer les conditions de Neumann que l on introduit pour l étape de temps suivante lors de la résolution du problème dans le module.

8 4. Passage zone de stockage - champ lointain Page 8 de Passage Module - Zone de stockage

9 Page 9 de 12

10 Page 10 de 12

11 Page 11 de 12

12 Page 12 de 12

Quelques données relatives au stockage de déchets en milieu souterrain 2D

Quelques données relatives au stockage de déchets en milieu souterrain 2D Quelques données relatives au stockage de déchets en milieu souterrain 2D 7 avril 2006 1 Physique du problème : caractéristiques et modèles d un milieu poreux Le cadre physique de notre problème est celui

Plus en détail

PROBLEMES POSES PAR LA MODELISATION et la SIMULATION D UN ENTREPOSAGE SOUTERRAIN DE DECHETS

PROBLEMES POSES PAR LA MODELISATION et la SIMULATION D UN ENTREPOSAGE SOUTERRAIN DE DECHETS PROBLEMES POSES PAR LA MODELISATION et la SIMULATION D UN ENTREPOSAGE SOUTERRAIN DE DECHETS Alain Bourgeat bourgeat@mcs.univ-lyon1.fr ( http://momas.univ-lyon1.fr/pageperso/bourgeat/index.htm) Ecole d

Plus en détail

Filtrage et EDP. Philippe Montesinos. EMA/LGI2P - Site EERIE. Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema.

Filtrage et EDP. Philippe Montesinos. EMA/LGI2P - Site EERIE. Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema. Filtrage et EDP Philippe Montesinos EMA/LGI2P - Site EERIE Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema.fr 1 Plan 1. Rappels: - Les analyses multi-échelles. - Méthodes

Plus en détail

HSNA100 - Séchage d'un mur d'enceinte en béton. Fascicule v7.20 : Thermo-mécanique statique non linéaire des structures axisymétriques

HSNA100 - Séchage d'un mur d'enceinte en béton. Fascicule v7.20 : Thermo-mécanique statique non linéaire des structures axisymétriques Titre : HSNA100 - Séchage d'un mur d'enceinte en béton Date : 27/06/2013 Page : 1/9 HSNA100 - Séchage d'un mur d'enceinte en béton Résumé : Ce cas test est destiné à valider le calcul du séchage du béton,

Plus en détail

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis Notion de modèle - Processus d analyse Application à la méthode des Eléments finis La présentation est animée, avancez à votre vitesse par un simple clic Chapitres 1 et 6 du polycopié de cours. Bonne lecture

Plus en détail

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique

Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique Solutions globales pour les équations décrivant des écoulements insaturés en milieux poreux, avec une pression capillaire dynamique J. Bodin 12, T. Clopeau 2, A. Mikelić 2 1 Agence Nationale pour la gestion

Plus en détail

L appropriation de la notion de réversibilité par l Andra

L appropriation de la notion de réversibilité par l Andra L appropriation de la notion de réversibilité par l Andra Jean-Michel Hoorelbeke Andra Colloque interdisciplinaire réversibilité Plan 1. Des possibilités de stockage réversible ou irréversible (1991) vers

Plus en détail

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

Optimisation de trajectoire pour une mission Ariane 5

Optimisation de trajectoire pour une mission Ariane 5 Optimisation de trajectoire pour une mission Ariane 5 Ludovic Goudenège (sur la base d un projet de Pierre Martinon) ENSTA - Module IN103 Septembre 2012 Plan 1 Quelques données et chiffres 2 Dynamique

Plus en détail

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option (Public2014-B1) Résumé : On présente un exemple de système de deux espèces en compétition dans un environnement périodique.

Plus en détail

Concours CASTing 2011

Concours CASTing 2011 Concours CASTing 2011 Épreuve de mécanique Durée 1h30 Sans calculatrice Le candidat traitera deux exercices parmi les trois proposés dans le sujet. Dans le cas où les trois exercices seraient traités partiellement,

Plus en détail

TP 3 diffusion à travers une membrane

TP 3 diffusion à travers une membrane TP 3 diffusion à travers une membrane CONSIGNES DE SÉCURITÉ Ce TP nécessite la manipulation de liquides pouvant tacher les vêtements. Le port de la blouse est fortement conseillé. Les essuie tout en papier

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

SSNV247 - Application d'une pression répartie sur les lèvres d'une interface XFEM courbe traversant une calotte sphérique

SSNV247 - Application d'une pression répartie sur les lèvres d'une interface XFEM courbe traversant une calotte sphérique Titre : SSNV247 - Application d'une pression répartie sur [...] Date : 19/08/2015 Page : 1/10 SSNV247 - Application d'une pression répartie sur les lèvres d'une interface XFEM courbe traversant une calotte

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date Guide de SolidWorks Flow Simulation pour l enseignant Présentateur Date 1 Qu'est-ce que SolidWorks Flow Simulation? SolidWorks Flow Simulation est un logiciel d'analyse des écoulements de fluide et du

Plus en détail

TP Méthodes Numériques

TP Méthodes Numériques ENSIMAG 1ère année, 2007-2008 TP Méthodes Numériques Objectifs Les objectifs de ce TP sont : de revenir sur les méthodes de résolution des équations différentielles vues en cours de MN ; d utiliser un

Plus en détail

Aérodynamique Numérique

Aérodynamique Numérique Aérodynamique Numérique Dominique BLANC Rodolphe GOURSEAU 16 mars 2005 TABLE DES MATIÈRES ii Table des matières Introduction iii 1 Maillage non structuré 1 1.1 Préparation du maillage.....................

Plus en détail

WTNA105 Injection de gaz dans un matériau quasi-saturé de type argile décrit par des lois de Van-Genuchten/Mualem

WTNA105 Injection de gaz dans un matériau quasi-saturé de type argile décrit par des lois de Van-Genuchten/Mualem Titre : WTNA105 - Injection de gaz dans un matériau quasi-[...] Date : 08/08/2011 Page : 1/8 WTNA105 Injection de gaz dans un matériau quasi-saturé de type argile décrit par des lois de Van-Genuchten/Mualem

Plus en détail

Equation de la chaleur sous contrainte

Equation de la chaleur sous contrainte Equation de la chaleur sous contrainte Proposé par Aline Lefebvre-Lepot aline.lefebvre@polytechnique.edu On cherche à résoudre l équation de la chaleur dans un domaine Ω en imposant une contrainte sur

Plus en détail

Chapitre 4 : Etude Energétique

Chapitre 4 : Etude Energétique Cours de Mécanique du Point matériel Chapitre 4 : Energétique SMPC1 Chapitre 4 : Etude Energétique I Travail et Puissance d une force I.1)- Puissance d une force Soit un point matériel M de vitesse!!/!,

Plus en détail

Première S Exercices valeur absolue 2010-2011

Première S Exercices valeur absolue 2010-2011 Première S Exercices valeur absolue 2010-2011 Exercice 1 : Résoudre dans Y, les inéquations suivantes : a) 2 < x + 1 < 3 b) 1 x 3 < 4 2 x 3 > 2 c) x + 4 3 Exercice 2 : On souhaite résoudre dans Y l équation

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Book saison 5. Promotion Immobilière. Création numérique - Identité d entreprise - 3d & animation - prepresse & web yann@harrubana.

Book saison 5. Promotion Immobilière. Création numérique - Identité d entreprise - 3d & animation - prepresse & web yann@harrubana. Book saison 5 Promotion Immobilière yann@harrubana.fr - 06 89 444 725 Modélisations et rendus de SCÈNES EXTÉRIEURES Modélisations et rendus d intérieurs Modélisations et rendus de scènes extérieures Modélisations

Plus en détail

Sciences Po Paris 2012 Mathématiques Solutions

Sciences Po Paris 2012 Mathématiques Solutions Sciences Po Paris 202 athématiques Solutions Partie : Le modèle de althus odèle discret a Pour tout entier naturel n, on a P n+ P n = P n donc P n+ = +P n Par suite la suite P n est géométrique de raison

Plus en détail

SDNL112 - Endommagement d'origine vibratoire d'un cintre de générateur de vapeur

SDNL112 - Endommagement d'origine vibratoire d'un cintre de générateur de vapeur Titre : SDNL112 - Endommagement d'origine vibratoire d'un [...] Date : 30/07/2015 Page : 1/9 SDNL112 - Endommagement d'origine vibratoire d'un cintre de générateur de vapeur Résumé Ce cas de validation

Plus en détail

DOSSIER DE VALIDATION DU LOGICIEL CONDUCTEÖ [S] 2D. version 3.0

DOSSIER DE VALIDATION DU LOGICIEL CONDUCTEÖ [S] 2D. version 3.0 DOSSIER DE VALIDATION DU LOGICIEL CONDUCTEÖ [S] 2D version 3.0 Déclaration de conformité... 4 Tests de validation de la norme EN 10211... 5 Cas n 1... 5 Cas n 2... 6 Tests de validation de la norme EN

Plus en détail

La conception du projet de stockage

La conception du projet de stockage La conception du projet de stockage DMR/PF/15-0015 HCTISN - 6 octobre 2015 18 Principes de sûreté pour la conception du stockage La conception du stockage de déchets FA-VL à faible profondeur est fondée

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Retour d expérience noeud de stockage BeeGFS

Retour d expérience noeud de stockage BeeGFS Retour d expérience noeud de stockage BeeGFS Philippe Dos Santos / Georges Raseev Fédération de Recherche Lumière Matière 06 novembre 2014 LOGO CNRS LOGO IO Philippe Dos Santos / Georges Raseev (FédérationRetour

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE

PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE Chaque fois que c est nécessaire, il sera fait usage des moyens modernes de calcul. I. ALGEBRE-ANALYSE OBJECTIFS SPECIFIQUES CONTENUS/MATIERES

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

UNIVERSITÉ PARIS 13. pour obtenir le grade de DOCTEUR DE L UNIVERSITÉ PARIS 13. présentée et soutenue publiquement. par.

UNIVERSITÉ PARIS 13. pour obtenir le grade de DOCTEUR DE L UNIVERSITÉ PARIS 13. présentée et soutenue publiquement. par. UNIVERSITÉ ARIS 3 N o attribué par la bibliothèque THÈSE pour obtenir le grade de DOCTEUR DE L UNIVERSITÉ ARIS 3 Discipline : Mathématiques appliquées présentée et soutenue publiquement par aul-marie BERTHE

Plus en détail

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau Formation à la C F D Computational Fluid Dynamics Formation à la CFD, Ph Parnaudeau 1 Qu est-ce que la CFD? La simulation numérique d un écoulement fluide Considérer à présent comme une alternative «raisonnable»

Plus en détail

Projet Calcul Machine à café

Projet Calcul Machine à café Projet Calcul Machine à café Pierre-Yves Poinsot Khadija Salem Etude d une machine à café, plus particulièrement du porte filtre E N S I B S M é c a t r o 3 a Table des matières I Introduction... 2 Présentation

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Durée 2 heures Une feuille de formulaire autorisée. Les exercices doivent être obligatoirement rédigés sur des feuilles séparées.

Durée 2 heures Une feuille de formulaire autorisée. Les exercices doivent être obligatoirement rédigés sur des feuilles séparées. Durée 2 heures Une feuille de formulaire autorisée Les exercices doivent être obligatoirement rédigés sur des feuilles séparées. Exercic (7 points) : (les 3 parties sont relativement indépendantes) De

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Modélisation et simulation de l activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis

Modélisation et simulation de l activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis Modélisation et simulation de l activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis Charles Pierre Laboratoire de Mathématiques Jean Leray, Université de Nantes

Plus en détail

Module HVAC - fonctionnalités

Module HVAC - fonctionnalités Module HVAC - fonctionnalités Modèle de radiation : DO = Discrete Ordinates On peut considérer l échauffement de solides semi transparents causé par le rayonnement absorbé par le solide. On peut également

Plus en détail

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY T.P. FLUENT Cours Mécanique des Fluides 24 février 2006 NAZIH MARZOUQY 2 Table des matières 1 Choc stationnaire dans un tube à choc 7 1.1 Introduction....................................... 7 1.2 Description.......................................

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

SYNTHÈSE GLOBALE DE L INSPECTION

SYNTHÈSE GLOBALE DE L INSPECTION RÉPUBLIQUE FRANÇAISE DIVISION DE LYON N/Réf. : CODEP-LYO-2013-058932 Lyon, le 23 octobre 2013 XXXXXXXX Monsieur le Chef de Base EDF - BCOT BP 127 84504 BOLLENE cedex Objet : Contrôle des installations

Plus en détail

Fonctions hyperboliques et applications réciproques

Fonctions hyperboliques et applications réciproques Chapitre III Fonctions hyperboliques et applications réciproques A Fonctions hyperboliques directes A. Sinus hyperbolique et cosinus hyperbolique On va définir de nouvelles fonctions inspirées notamment

Plus en détail

Utilisation d un tableur dans l exploitation des courbes de dosage spectrophotométrique.

Utilisation d un tableur dans l exploitation des courbes de dosage spectrophotométrique. Utilisation d un tableur dans l exploitation des courbes de dosage spectrophotométrique. A METHODE DE LA GAMME D ETALONNAGE... 1 1. Saisie des valeurs... 1 2. Tracé de la gamme d étalonnage... 2 3. Modélisation

Plus en détail

Leçon 2 Élasticité et conservation de l énergie cinétique

Leçon 2 Élasticité et conservation de l énergie cinétique Leçon 2 Élasticité et conservation de l énergie cinétique L applet Collisions unidimensionnelles simule des collisions élastiques et inélastiques dans les repères de laboratoire et de centre de masse.

Plus en détail

Fiche d application du Titre V RT2012 Module Thermique avec ECS accumulée Logix

Fiche d application du Titre V RT2012 Module Thermique avec ECS accumulée Logix Module Thermique avec ECS accumulée Logix Arrêté ministériel du 27 janvier 2015 Module Thermique d Appartement Logix avec affichage des consommations de chauffage et d eau chaude sanitaire Module de distribution

Plus en détail

Plusieurs exercices de la douzième séance de TD

Plusieurs exercices de la douzième séance de TD Plusieurs exercices de la douzième séance de TD Décembre 2006 1 Offre du travail 1.1 énoncé On considère un ménage dont les préférences portent sur la consommation et le temps consacré aux activités non

Plus en détail

Méthodes numériques pour le pricing d options

Méthodes numériques pour le pricing d options Méthodes numériques pour le pricing d options Mohamed Ben Alaya 6 février 013 Nous allons tester les différentes méthodes de différence finies vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

«Pièges», «erreurs» et pathologie des calculs numériques

«Pièges», «erreurs» et pathologie des calculs numériques Session de formation continue ENPC «Pièges», «erreurs» et pathologie des calculs numériques 6-8 octobre 2010 Philippe Mestat (LCPC) «Pièges» pour débutant?. Conditions limites en déplacements : il faut

Plus en détail

PLATEFORME REGIONALE D INNOVATION CISNA 2.0. Projets industriels-étudiants

PLATEFORME REGIONALE D INNOVATION CISNA 2.0. Projets industriels-étudiants Projets industriels-étudiants Etude du comportement d un concept de module avant de moto innovant Concept de Jean Bertrand BRUNEAU (JBB) Modèle de 27 pièces Identification des zones contraintes Propositions

Plus en détail

Simulation Numérique de la Convection Naturelle en Régime Laminaire Transitoire dans une Serre Tunnel Chauffée par le Bas (Flux)

Simulation Numérique de la Convection Naturelle en Régime Laminaire Transitoire dans une Serre Tunnel Chauffée par le Bas (Flux) Re. Energ. Ren. : Valorisation (999) 4-45 Simulation Numérique de la Conection Naturelle en Régime Laminaire Transitoire dans une Serre Tunnel Chauffée par le Bas (Flux) B. Draoui, M. Benyamine, Y. Touhami

Plus en détail

Formations et perspectives liées à la géothermie IUT Orléans Dépt. Génie Thermique & Energie

Formations et perspectives liées à la géothermie IUT Orléans Dépt. Génie Thermique & Energie 1 Formations et perspectives liées à la géothermie IUT Orléans Dépt. Génie Thermique & Energie 2 Axe 1 : Formation DUT GTE Cadre : PPN DUT GTE Développement de l autonomie Public visé : Niveau 2 3 en formation

Plus en détail

La méthode FIC-EBC : une méthode de domaine fictif avec sauts immergés et raffinement de maillage multi-niveaux

La méthode FIC-EBC : une méthode de domaine fictif avec sauts immergés et raffinement de maillage multi-niveaux Publié dans MATAPLI numéro 89, juin 2009. La méthode FIC-EBC : une méthode de domaine fictif avec sauts immergés et raffinement de maillage multi-niveaux Introduction Isabelle Ramière CEA Cadarache, Direction

Plus en détail

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I. PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.. Donner les erreurs en position, en vitesse et en accélération d un système de transfert F BO = N(p) D(p) (transfert en boucle ouverte) bouclé par retour

Plus en détail

MASTERE MODELISATION EN HYDRAULIQUE

MASTERE MODELISATION EN HYDRAULIQUE MASTERE MODELISATION EN HYDRAULIQUE ET ENVIRONNEMENT Coordinateur du Mastère : JAMEL CHAHED ENIT, Département Génie Civil, Laboratoire LMHE BP 37, Le Belvédère, 1002-Tunis jamel.chahed@enit.rnu.tn 1. Le

Plus en détail

MODÉLISATION ET DÉVELOPPEMENT D UN CODE DE CALCUL POUR LA SIMULATION DE CONVERTISSEURS SO 2 /SO 3

MODÉLISATION ET DÉVELOPPEMENT D UN CODE DE CALCUL POUR LA SIMULATION DE CONVERTISSEURS SO 2 /SO 3 MODÉLISATION ET DÉVELOPPEMENT D UN CODE DE CALCUL POUR LA SIMULATION DE CONVERTISSEURS SO 2 /SO 3 Belkacem Abdous, Lhachmi Kamar, Omari Lhoussaine Direction de Recherche et Développement, OCP S.A. SOMMAIRE

Plus en détail

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES 1ES DS commun du jeudi 5 mai 011. MATHEMATIQUES NOM. Exercice 1 (8 points/40) Cet exercice est un QCM. Pour chaque question une seule réponse est exacte. On demande d entourer la bonne réponse et aucune

Plus en détail

La sûreté du stockage face au risque d intrusion Scénarios d intrusion pris en compte par l Andra dans le Dossier 2005

La sûreté du stockage face au risque d intrusion Scénarios d intrusion pris en compte par l Andra dans le Dossier 2005 La sûreté du stockage face au risque d intrusion Scénarios d intrusion pris en compte par l Andra dans le Dossier 2005 La sûreté du stockage face au risque d intrusion Sommaire Les principes de prise en

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Journée Utilisateurs CIMENT

Journée Utilisateurs CIMENT Journée Utilisateurs CIMENT L. Viry - C. Picard Animation Scientifique 3 Avril 2012 (Grenoble) 3 Avril 2012 1 / 12 Animation Scientifique Les applications de modélisation sont de plus en plus fréquemment

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Accompagnement personnalisé Académie d Amiens Fiche professeur «PACES Mathématiques»

Accompagnement personnalisé Académie d Amiens Fiche professeur «PACES Mathématiques» Scénario pédagogique «Accompagnement vers l excellence» en accompagnement personnalisé Suivre efficacement un cours en amphithéâtre Exemple en PACES (Première année des études de santé) 1. Tableau descriptif

Plus en détail

Utilisation de la méthode des éléments finis

Utilisation de la méthode des éléments finis Simulation numérique des équations multi-physiques Institut FEMTO-ST, Université de Bourgogne Franche-Comté et CNRS, 15 B avenue des Montboucons, F-25030 Besançon Cedex, France vincent.laude@femto-st.fr

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

Concours Centrale-Supélec 2005 7/12

Concours Centrale-Supélec 2005 7/12 Problème - type centrale Partie - Couplage des phénomènes de conduction thermique et électrique en régime linéaire. Étude d un réfrigérateur à effet Peltier Le but de cette partie est de montrer que, dans

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Méthodes de Monte Carlo pour le pricing d options

Méthodes de Monte Carlo pour le pricing d options Méthodes de Monte Carlo pour le pricing d options Mohamed Ben Alaya 14 février 2013 Nous allons tester les différentes méthodes probabilistes vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

TP2 ACTIVITE ITEC. Centre d intérêt : AUBE D UN MIRAGE 2000 COMPORTEMENT D UNE PIECE. Documents : Sujet Projet Dossier technique - Document réponse.

TP2 ACTIVITE ITEC. Centre d intérêt : AUBE D UN MIRAGE 2000 COMPORTEMENT D UNE PIECE. Documents : Sujet Projet Dossier technique - Document réponse. ACTIVITE ITEC TP2 Durée : 2H Centre d intérêt : COMPORTEMENT D UNE PIECE AUBE D UN MIRAGE 2000 BA133 COMPETENCES TERMINALES ATTENDUES NIVEAU D ACQUISITION 1 2 3 * * Rendre compte de son travail par écrit.

Plus en détail

Le programme de mathématiques Classes de première STI2D STL

Le programme de mathématiques Classes de première STI2D STL Journée de l inspection 15 avril 2011 - Lycée F. BUISSON 18 avril 2011 - Lycée J. ALGOUD 21 avril 2011 - Lycée L. ARMAND Le programme de mathématiques Classes de première STI2D STL Déroulement de la journée

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines eercices corrigés 8 janvier 2012 Eercice 1 Eercice 2 Eercice Eercice 4 Eercice 5 Eercice 6 Eercice 7 Eercice 1 Enoncé Soit la fonction f : + 1 Représenter graphiquement la fonction f. 2 Donner le sens

Plus en détail

Intégration de l Energie Solaire en Milieu Urbain

Intégration de l Energie Solaire en Milieu Urbain Intégration de l Energie Solaire en Milieu Urbain Séminaire CREM EPF - Lausanne, 25 Janvier 2012 Prof. Dr Jean-Louis Scartezzini Laboratoire d Energie Solaire et de Physique du Bâtiment Ecole Polytechnique

Plus en détail

BILAN STAGE INGENIEUR MRIE 2006.

BILAN STAGE INGENIEUR MRIE 2006. BILAN STAGE INGENIEUR MRIE 2006. Ce bilan succinct tient compte des évaluations faites par les maîtres de stage sur les étudiants et leurs formations. Ce bilan a été dressé sur 12 élèves ingénieurs (les

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

Modélisation du panneau solaire hybride «solaire2g»

Modélisation du panneau solaire hybride «solaire2g» Modélisation du panneau solaire hybride «solaire2g» Lucien BLANC 1 1 Institut Universitaire des Systèmes Thermiques Industriels, CNRS/université de Provence Technopôle de Château-Gombert, Marseille Résumé

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Master MES - Modélisation et simulation Thème : Modèles de trafic routier

Master MES - Modélisation et simulation Thème : Modèles de trafic routier Master MES - Modélisation et simulation Thème : Modèles de trafic routier Emmanuel Maitre Page web de l UE http://www-ljk.imag.fr/membres/emmanuel.maitre/doku.php?id=mes 1 Le problème à étudier 1.1 Introduction

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

ALDEA CONSEIL EN ORGANISATION ET SYSTÈMES D'INFORMATION L'OFFRE D'ALDEA SUR LES PROJETS GÉOGRAPHIQUES

ALDEA CONSEIL EN ORGANISATION ET SYSTÈMES D'INFORMATION L'OFFRE D'ALDEA SUR LES PROJETS GÉOGRAPHIQUES ALDEA CONSEIL EN ORGANISATION ET SYSTÈMES D'INFORMATION L'OFFRE D'ALDEA SUR LES PROJETS DE SYSTÈMES D'INFORMATION GÉOGRAPHIQUES 30, Avenue du Général Leclerc 92100 Boulogne-Billancourt + 33 (0)1 55 38

Plus en détail

Caractérisation des réservoirs carbonatés du bassin de Paris pour l exploitation des hydrocarbures, le stockage de CO2 et la géothermie

Caractérisation des réservoirs carbonatés du bassin de Paris pour l exploitation des hydrocarbures, le stockage de CO2 et la géothermie Caractérisation des réservoirs carbonatés du bassin de Paris pour l exploitation des hydrocarbures, le stockage de CO2 et la géothermie D. Bonijoly, C. Rigollet, O. Serrano Établissement public de recherche

Plus en détail

Equations Différentielles

Equations Différentielles Cours optionnel S4 - Maths Renforcées 1 Equations Différentielles I- Définitions élémentaires. On appelle Equation Différentielle Ordinaire (EDO) toute équation (E) du type (E) : y (n) (t) = F (t; y(t);

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

WTNP128 Essai de fendage par coin du béton sous pression fluide

WTNP128 Essai de fendage par coin du béton sous pression fluide Titre : WTNP128 - Essai de fendage par coin du béton sous [...] Date : 02/03/2011 Page : 1/14 WTNP128 Essai de fendage par coin du béton sous pression fluide Résumé : Le test présenté ici permet de vérifier

Plus en détail

Modèle d équilibre thermique urbain

Modèle d équilibre thermique urbain Modèle d équilibre thermique urbain Définition d un volume de contrôle V Choix de la variable du bilan Bilan global [Oke, 1987] enthalpie V dh(t) 1 4 2 dt 43 Watt i r i,transp. n r i Entrées/sorties du

Plus en détail

Modélisation et simulation numérique de matériaux microstructurés pour l isolation acoustique des cabines d avion.

Modélisation et simulation numérique de matériaux microstructurés pour l isolation acoustique des cabines d avion. Modélisation et simulation numérique de matériaux microstructurés pour l isolation acoustique des cabines d avion. Adeline Augier 1 Directeur de thèse : François Alouges 2 Tuteur de thèse : Benjamin Graille

Plus en détail

Gene-Auto, Projet ITEA 05018 IDM pour la génération de code critique certifié Validation et Vérification de transformations

Gene-Auto, Projet ITEA 05018 IDM pour la génération de code critique certifié Validation et Vérification de transformations Gene-Auto, Projet ITEA 05018 IDM pour la génération de code critique certifié Validation et Vérification de transformations Journées GDR GPL Transformations de modèles et de programmes 18 janvier 2008

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

ECHANTILLONNAGES Fiche de repérage

ECHANTILLONNAGES Fiche de repérage M Objectifs pédagogiques généraux : Fiche de repérage Type : Activité d approche de la notion de fluctuation d échantillonnage et d intervalle de confiance à travers quelques simulations. Niveau : Lycée

Plus en détail

Modélisation de dynamiques spatiales au service de la gestion de l'usage des sols : un exemple d'utilisation du langage Ocelet à l'île de la Réunion

Modélisation de dynamiques spatiales au service de la gestion de l'usage des sols : un exemple d'utilisation du langage Ocelet à l'île de la Réunion Modélisation de dynamiques spatiales au service de la gestion de l'usage des sols : un exemple d'utilisation du langage Ocelet à l'île de la Réunion Séminaire MIAD 23 mai 2014 Pascal Degenne Modélisation

Plus en détail