SCIENCES DE L INGENIEUR

Dimension: px
Commencer à balayer dès la page:

Download "SCIENCES DE L INGENIEUR"

Transcription

1 SCIENCES DE L INENIEUR Modéliser et représenter le réel Dnamique Fiche cours FC.0 ) Introduction : La dnamique est la partie de la mécanique qui traite des mouvements en relation avec les forces qui les engendrent. Newton fut le premier à formuler correctement le principe fondamental de la dnamique et la loi de gravitation universelle. Par la suite, Euler, d lembert, Lagrange, Laplace, Poinsot, Coriolis et Einstein apportèrent une contribution importante au développement de cette science essentielle. Il eiste trois méthodes pour traiter un problème de dnamique :. Par application du principe fondamental (loi de Newton). Par utilisation des théorèmes relatifs au travail et à l énergie (Energétique). Par utilisation des théorèmes portant sur les quantités de mouvement et le moment cinétique. ) Lois de Newton : ) Repère aliléen : Notion de repère absolu : ère loi : Dans un repère galiléen, tout objet en état de mouvement rectiligne uniforme et soumis à aucune force etérieure, conserve son mouvement. ème loi : Force = masse accélération ème loi : Tout corps soumis à une force eerce en retour une force de même intensité et de direction opposée Pour que le principe fondamental de la dnamique soit correct, l accélération a doit être une accélération absolue. Par commodité, l accélération a est généralement repérée ou déterminée par rapport à un repère fie lié à la terre (référence absolue). Cependant, la terre n est pas un référentiel absolu (ou galiléen) rigoureu mais approché. Pour la plupart des problèmes de mécanique terrestre, cette approimation suffit et amène des erreurs négligeables. Pour un certain nombre de problèmes, faisant intervenir des avions, des fusées, des missiles ou autres soucoupes volantes, il est parfois nécessaire de faire intervenir les accélérations dues au mouvements de la terre. Eemple : Pour un corps en chute libre, la rotation de la terre autour de son ae engendre une légère accélération dirigée vers l est (accélération de Coriolis) créant une perturbation du mouvement de chute libre. Le solide ne tombe pas eactement verticalement mais subit une déviation vers l est égale à : d =. avec = rad/s (vitesse de rotation de la terre) g = 9.8 m.s² (accélération de la pesanteur) h = hauteur de la chute en m = latitude nord ou sud

2 Notion de temps relatif et temps absolu : Dans l équation de Newton, le temps est considéré comme une grandeur absolue, s écoulant ineorablement d arrière en avant au rthme régulier indiqué par les pendules et les calendriers. D après Einstein, le temps n est pas absolu mais relatif et dépend de la vitesse propre de l observateur et de la position finale de celui-ci. Cependant la notion de temps relatif n est valable que pour des particules se déplaçant à très grande vitesse (proche de la vitesse de la lumière ( km/s). ) Principe fondamental de la dnamique : Cas d'un solide "unité de matière" M (S) (R) Ce solide (S) est si petit qu'il peut être considéré comme un point. Le solide (S) est soumis à des actions etérieures se réduisant à une résultante R et S. Soit : =. Son mouvement est tel que : = m. vec en N en m/s² m en Kg (masse du solide) Cas d'un solide quelconque Soit un solide (S) quelconque de masse m. Contrairement au solide précédent, celui-ci peut subir des efforts en différents points. Ceu-ci peuvent le faire tourner. Il aura donc présence de moments En appliquant la démonstration précédente à ce solide, il suffirait de considérer celui-ci comme une somme de points Mi de masses m i. Le principe fondamental de la dnamique peut alors s'écrire : C'est le torseur dnamique C'est la résultante dnamique C'est le moment dnamique Remarque : Le torseur dnamique contient des relations difficilement utilisables par un élève de première et/ou de terminale S SI. Nous allons donc uniquement nous intéresser au cas particuliers de la translation rectiligne et de la rotation autour d'un ae fie. -) Cas du solide en translation rectiligne / = ccélération du centre de gravité du solide en m/s² et S = et S = Somme des forces etérieures en N m = masse du solide S en Kg Trajectoire de m. et = Remarque : la résultante et doit passer par, sinon Il a mouvement plan

3 Eemples : Sphère en chute libre : Une sphère de Kg est en chute libre, la résistance de l air est négligée. z Bilan : et = (vecteur poids) a = 9.8 m/s² (accélération de la pesanteur) et = m. d où = m. MRU En projection sur l ae z : P = m. g = 9.8 = 9.8 N P = = 9,8 N Navette spatiale Une Navette spatiale est supposée à l arrêt dans l espace. Ces moteurs sont allumés, la poussée de chaque moteur est de F = 00 kn, les poussées sont parallèles et leur résultante passe par. Déterminons l accélération supportée par un astronaute, si la masse de l engin est de 00 tonnes. Bilan : et = (Poussée des moteurs) a =? m/s² (accélération de la navette) m = Kg et = m. En projection sur l ae z : F = m. a d où a = = = 69 a = 69 m/s² Principe de d'lembert : Soit environ 7g ( = 7.0). Le principe de d'lembert prend en compte la "Force d'inertie". Cette force est opposée à l'accélération et = - m.. La force d'inertie devient un effort etérieur et le principe fondamental de la dnamique peut alors s'écrire : / Câble Cabine Eemple : Cabine d ascenseur Un homme de 80 kg se tient debout sur une balance dans une cabine d ascenseur à l arrêt. Le moteur est mis en route et la tension du câble atteint la valeur de 900 dan pendant les trois premières secondes. Les frottements sont négligés et la masse de la cabine (cabine + balance) est de 70kg. Le centre de gravité de l ensemble est situé sur la verticale commune au actions et (poids de l'homme). Si l accélération est supposée constante, quelle valeur peut-on lire sur la balance? Bâti Balance

4 Résolution : ) Isolons l ensemble {cabine + homme + balance} : Remarques : Les actions des rails sur la cabine ne sont pas prises en compte car elles sont perpendiculaires à l ae z (pas de composante sur z). Le principe de d lembert s écrit : total + + = + m = Et total = Cabine + Homme En projection sur l ae z on obtient : P + T m a = 0 ) Isolons l homme seul : [-( ) 9.8] ( ) a = 0 a =. m/s² Bilan des actions etérieures : Il est soumis à actions : Son poids Homme ( = 78.8 N) On a : homme + + = En projection sur z on obtient : P h + B + F I = 0 L action eercée par la balance La force d inertie (- m h. a = - 80, = - 5, N) D'où B = ,= 900 N La masse mesurée par la balance est : = 9.7 kg (.5 son poids) Eercices -) Cas du solide en rotation autour d'un ae fie --) Premier cas : Le centre de gravité est situé sur l ae de rotation Hpothèses : - Sa vitesse de rotation en rad/s - Son accélération angulaire en rad/s² - Le centre de gravité est situé sur le centre de rotation. - et sont les actions eercées sur le palier par la liaison pivot en N - J et le moment d inertie du solide par rapport à l ae (,z) qui est aussi l ae de rotation en m².kg. (et S) = /(et S) = / et = J.

5 J. Remarques : M / ( et) = M / ( ) + M / ( ) + M / ( ) + M / ( ) Pour un sstème de forces planes, on dispose de trois équations de projection : Fet / = 0 (projection des forces sur ) Fet / = 0 (projection des forces sur ) M / (Fet) /z = J (projection des moments sur z) Eemple : Essai sur véhicule Dans un laboratoire d essai de véhicule, on utilise un dispositif à tambour pour déterminer les vitesses et accélérations des véhicules. Les roues motrices de la voiture sont posées sur un tambour de raon R = m, longueur l =.5 m et moment d inertie J ajustable. La masse totale du véhicule est de 000kg, l essieu avant supporte, au repos une charge de 00 dan. Quelle doit être la valeur de J pour que le tambour se comporte comme le véhicule au démarrage ou au freinage (accélération tangentielle tambour a t = accélération véhicule a V. Résolution : ) Isolons la voiture : Hpothèses de départ : - a est l accélération du véhicule sur un sol horizontal et plat - P est le poids de la voiture - / et B sont les actions sur les roues - FI = -m. a est la force d inertie au démarrage. Le principe de d lembert donne : + + / m. = En projection sur l ae on obtient : / m.a = 0 ) Isolons le tambour : et = + + = M / ( et) = M / (- ) = J Remarque : Toutes les forces sauf passent par et ont donc un moment nul) On a : a = = = / où at est l accélération tangentielle de. L équation devient :. R = ( / (m.r)). J d où J = m. R²

6 --) Second cas : Le centre de gravité n'est pas situé sur l ae de rotation (et S) = m. vec at =.r = J. /(et S) t m. m. n n t r Remarques : J. a = a n + a t an = ².r at =.r En projection sur (ou ) : Fn = - m. ². r En projection sur (perpendiculaire à ) : Ft = m.. r L équation du moment en peut être remplacée par l équation du moment en : M/ (Fet) = J. avec J = J + m. r² Eemple : Vibreur à béton L appareil présenté sert à tasser le béton liquide. Les vibrations sont produites par la rotation d un arbre ecentré (ecentration = mm). Cet arbre est guidé en rotation par trois roulements (,, 5). La vitesse de rotation maimale est de t/min, la puissance d entraînement est de.5 kw et la masse de l arbre est de kg. Déterminons les actions supposées par les roulements en et B, à vitesse constante et le couple de démarrage si l accélération angulaire est de rad/s² Résolution : Isolons l ae : Détermination des actions en et B à tr/min = 0 ; at = 0 ; an = ².e ; = ( ) / 0 = 07 rad/s²* Fet = / + B/ = m. a = - Fi (Fi : Force d inertie sur l arbre) En projection sur : 0 = 0. En projection sur : / + B/ = m. an et B sont smétrique par rapport à, d où : / = B/ = (m.an) / = ( 07² 0.00) / = 90 N

7 Détermination du couple moteur C m si = rad/s² Ecrivons l équation de moment par rapport au point O M /O (Fet) = J O. = (J + m. e²). C m = (. m. R² + m. e²). = m ( + e²). C m = ( + 0,00²) =.5 C m =.5 Nm Calcul du moment d inertie J d un solide par rapport à un ae passant par son centre de gravité

Principe fondamental de la dynamique 1

Principe fondamental de la dynamique 1 Principe Fondamental de la Dynamique Principe fondamental de la dynamique 1 UN PEU D Au XVIIe siècle, Galilée énonce un principe simple: Tour corps possède une certaine inertie qui l oblige à conserver

Plus en détail

Correction exercice 1 :

Correction exercice 1 : Exercice 1 : Déterminer une hauteur Une bille est lancée verticalement vers le haut à une altitude h = 2,0 m par rapport au sol, avec une vitesse v = 10 m / s. On considère que le poids est la seule force

Plus en détail

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités Énergie cinétique et travail : activités Application 1 a. Calculer l énergie cinétique : d une voiture de masse 1, 0tonnes roulant à 90km/h d un camion de masse 30tonnes roulant à 90km/h b. Calculer la

Plus en détail

1 Définitions : Dynamique de translation : Dynamique de rotation :

1 Définitions : Dynamique de translation : Dynamique de rotation : M 2 Dynamique Bac pro - Faire l inventaire des forces agissant sur un système - Appliquer la relation fondamentale de la dynamique à un solide en translation, à un solide en rotation. - Calculer un moment

Plus en détail

Mouvement d un solide en rotation autour d un axe fixe

Mouvement d un solide en rotation autour d un axe fixe Mouvement d un solide en rotation autour d un axe fixe II. Moment cinétique scalaire d un solide en rotation autour d un axe fixe 1. Moment cinétique d un point matériel par rapport à un point On appelle

Plus en détail

Ch. V DYNAMIQUE DU SOLIDE

Ch. V DYNAMIQUE DU SOLIDE Ch. V DYNAMQUE DU SOLDE Dynamique : Etude d un mouvement en tenant compte des causes qui le produisent.. Actions mécaniques Action mécanique : toute cause (force, moment) capable de provoquer le mouvement

Plus en détail

CPGE TSI - Sciences de l Ingénieur. Énergétique

CPGE TSI - Sciences de l Ingénieur. Énergétique CPGE TSI - Sciences de l Ingénieur TSI2 Énergétique TD Réf. Programme: S4123 - Solide indéformable, approche énergétique Compétences visées: A5-05, B2-11, C2-17, C2-19, C2-20, C2-21 v1.1 Lycée Richelieu

Plus en détail

MODELISATION DES ACTIONS MECANIQUES

MODELISATION DES ACTIONS MECANIQUES MDELISATIN DES ACTINS MECANIQUES 1. INTRDUCTIN La modélisation des actions mécaniques est à la base de toute étude statique, dnamique ou de résistance des matériau. Son but est de fournir une représentation

Plus en détail

Première S Exercices supplémentaires

Première S Exercices supplémentaires remière S Eercices supplémentaires Il faut être capable des faire les eercices 1,3 (question 4 plus difficile, il faut réfléchir...) et 4 (question 3 plus difficile, somme de forces et projection de vectes)

Plus en détail

APPROCHE DESCRIPTIVE DU FONCTIONNEMENT

APPROCHE DESCRIPTIVE DU FONCTIONNEMENT Chapitre M2 APPROCHE DESCRIPTIVE DU FONCTIONNEMENT D UN VÉHICULE À ROUES PROGRAMME OFFICIEL : Notions et contenus Mouvement rectiligne uniforme d un véhicule à roues dans un référentiel galiléen en l absence

Plus en détail

THEOREME DE L'ENERGIE CINETIQUE

THEOREME DE L'ENERGIE CINETIQUE THEOREME DE L'ENERGIE CINETIQUE I MOUVEMENT DE TRANSLATION : LA CHUTE LIBRE 1 Expérience et référentiel L'origine des temps(t = 0) se situe lorsque la bille quitte l'électro-aimant et l'origine des abscisses

Plus en détail

Professeur : Mohamed lemine ould Hasnat

Professeur : Mohamed lemine ould Hasnat Énoncé de l exercice 1 On étudie le mouvement d un solide ponctuel S dans le référentiel terrestre supposé galiléen. Ce solide, de masse m, est initialement au repos en A. On le lance sur la piste ACD,

Plus en détail

Exercices de Physique

Exercices de Physique Exercices de Physique Relations fondamentales de Dynamique Rappel : 1. Si l'on pousse un corps pendant 1/2 sec avec une force de 3 Newton. Quelle impulsion avons-nous donnée? 2. Quelle accélération prendra

Plus en détail

MΔ(F ) = F d CHAPITRE 7 : «FORCES, COUPLES, MOMENTS, TRAVAUX ET ENERGIES DANS LE TRANSPORT»

MΔ(F ) = F d CHAPITRE 7 : «FORCES, COUPLES, MOMENTS, TRAVAUX ET ENERGIES DANS LE TRANSPORT» CHAPITRE 7 : «FORCES, COUPLES, MOMENTS, TRAVAUX ET ENERGIES DANS LE TRANSPORT» Introduction : Ce chapitre a pour but de relier les concepts de forces et couples de forces (causes des mouvements) appliquées

Plus en détail

1. DYNAMIQUE DU POINT MATÉRIEL

1. DYNAMIQUE DU POINT MATÉRIEL . DYNAMIQUE DU PINT MATÉRIEL.. Grandeurs cinétiques fondamentales Pour un point matériel M, de masse m, animéd une vitesse v par rapport à un référentiel R donné, on définit les grandeurs cinétiques suivantes

Plus en détail

MECANIQUE. Secondaire (S, STI, STL)

MECANIQUE. Secondaire (S, STI, STL) MECANIQUE Secondaire (S, STI, STL) Quelques définitions Cinématique : partie de la mécanique qui étudie les mouvements des solides sans se préoccuper de leurs causes, les forces. Système : constitué par

Plus en détail

MODELISATION DES ACTIONS MECANIQUES

MODELISATION DES ACTIONS MECANIQUES ODELISIO DES LIISOS E DES CIOS ECIQUES ODELISIO DES CIOS ECIQUES écanique éférence au programme S..I éférence au module - odélisation des liaisons et des actions mécaniques. - odélisations des actions

Plus en détail

Feuille d exercices n 19 : Mouvements de rotation et théorème du moment cinétique

Feuille d exercices n 19 : Mouvements de rotation et théorème du moment cinétique Feuille d exercices n 19 : Mouvements de rotation et théorème du moment cinétique Exercice 1 : Chute d un arbre : On assimile un arbre à une tige longue et homogène de longueur L et de masse m. On le scie

Plus en détail

Introduction : La statique, à quoi ça sert? 1/ Qu est ce qu une action mécanique? 2/ Représentation d une action mécanique :

Introduction : La statique, à quoi ça sert? 1/ Qu est ce qu une action mécanique? 2/ Représentation d une action mécanique : Introduction : La statique, à quoi ça sert? La statique à pour objectif l étude de l équilibre des corps. Le but final est de déterminer les efforts agissant sur un système et de définir les efforts pouvant

Plus en détail

Etude énergétique des systèmes mécaniques

Etude énergétique des systèmes mécaniques Etude énergétique des systèmes mécaniques I) TRAVAIL D UNE FORCE CONSTANTE 1) Expression du travail (rappel) 2) Travail du poids d un corps II) TRAVAIL D UNE FORCE QUELCONQUE 1) Travail élémentaire a)

Plus en détail

= df dx (x 0). Nous voyons donc que la dérivée d une fonction f en un point x 0 correspond à la pente de la tangente à f en x 0.

= df dx (x 0). Nous voyons donc que la dérivée d une fonction f en un point x 0 correspond à la pente de la tangente à f en x 0. Phsique générale I Mécanique EXERCICES Série 1 (6 7 Eercice 1.1 On considère une pierre de masse m à une hauteur h du sol, tombant sous la seule action de la gravitation. Eprimer son temps de chute T et

Plus en détail

Cours n 4 : La chute

Cours n 4 : La chute Cours n 4 : La chute 1) Le champ de pesanteur terrestre Il est possible de caractériser en tout point de l espace la capacité d attraction de la terre sur un objet par la définition de la notion de champ

Plus en détail

Statique. Modélisation des actions mécaniques

Statique. Modélisation des actions mécaniques écanique Statique Statique S Objectifs : - odéliser mathématiquement une action mécanique ; - Calculer un moment ; - Décrire une action mécanique par un torseur en un point ; - Déterminer l action mécanique

Plus en détail

Énergie cinétique : Théorème de l énergie cinétique

Énergie cinétique : Théorème de l énergie cinétique Énergie cinétique : Théorème de l énergie cinétique Exercice 18 Un mobile A de masse 100 g pouvant glisser sur une règle à coussin d air incliné d un angle α = 30 sur l horizontale est abandonné sans vitesse

Plus en détail

Travaux Pratiques de Physique Expérience n 7

Travaux Pratiques de Physique Expérience n 7 Expérience n 7 GYROSCOPE Domaine: Mécanique Lien avec le cours de Physique Générale: Cette expérience est reliée aux chapitres suivants du cours de Physique Générale: - Physique I, Chapitre 11: Mouvement

Plus en détail

3)Modélisation des actions mécaniques Une action mécanique se modélise par un vecteur force noté F

3)Modélisation des actions mécaniques Une action mécanique se modélise par un vecteur force noté F Actions mécaniques I) Notion d'actions mécaniques 1)Effets possibles Une action mécanique peut : mettre en mouvement un objet maintenir en équilibre un objet Déformer un objet 2)Classification On distingue

Plus en détail

Travail et énergie mécanique

Travail et énergie mécanique Travail et énergie mécanique Si le chapitre 5 donnait les lois de la mécanique permettant de connaître position, vitesse et accélération d un système soumis à un ensemble de forces extérieures, nous prenons

Plus en détail

MOUVEMENTS PLANS DANS UN CHAMP DE PESANTEUR OU ELECTROSTATIQUE UNIFORME

MOUVEMENTS PLANS DANS UN CHAMP DE PESANTEUR OU ELECTROSTATIQUE UNIFORME , Chapitre 6 Terminale S MOUVEMENTS PLANS DANS UN CHAMP DE PESANTEUR OU ELECTROSTATIQUE UNIFORME I - MOUVEMENTS DANS UN CHAMP DE PESANTEUR UNIFORME Considérons un solide S soumis à une impulsion initiale,

Plus en détail

Chapitre 10 : Mouvement de chute verticale d un solide

Chapitre 10 : Mouvement de chute verticale d un solide (1) (2) (3) (4) (5) (6) (7) (8) (9) Chapitre 10 : Mouvement de chute verticale d un solide Connaissances et savoir-faire exigibles : Définir un champ de pesanteur uniforme. Connaître les caractéristiques

Plus en détail

TD 4 - CI-3 : PRÉVOIR ET VÉRIFIER LES PERFOR-

TD 4 - CI-3 : PRÉVOIR ET VÉRIFIER LES PERFOR- TD 4 - CI-3 : PRÉVOIR ET VÉRIFIER LES PERFOR- MANCES DYNAMIQUES ET ÉNERGÉTIQUES DES SYSTÈMES. Exercice 1 : Dispositif de mesure d un moment d inertie Un solide (S 2 ) de révolution d axe (G, z 0 ) roule

Plus en détail

Principe Fondamental de la Dynamique

Principe Fondamental de la Dynamique Cours - PFD CPGE MP Principe Fondamental de la Dynamique Sommaire Principe Fondamental de la Dynamique Principe Fondamental de la Dynamique Référentiel Galiléen Chronologie Enoncé du PFD 4 Théorèmes générau

Plus en détail

Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie

Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie Chapitre 7 : Temps, mouvement et évolution Notions et contenus Travail d une force. Force conservative ; énergie potentielle. Forces

Plus en détail

G.P. DNS03 Septembre 2011

G.P. DNS03 Septembre 2011 DNS Sujet Secousses en mécanique...1 I.Première modélisation...2 II.Une modélisation plus réaliste...2 A.Phase de non glissement...2 B.Phase de glissement...3 Tunnel terrestre...4 I.Étude préliminaire...4

Plus en détail

DNS. Roues. Sujet. I. Roue soumise à un couple de freinage. G.P. DNS10 Décembre 2012

DNS. Roues. Sujet. I. Roue soumise à un couple de freinage. G.P. DNS10 Décembre 2012 DNS Sujet Roues...1 I.Roue soumise à un couple de freinage...1 II.Roue sur un tapis roulant incliné...2 III.Expérience de Timochenko...2 Roues I. Roue soumise à un couple de freinage 1. Rappel sur la notion

Plus en détail

Un toboggan de plage (5,5 points)

Un toboggan de plage (5,5 points) Un toboggan de plage (5,5 points) L'usage des calculatrices est autorisé. Ce sujet ne nécessite pas de feuille de papier millimétré. Un enfant glisse le long d'un toboggan de plage dans le référentiel

Plus en détail

La mécanique de Newton

La mécanique de Newton I. Comment décrire le mouvement d un solide? La mécanique de Newton Afin de décrire le mouvement d un solide, il faut : - choisir un système. - choisir un repère d espace et de temps (référentiel). - effectuer

Plus en détail

G.P. DNS Janvier 2009

G.P. DNS Janvier 2009 DNS Sujet En roue libre...1 A.Bicyclette...1 B.Circuit RL...2 C.Analogies...2 D.Cycliste en roue libre...2 E.Diode roue libre...3 F.Exercice supplémentaire...4 En roue libre A. Bicyclette Une bicyclette

Plus en détail

LE TRAVAIL : UN MODE DE TRANSFERT D ÉNERGIE

LE TRAVAIL : UN MODE DE TRANSFERT D ÉNERGIE LE TRAVAIL : UN MODE DE TRANSFERT D ÉNERGIE Commençons ce chapitre par étudier la relation qu il y a entre le travail des forces extérieures qui s exercent sur un solide et une forme d énergie : l énergie

Plus en détail

ÉPREUVE DE MÉCANIQUE

ÉPREUVE DE MÉCANIQUE BNQUE D ÉPREUVES DUT-BTS SESSIN 9 ÉPREUVE DE MÉCNIQUE CDE ÉPREUVE : BE-MÉC CLCULTRICE INTERDITE DURÉE : H3 Eercice n se propose dans cet eercice d étudier le montage de roulements présenté sur la Figure.

Plus en détail

Sciences et Technologies de l Industrie et du Développement Durable. Mécanique

Sciences et Technologies de l Industrie et du Développement Durable. Mécanique ciences et Technologies de l Industrie et du Développement Durable écanique Terminale TID atériau et tructures : Dimensionnement COU pliquer des éléments d une modélisation proposée relative au comportement

Plus en détail

Matière : Physique Classe : SG.

Matière : Physique Classe : SG. Matière : Physique Classe : SG. Premier exercice (7pts) : étude énergétique Un jouet d'enfant est formé d'un rail placé dans un plan vertical comme indique la figure ci-dessous. La partie ABC est un trajet

Plus en détail

TEST PRE-REQUIS PHYSIQUE

TEST PRE-REQUIS PHYSIQUE TEST PRE-REQUIS PHYSIQUE QUESTION 1 QUESTION 2 QUESTION 3 QUESTION 4 QUESTION 5 QUESTION 6 Une tonne équivaut à 1 10 3 g. 2 10 6 mg. 3 10 9 mg. 4 10 9 µg. 1 km/h est égal à 1 1000 m.s -1. 2 3600 m.s -1.

Plus en détail

LE SYSTÈME SOLAIRE, LA GRAVITATION UNIVERSELLE

LE SYSTÈME SOLAIRE, LA GRAVITATION UNIVERSELLE LE SYSTÈME SOLAIRE, LA GRAVITATION UNIVERSELLE I Action mécanique et modélisation 1. Notion d action mécanique Lorsqu un objet agit sur un autre objet, on parle d action mécanique. Une action mécanique

Plus en détail

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales.

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales. TP - N : LA LOI DE NEWTON But de l expérience : - Vérifier le principe fondamental de la dynamique pour un mouvement de translation uniformément accéléré. - Déterminer expérimentalement la valeur de g.

Plus en détail

PLAN DE LECON DYNAMIQUE

PLAN DE LECON DYNAMIQUE PLAN DE LECON DYNAMIQUE Objectifs spécifiques : A la fin de la séance l étudiant doit être capable de : Déterminer le torseur Dynamique d un solide en mouvement par rapport à un repère. Appliquer le principe

Plus en détail

Mécanique fondamentale

Mécanique fondamentale Chapitre 1 Mécanique fondamentale CURS Ce cours a pour objet de donner aux étudiants en PAES les outils indispensables àlaréussite de leurs concours. Nous avons donc privilégié systématiquement l aspect

Plus en détail

Circuit mobile dans un champ magnétique stationnaire

Circuit mobile dans un champ magnétique stationnaire Circuit mobile dans un champ magnétique stationnaire II. Conversion de puissance mécanique en puissance électrique 1. Retour sur les rails de Laplace ( générateur ) Les rails de Laplace vus dan des chapitres

Plus en détail

Exercices Mécanique du solide

Exercices Mécanique du solide Exercices Mécanique du solide Exo 1 Balançoire Un enfant sur une balançoire est schématisé par un pendule oscillant autour d un axe horizontal grâce à une liaison parfaite. L angle avec la verticale est

Plus en détail

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES EXERCICE 1 Dans cet eercice, les réponses attendues doivent être rédigées de façon succincte. Le modèle d'oscillateur étudié est décrit ci-contre, et les

Plus en détail

Travail et Puissance d une force

Travail et Puissance d une force Travail et Puissance d une force Exercice 1 On pousse une caisse de poids P = 400 N, de A vers D, selon le trajet ABCD (voir figure ci-contre). Le parcours horizontal CD a pour longueur l = 4 La caisse

Plus en détail

Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155)

Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155) PARTIE 2 - COMPRENDRE : LOIS ET MODÈLES Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155) Compétences exigibles : Connaître et exploiter les trois lois de Newton ; les mettre en

Plus en détail

3. La Cinétique. La cinétique s intéresse de rechercher les causes / les raisons du mouvement. Pourquoi un objet immobile commence-t-il à se mouvoir?

3. La Cinétique. La cinétique s intéresse de rechercher les causes / les raisons du mouvement. Pourquoi un objet immobile commence-t-il à se mouvoir? 3. La Cinétique La cinétique s intéresse de rechercher les causes / les raisons du mouvement. Pourquoi un objet immobile commence-t-il à se mouvoir? Qu est-ce qui amène un corps à accélérer ou ralentir?

Plus en détail

B TRAVAUX DIRIGES I - RESISTANCE DE L AIR CAS LINEAIRE

B TRAVAUX DIRIGES I - RESISTANCE DE L AIR CAS LINEAIRE MECANIQUE : TD n A APPLICATIONS DU COURS 1 ) On suppose que le champ de pesanteur g=-ge z est uniforme et que les autres forces sont négligés. Un projectile est lancé à la date t= depuis le point O (point

Plus en détail

I. TORSEUR CINETIQUE : Définition :... 15

I. TORSEUR CINETIQUE : Définition :... 15 Dynamique des olides - hapitre hap. : INTIQU L objectif de ce chapitre est l établissement et l étude des relations mettant en jeu les grandeurs cinématiques associées à la masse. I. TOU INTIQU :.... Définition

Plus en détail

Mécanique MPSI PCSI : synthèse

Mécanique MPSI PCSI : synthèse Objectifs de cette synthèse : Restructurer les connaissances acquises, Remémorer les méthodes classiques, Redéfinir les outils nécessaires au cours de dynamique. Remarque : ceci n est pas un cours! Il

Plus en détail

La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation.

La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation. Terminale S Chapitre 12 Les systèmes mécaniques oscillants. Lycée J-B Schwilgué - SELESTAT I. Exemples de systèmes oscillants. 1. L oscillateur. On appelle oscillateur (ou système oscillant) un système

Plus en détail

LES ANNEAUX DE VITESSE

LES ANNEAUX DE VITESSE LES ANNEAUX DE VITESSE Les anneaux de vitesse sont des pistes circulaires destinées aux essais à grande vitesse. Pour le physicien, c est l occasion d étudier les lois du mouvement et de la vitesse, ainsi

Plus en détail

EXERCICES : DYNAMIQUE. Dyn.R1. Une force de 220 N communique à un corps une accélération de 14 m/s 2. Calculez sa masse. 157.

EXERCICES : DYNAMIQUE. Dyn.R1. Une force de 220 N communique à un corps une accélération de 14 m/s 2. Calculez sa masse. 157. EXERCICES : DYNAMIQUE 1. Exercices résolus Dyn.R1. Une force de 220 N communique à un corps une accélération de 14 m/s 2. Calculez sa masse. Première équation fondamentale F ma m F 220 a 14 157. kg Dyn.R2.

Plus en détail

GRUE PORTUAIRE Résumé de correction Présentation

GRUE PORTUAIRE Résumé de correction Présentation Date : Nom Prénom : GRUE PORTUAIRE Résumé de correction Présentation La plupart des grues portuaires poursuivent le même but : limiter et éviter le levage des charges L'objectif, une fois la charge sortie

Plus en détail

B. Théorème de l énergie cinétique, énergie potentielle.

B. Théorème de l énergie cinétique, énergie potentielle. Mouvement du centre de masse A. Théorème de la résultante cinétique. Le théorème de la résultante cinétique (ou théorème du centre d inertie) donne un intérêt tout particulier à la mécanique du point.

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. -Section Audioprothésiste- prépa intensive

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. -Section Audioprothésiste- prépa intensive POLY-PREPAS Centre de Préparation aux Concours Paramédicaux -Section Audioprothésiste- prépa intensive 1 Chapitre 1 : Cinématique - Vitesses I. Vecteur-vitesse d un point d un solide : a) Vitesse linéaire

Plus en détail

TS Physique Mécanique du vol d un ballon sonde Exercice résolu

TS Physique Mécanique du vol d un ballon sonde Exercice résolu P a g e 1 TS Physique Exercice résolu Enoncé Un ballon sonde, en caoutchouc mince très élastique, est gonflé à l hélium. Une nacelle, attachée sous le ballon, emporte du matériel scientifique afin d étudier

Plus en détail

Chapitre 9. La roue. Figure 9.1 Une roue de vélo haute performance (source Campagnolo.com).

Chapitre 9. La roue. Figure 9.1 Une roue de vélo haute performance (source Campagnolo.com). Chapitre 9 La roue La roue est une invention très ancienne et sans aucun doute un des mécanismes les plus importants. Parce qu elle permet de réduire la friction dans le déplacement de charges, elle est

Plus en détail

Chapitre 2 : Introduction à la mécanique du point

Chapitre 2 : Introduction à la mécanique du point UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE U.F.R. de Mathématiques Pures et Appliquées Département de Mécanique Chapitre 2 : Introduction à la mécanique du point Introduction : la mécanique classique

Plus en détail

TP : Lois de Newton dans un champ de pesanteur uniforme

TP : Lois de Newton dans un champ de pesanteur uniforme TP : Lois de Newton dans un champ de pesanteur uniforme Connaissances préalables : Le champ de pesanteur est défini par l espace à proximité d une masse importante (comme celle de la Terre) ; il apparaît

Plus en détail

CHAPITRE III : CINEMATIQUE

CHAPITRE III : CINEMATIQUE CHAPITRE III : CINEMATIQUE A- Généralités : La cinématique étudie le mouvement des corps indépendamment des forces qui les produisent. Elle permet de définir la géométrie et les dimensions des composants,

Plus en détail

SOMMAIRE. Chapitre correspondant dans le livre

SOMMAIRE. Chapitre correspondant dans le livre Devoir commun EXERCICES DE RÉVISIONS PARTIE PHYSIQUE 1S SOMMAIRE tableau de synthèse des révisions exercices supplémentaires corrigés des exercices supplémentaires TABLEAU DE SYNTHÈSE Chapitre du cours

Plus en détail

Travail et puissance d'une force

Travail et puissance d'une force Travail et puissance d'une force Exercice 1 Une grue met 18s pour soulever une charge de masse m=500kg sur une hauteur h=0m. La charge est animée d'un mouvement rectiligne uniforme. 1. Déterminer la valeur

Plus en détail

MODELISATION DES ACTIONS MECANIQUES

MODELISATION DES ACTIONS MECANIQUES ODELISTION DES CTIONS ECNIQUES I. CTION ECNIQUE. Définition : On appelle action mécanique tout phénomène susceptible de déplacer ou de déformer un solide. Principe des actions réciproques : Toute action

Plus en détail

Cinématique des solides

Cinématique des solides Cinématique des solides 1- Positions Définir une position n a un sens que si l on précise par rapport à quoi se réfère cette position. Le référent est un repère ou un solide. Pour définir une position

Plus en détail

Chapitre 9 : Les forces

Chapitre 9 : Les forces Chapitre 9 : Les forces 1. Les actions mécaniques 1.1. Définition En mécanique, lorsqu un objet agit sur un autre objet, on parle d action mécanique. L objet qui agit est appelé le donneur, celui qui reçoit

Plus en détail

Dans un référentiel choisi, un solide est en mouvement de translation s il conserve la même orientation au cours du mouvement.

Dans un référentiel choisi, un solide est en mouvement de translation s il conserve la même orientation au cours du mouvement. NOM : Prénom : M6. Rotation d un solide On limitera notre étude à la rotation autour d un axe fixe. L étude du mouvement d un solide, lorsqu il n est plus ponctuel, ne peut plus se limiter à l application

Plus en détail

FORCES ET EFFETS DES FORCES I- INTERACTIONS MÉCANIQUES ET ACTIONS MÉCANIQUES

FORCES ET EFFETS DES FORCES I- INTERACTIONS MÉCANIQUES ET ACTIONS MÉCANIQUES Dans ce chapitre, nous allons étudier quelques exemples de forces ainsi que leurs effets produits sur un système. FORCES ET EFFETS DES FORCES I- INTERACTIONS MÉCANIQUES ET ACTIONS MÉCANIQUES Avant de faire

Plus en détail

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1 TD ELECTROTECHNIQUE 1 ère année Module MC2-2 V. Chollet - TD-Trotech07-28/08/2006 page 1 IUT BELFORT MONTBELIARD Dpt Mesures Physiques TD ELECTROTECHNIQUE n 1 Avec l aide du cours, faire une fiche faisant

Plus en détail

Travail - Puissance. Travail moteur, travail résistant

Travail - Puissance. Travail moteur, travail résistant Travail - Puissance -Travail : Le «travail» est la grandeur l action d une force qui déplace son point d application. Travail moteur, travail résistant travail résistant travail moteur si la force favorise

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Energie cinétique et théorème de l énergie cinétique (cours) 1. Donner la définition de l énergie cinétique d un

Plus en détail

Travail et puissance d une force

Travail et puissance d une force Travail et puissance d une force Exercice 1 : Un morceau de savon de masse m = 200g glisse sans frottement sur un plan incliné d un angle de 30 par rapport à l horizontale. Donnée : g = 9,8N. kg 1 1- Quelles

Plus en détail

Lycée de Kounoune TS Retrouver la série Page 1

Lycée de Kounoune TS Retrouver la série  Page 1 Lycée de Kounoune Série d exercices classe de Tle S2 2015/2016: prof : M.Diagne P2 : Applications des bases de la dynamique email : diagnensis@yahoo.fr EXERCICE 1 Sur un banc à coussin d'air, on étudie

Plus en détail

Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur

Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur Principes de la démarche scientifique Cadre d étude de la physique Définition des mécaniques

Plus en détail

APPLICATION DES LOIS DE NEWTON

APPLICATION DES LOIS DE NEWTON APPLICATION DES LOIS DE NEWTON Objectifs : - Mettre en œuvre une démarche expérimentale pour étudier un mouvement. - Modéliser/retrouver l équation horaire paramétrique et l équation de la trajectoire

Plus en détail

Devoir n 3 de sciences physiques (2 heures)

Devoir n 3 de sciences physiques (2 heures) Lycée de Bambey erminale Sa Année: 7/8 Devoir n 3 de sciences physiques ( heures) 1 Exercice 1: Réaction entre un acide fort et une base forte (8 points) Les parties I et II sont indépendantes. Partie

Plus en détail

Chapitre 2. Le plan incliné

Chapitre 2. Le plan incliné Chapitre 2 Le plan incliné Lorsqu un corps glisse le long d un plan incliné, il n est pas en chute libre. Ce corps est contraint de se déplacer le long du plan. Le corps ne chute donc plus verticalement,

Plus en détail

Mécanique des solides

Mécanique des solides Mécanique des solides Equilibre d un solide soumis à 2 forces Auteur : Mme RASOLOARIMANA Vololoniarivo, professeur de sciences physiques au collège RASALAMA- Antananarivo Remarque : les lettres en caractère

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Questions de cours 1. Rappeler la définition du travail et de la puissance d une force. Citer des cas de nullité

Plus en détail

Chap 1 : La mécanique de Newton.

Chap 1 : La mécanique de Newton. Physique. Partie 4 : Evolution temporelle des systèmes mécaniques. Chap 1 : La mécanique de Newton. I ) Force et variation de vitesse : 1) Introduction : Quelle est la résultante des forces agissant sur

Plus en détail

EXAMEN #3. PHYSIQUE MÉCANIQUE 40% de la note finale. Nom : Hiver Chaque question à choix multiples vaut 2 points

EXAMEN #3. PHYSIQUE MÉCANIQUE 40% de la note finale. Nom : Hiver Chaque question à choix multiples vaut 2 points EXAMEN #3 PHYSIQUE MÉCANIQUE 40% de la note finale Hiver 2013 Nom : Chaque question à choix multiples vaut 2 points 1. Les trois graphiques suivants montrent la force exercée sur trois particules identiques.

Plus en détail

DYNAMIQUE. Devoir 1- Etude du système de freinage d un véhicule avec ABS adapté du sujet CCP de 1998

DYNAMIQUE. Devoir 1- Etude du système de freinage d un véhicule avec ABS adapté du sujet CCP de 1998 DYNAMIQUE Le sujet est composé de deux parties : la première partie est constituée de la partie étude mécanique du sujet CCP MP 1998 sur le système de freinage par ABS ( à traiter en 1h15 maxi). La seconde

Plus en détail

Exercices et Problèmes de renforcement en Mécanique

Exercices et Problèmes de renforcement en Mécanique Exercices et Problèmes de renforcement en Mécanique I Un ressort de raideur k = 9 N/m et de longueur à vide L = 4 cm, fixé par une de ces deux extrémités en un point O, d un plan, incliné de 3 sur l horizontal,

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION Portes automatisées RECORD E TSA16

BACCALAURÉAT TECHNOLOGIQUE SESSION Portes automatisées RECORD E TSA16 BACCALAURÉAT TECHNOLOGIQUE SÉRIE SCIENCES ET TECHNIQUES INDUSTRIELLES GÉNIE ÉLECTROTECHNIQUE SESSION 2010 ÉPREUVE : ÉTUDE DES CONSTRUCTIONS Durée : 4 heures Coefficient : 6 Portes automatisées RECORD E

Plus en détail

Corrigés des exercices

Corrigés des exercices Il est intéressant d insister sur la définition du vecteur accélération pour enlever l idée qu un système accélère uniquement lors de variations de la valeur de son vecteur vitesse 4 Comment énoncer la

Plus en détail

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son Physique TC 1 Correction 1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son centre. 2. Proposer une expression

Plus en détail

On étudie le mouvement de la balle dans le référentiel du laboratoire.

On étudie le mouvement de la balle dans le référentiel du laboratoire. On étudie le mouvement de la balle dans le référentiel du laboratoire. Description Lancé Montée Descente Réception Au départ la balle est immobile dans la main. Juste avant de quitter celle-ci elle a une

Plus en détail

Chapitre 7 : Energie mécanique d un système

Chapitre 7 : Energie mécanique d un système e B et C 7 Energie mécanique d un système 66 Le mot «énergie» est utilisé couramment, mais sauriez-vous le définir avec précision? Parmi toutes les formes d énergie, l énergie mécanique occupe une importance

Plus en détail

Kaplas : des chutes édifiantes

Kaplas : des chutes édifiantes Kaplas : des chutes édifiantes Auteurs : COUZIER Juliette - GOURRIN Arthur COUSTURIAN Louis Encadrés par : Monsieur Ducassou et Monsieur Torrens Lycée Bertran de Born, Périgueux ANNEXES 1. COEFFICIENT

Plus en détail

L'oscillateur "pendule simple"

L'oscillateur pendule simple Outils du physicien Outils du logiciel Notions de physique Les Outils du Physicien Aide du logiciel IP Notions de Physique L'oscillateur "pendule simple" L'objectif de cette étude est la détermination

Plus en détail

L O I D E N E W T O N : D Y N A M I Q U E D U P O I N T M A T E R I E L D A N S U N R E F E R E N T I E L G A L I L E E N

L O I D E N E W T O N : D Y N A M I Q U E D U P O I N T M A T E R I E L D A N S U N R E F E R E N T I E L G A L I L E E N MECANIQUE Lycée F.BUISSON PTSI L O I D E N E W T O N : D Y N A M I Q U E D U P O I N T M A T E R I E L D A N S U N R E F E R E N T I E L G A L I L E E N Après avoir étudié la cinématique qui s intéresse

Plus en détail

Mécanique du solide - Chapitre 1 : Décrire et caractériser le mouvement d un solide

Mécanique du solide - Chapitre 1 : Décrire et caractériser le mouvement d un solide Mécanique du solide - Chapitre 1 : Décrire et caractériser le mouvement d un solide Problématique : Quelles sont les grandeurs cinématiques et cinétiques associées à un solide en mouvement? Comment les

Plus en détail

Comprendre-cours 3 TS - programme Travail et énergie

Comprendre-cours 3 TS - programme Travail et énergie Comprendrecours 3 TS programme 2012 Introduction : Travail et énergie L énergétique est la partie de la mécanique qui étudie les travaux et les puissances mises en oeuvres dans les déplacements des solides.

Plus en détail

Le solide au repos Équilibre du solide

Le solide au repos Équilibre du solide MÉCANQUE chapitre 2 Le solide au repos Équilibre du solide La statique est l étude des interactions agissant sur un système au repos, c est-à-dire qui n est animé d aucun mouvement dans le réérentiel de

Plus en détail

TEMPS, MOUVEMENT ET EVOLUTION 3 CHAPITRE 6 - APPLICATION LOIS DE NEWTON ET KEPLER MOUVEMENT DANS UN CHAMP DE PESANTEUR

TEMPS, MOUVEMENT ET EVOLUTION 3 CHAPITRE 6 - APPLICATION LOIS DE NEWTON ET KEPLER MOUVEMENT DANS UN CHAMP DE PESANTEUR TEMPS, MOUVEMENT ET EVOLUTION 3 CHAPITRE 6 - APPLICATION LOIS DE NEWTON ET KEPLER MOUVEMENT DANS UN CHAMP DE PESANTEUR Partie B: Le saut de la grenouille 1. Exploitation du document V 9 G 9 V G 11 V 11

Plus en détail