Cours de Troisième / Probabilités. E. Dostal

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Cours de Troisième / Probabilités. E. Dostal"

Transcription

1 Cours de Troisième / Probabilités E. Dostal Janvier 2015

2 Table des matières 8 Probabilités Introduction Probabilités Événement et probabilité Expérience aléatoire à deux épreuves Expérience aléatoire à deux épreuves

3 Chapitre 8 Probabilités 8.1 Introduction On lance un dé à 6 faces bien équilibré et on note le résultat obtenu. Quelles sont les différentes possibilités? Quelle chance a-t-on d obtenir les différents résultats? Définition 1 une expérience est aléatoire lorsque son résultat est déterminé par le hasard et ne peut donc pas être prévu à l avance avec certitude. Définition 2 les différents résultats d une expérience aléatoire sont appelés les issues possibles. On lance maintenant, trois dés à 6 faces bien équilibrés et on note la somme obtenue en additionnant les trois résultats de chaque dé. Quelles sont les différentes issues possibles? Quelle chance a-t-on d obtenir les différents résultats? Il est plus difficile de répondre à cette question pour cette deuxième expérience aléatoire (nous étudierons cette expérience au cours d une activité utilisant un tableur) Histoire : Galilée ( ) est surtout connu pour ses travaux en astronomie, faisant suite à son invention de la lunette astronomique. Cependant, il rédigea vers 1620 un petit mémoire sur les jeux de dés pour répondre à une demande du Duc de Toscane (Galilée est alors Premier Mathématicien de l Université de Pise et Premier Philosophe du Grand Duc à Florence). Le Duc de Toscane, qui avait sans doute observé un grand nombre de parties de ce jeu, avait constaté que la somme 10 était obtenue légèrement plus souvent que la somme 9. Le paradoxe, que le Duc avait exposé à Galilée, réside dans le fait qu il y a autant de façons d?écrire 10 que 9 comme sommes de trois entiers compris entre 1 et 6. 2

4 E. Dostal CHAPITRE 8. PROBABILITÉS 8.2 Probabilités Si l on considère une expérience aléatoire, on peut donc associer à chaque issue une chance d être réalisée sous forme d un nombre (exemple : 1 chance sur 6 ou 50% de chance). C est ce nombre que nous appellerons probabilité Définition 3 Pour une expérience aléatoire : la probabilité d une issue est un nombre compris entre 0 et 1 la somme des probabilités de toutes les issues possibles d une expérience aléatoire vaut exactement 1. Remarque : un nombre entre 0 et 1 peut être écrit comme un pourcentage. une expérience aléatoire est dite équiprobable si toutes les issues ont la même probabilité de se réaliser. l expérience aléatoire du lancer de dé bien équilibré est équiprobable. Chaque face à la même probabilité d apparaitre, à savoir : 1 6. Il en va de même pour Pile ou Face et d autres. l arbre des possibles permet de représenter graphiquement les différentes issues d une expérience aléatoire. Pour cela on trace une branche par issue. On peut alors pondérer cet arbre en indiquant la probabilité de chaque issue sur la branche correspondante. Exemple 1 : Une expérience aléatoire consiste à faire tourner une roue partagée en six secteurs et à noter le numéro du secteur sur lequel elle s immobilise. La roue étant bien équilibré, on associe à chaque issue une probabilité proportionnelle à l angle du secteur angulaire correspondant. Représenter l arbre des possibles de cette expérience, en indiquant les probabilités de chaque branche. 3

5 E. Dostal CHAPITRE 8. PROBABILITÉS 8.3 Événement et probabilité Définition 4 Un évènement est constitué d une ou plusieurs issues d une expérience aléatoire. Dans le jeu de la roue précédent, on gagne si on obtient un nombre pair, on perd dans les autres cas. Exprimer cela sous forme d événements probabilistes, puis calculer la probabilité de chaque événement Proposition 1 la probabilité d un événement est la somme des probabilités des issues qui le compose la probabilité d un événement est toujours comprise entre 0 et 1 Exemple 2 : considérons un jeu de cartes classique. Il est composé de : 4 couleurs (coeur, carreau, trèfle et pique) 8 cartes par couleur (As, R, D, V, 10, 9, 8 et 7) On a l expérience aléatoire suivante : tirer une carte au hasard. Il y a issues différentes : chacune des cartes est différente (1 valeur + 1 couleur). On a alors des événements, par exemple : P, l événement tirer un pique, dont la probabilité est p(p ) = A, l événement tirer un As, dont la probabilité est p(a) = Événements particuliers un événement est impossible s il ne peut se produire. Sa probabilité vaut 0. un événement est certain s il se produit nécessairement. Sa probabilité vaut 1. l événement tirer un 4 est impossible et l événement tirer un coeur, un carreau, un pique ou un trèfle est certain. un événement contraire d un événement A, est celui qui se réalise lorsque A ne se réalise pas. On le note non A ou A. Proposition 2 la somme des probabilités d un événement A et de son événement contraire A est égale à 1 : p(a) + p ( A ) = 1 On en déduit une expression pour calculer p ( A ) ( en enlevant p(a) à chaque membre de l égalité) : p ( A ) = 1 p(a) l événement contraire de P (tirer un pique) est l événement P ne pas tirer de pique (sous forme de négation de P ) ou tirer un carreau, un coeur ou un trèfle. La probabilité de P est p ( P ) = 1 p(p ) = 1 8 = 24 On peut aussi calculer cela en faisant : p ( P ) = p( tirer un coeur ) + p( tirer un carreau ) + p( tirer un trèfle ) = = 24 4

6 E. Dostal CHAPITRE 8. PROBABILITÉS deux événements sont incompatibles s ils ne peuvent pas se produire en même temps. Proposition 3 si deux événements sont incompatibles, la probabilité que l un ou l autre se réalise est égale à la somme de leur probabilités. Contre-exemple : quelle est le probabilité de l événement P et A ( tirer un pique et un As ) c està-dire tirer un As de Pique? p(p et A) = 1 Quelle est le probabilité de l événement P ou A ( tirer un pique ou un As )? On sait que p(p ) = et que p(a) =, on se dit donc que p(p ou A) =. Mais ceci est faux. Il y a l As de pique que l on compte deux fois (une fois comme pique une fois comme As). La probabilité n est donc que de 11. Cela est dût au fait que les événements P et A ne sont pas incompatible (il y a une carte qui est à la fois un pique et un As). les événements A et R tirer un roi, sont incompatibles (aucune carte n est un Roi et As en même temps). Donc la probabilité de A ou R est : p(a ou R) = p(a) + p(r) = = Expérience aléatoire à deux épreuves Définition 5 une expérience aléatoire est à 2 épreuves, si elle est constituée de deux épreuves indépendantes successives. Exemple 3 : On lance une pièce parfaitement équilibrée, on note le côté obtenu (Pile ou Face), puis on lance un dé octaédrique bien équilibré portant sur chacune de ses faces un chiffre entre 1 et 8, on note le chiffre ainsi obtenu. 1. Représenter l arbre des possibles de cette expérience aléatoire. 2. Quelle est la probabilté d obtenir Pile et un nombre supérieur ou égal à 6? Proposition 4 la probabilité d une issue d une expérience aléatoire à 2 épreuves est égale au produit des probabilités figurant sur la branche de l arbre conduisant à ce résultat. 5

LES PROBABILITES. 1) Expérience aléatoire: Une expérience est dite aléatoire lorsqu on ne peut pas prévoir avec certitude le résultat.

LES PROBABILITES. 1) Expérience aléatoire: Une expérience est dite aléatoire lorsqu on ne peut pas prévoir avec certitude le résultat. LES PROBABILITES I) Définitions : 1) Expérience aléatoire: Une expérience est dite aléatoire lorsqu on ne peut pas prévoir avec certitude le résultat. Exemple : On lance une pièce de 1 et on observe le

Plus en détail

Probabilités. Denis Vekemans

Probabilités. Denis Vekemans Probabilités Denis Vekemans Vocabulaire Une expérience aléatoire vérifie trois conditions : elle est reproductible dans les mêmes conditions ; on en connaît tous les résultats possibles ; on ne sait pas

Plus en détail

Probabilités. Denis Vekemans

Probabilités. Denis Vekemans Probabilités Denis Vekemans 1 Vocabulaire Une expérience aléatoire vérifie trois conditions : elle est reproductible dans les mêmes conditions ; on connaît tous ces résultats possibles ; on ne sait pas

Plus en détail

probabilité expérience 1 expérience 2 expérience 3 «je lance un dé non truqué» On regarde ensuite le nombre de points sur la face supérieure

probabilité expérience 1 expérience 2 expérience 3 «je lance un dé non truqué» On regarde ensuite le nombre de points sur la face supérieure probabilité Des phénomènes, des situations ou plus généralement des expériences permettent de s intéresser à la probabilité. Quelles chances ai-je d obtenir tel ou tel résultat? Peut on calculer un taux

Plus en détail

PROBABILITES. Définition 1: Une expérience dont on ne peut pas prévoir de façon certaine le résultat, ou l issue, s appelle une expérience aléatoire.

PROBABILITES. Définition 1: Une expérience dont on ne peut pas prévoir de façon certaine le résultat, ou l issue, s appelle une expérience aléatoire. PROBABILITES I Vocabulaire Définition 1: Une expérience dont on ne peut pas prévoir de façon certaine le résultat, ou l issue, s appelle une expérience aléatoire. «On lance un dé et on regarde le résultat.»

Plus en détail

Chapitre 15 : Probabilités.

Chapitre 15 : Probabilités. Chapitre 15 : Probabilités. On réalise les trois expériences suivantes. On lance une pièce de monnaie équilibrée et on regarde sa face supérieure. On lance un dé à 6 faces équilibré et on regarde le nombre

Plus en détail

Seconde Probabilités Année scolaire 2013/2014. Une introduction aux probabilités a été faite en classe de troisième.

Seconde Probabilités Année scolaire 2013/2014. Une introduction aux probabilités a été faite en classe de troisième. Seconde Probabilités Année scolaire 2013/2014 Une introduction aux probabilités a été faite en classe de troisième. I) Définitions : 1) Expérience aléatoire : Il s'agit d'une expérience dont le résultat

Plus en détail

PROBABILITÉS. Objectifs : Comprendre et utiliser des notions élémentaires de probabilité. Calculer des probabilités dans des contextes familiers.

PROBABILITÉS. Objectifs : Comprendre et utiliser des notions élémentaires de probabilité. Calculer des probabilités dans des contextes familiers. PROBABILITÉS Objectifs : Comprendre et utiliser des notions élémentaires de probabilité. Calculer des probabilités dans des contextes familiers.. Expérience aléatoire ) Exemples On lance une pièce de monnaie

Plus en détail

STATISTIQUE. somme des produits des nombres de la serie par leur coefficients effectif total de la série

STATISTIQUE. somme des produits des nombres de la serie par leur coefficients effectif total de la série STATISTIQUE ) - Vocabulaire La statistique étudie certaines caractéristiques ou variables d'un ensemble fini appelé population. Les éléments de cette population étudiée sont des individus. 2 ) Moyenne

Plus en détail

4.1 Distribution de fréquences. Loi de probabilité

4.1 Distribution de fréquences. Loi de probabilité Chapitre 4 Probabilités conditionnelles 4.1 Distribution de fréquences. Loi de probabilité 4.1.1 Introduction. Premières définitions Vocabulaire L objet d une étude d un phénomène aléatoire est appelé

Plus en détail

Probabilité. Chapitre 1 : Notion de probabilité

Probabilité. Chapitre 1 : Notion de probabilité Probabilité Chapitre : Notion de probabilité / Issues, événements : Une expérience est dite aléatoire loesqu elle a plusieurs résultats ou issues possibles et que l on ne peut pas prévoir avec certitude

Plus en détail

Chapitre III : Probabilités discrètes

Chapitre III : Probabilités discrètes Chapitre III : Probabilités discrètes Extrait du programme : I. Rappels a. Définitions Prop 1 : Une probabilité est toujours comprise entre 0 et 1. Prop 2 Si A est l événement certain, p(a) = 1. Si A est

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Exercice. On lance un dé truqué dont les faces sont numérotées de à 6. La loi de probabilité est donnée par le tableau : Eventualité 2 4 5 6 Probabilité 2 a 4 2 2. Déterminer a

Plus en détail

Chiffre Probabilité

Chiffre Probabilité Exercice - Révisions () PREMIÈRE S - EXERCICES CHAP. 6 : PROBABILITÉS () FICHE Exercice - Révisions () On fait tourner une roue de loterie. La flèche indique le chiffre sur lequel elle s arrête au hasard.

Plus en détail

Probabilités et variables aléatoires

Probabilités et variables aléatoires robabilités et variables aléatoires Table des matières I) robabilités 1 a) robabilité d un événement.................................. 1 b) Événements élémentaires équiprobables..........................

Plus en détail

On lance un dé à six faces et on regarde le nombre inscrit sur sa face supérieure. Citer les issues de cette expérience.

On lance un dé à six faces et on regarde le nombre inscrit sur sa face supérieure. Citer les issues de cette expérience. Exercice p 0, n : On lance un dé à six faces et on regarde le nombre inscrit sur sa face supérieure. Citer les issues de cette expérience. Cette expérience admet issues : «le nombre inscrit est»,,,, «5»,.

Plus en détail

Probabilités. maths-cfm.fr

Probabilités. maths-cfm.fr 3e Table des matières 1 I. Vocabulaire 2 3 4 5 I. Vocabulaire Définitions et exemples Une expérience est dite aléatoire lorsqu on ne peut pas en prévoir avec certitude le résultat. On appelle issue d une

Plus en détail

Chapitre VIII : Variable aléatoire et loi de probabilité Extrait du programme :

Chapitre VIII : Variable aléatoire et loi de probabilité Extrait du programme : Chapitre VIII : Variable aléatoire et loi de probabilité Extrait du programme : I. Vocabulaire et propriétés des probabilités 1. Vocabulaire sur les événements Vocabulaire Définition Exemples Expérience

Plus en détail

EXERCICES : PROBABILITES

EXERCICES : PROBABILITES EXERCICES : PROBABILITES Exercice 1 On considère une expérience aléatoire dont l univers est : E={ 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10}. On s intéresse aux événements : A ="on a une issue multiple de

Plus en détail

1 ère S Exercices sur les probabilités

1 ère S Exercices sur les probabilités ère S Exercices sur les probabilités On donne dans le tableau ci-dessous les probabilités d apparition de chacune des s d un dé truqué. Face N 4 6 Probabilité d apparition 0, 0, 0, 0, 0, 0, Ce tableau

Plus en détail

Exercices de probabilités

Exercices de probabilités Exercices de probabilités Exercice 1 On écrit sur les faces d un dé cubique les lettres du mot oiseau. On lance le dé et on regarde la lettre inscrite sur sa face supérieure. 1. Donner l ensemble des issues

Plus en détail

PROBABILITES 2 : Répétition d'expériences identiques et indépendantes.

PROBABILITES 2 : Répétition d'expériences identiques et indépendantes. PROBABILITES 2 : Répétition d'expériences identiques et indépendantes. 1) Représentation par un arbre d'une répétition d'expériences identiques et indépendantes Dans le cas d'une répétition d'expériences

Plus en détail

Probabilités. On lance une pièce de monnaie. On recommence l'expérience. Voici les résultats obtenus par des élèves de 3A, 3B et 3D :

Probabilités. On lance une pièce de monnaie. On recommence l'expérience. Voici les résultats obtenus par des élèves de 3A, 3B et 3D : Probabilités Exemple des pièces On lance une pièce de monnaie. On recommence l'expérience. Voici les résultats obtenus par des élèves de 3A, 3B et 3D : Nombre de piles 3807 faces 3752 Définitions On appelle

Plus en détail

Calculer la probabilité d un événement

Calculer la probabilité d un événement THEME : CORRIGE DES EXERCICES PROBABILITES Calculer la probabilité d un événement Exercice n : Un sachet contient bonbons à la menthe, à l orange et 5 au citron. On tire, au hasard, un bonbon du sachet

Plus en détail

I. Vocabulaire des probabilités.(rappels)

I. Vocabulaire des probabilités.(rappels) Probabilités conditionnelles I. Vocabulaire des probabilités.(rappels) ) Expérience aléatoire. Eventualité On lance un dé ou une pièce de monnaie, on tire une carte dans un jeu Seul le hasard intervient.

Plus en détail

1 Probabilités-Rappel

1 Probabilités-Rappel Chapitre Probabilités sur un ensemble fini-variable aléatoire 1 Probabilités-Rappel On lance un dé non truqué à six faces numérotées de 1 à 6 et on note le nombre figurant sur la face supérieure du dé.

Plus en détail

Probabilités. Chacun des résultats possibles d une expérience est une issue de l expérience.

Probabilités. Chacun des résultats possibles d une expérience est une issue de l expérience. Probabilités I) Vocabulaire et probabilités 1) Issues Chacun des résultats possibles d une expérience est une issue de l expérience. 2) Evènements Un évènement est une condition qui peut être, ou ne pas

Plus en détail

Probabilités. Ex : On lance un dé cubique dont les faces sont numérotées 1, 2, 3, 4, 5, 6 et on note le numéro porté par la face supérieure.

Probabilités. Ex : On lance un dé cubique dont les faces sont numérotées 1, 2, 3, 4, 5, 6 et on note le numéro porté par la face supérieure. Probabilités I) xpériences aléatoires et évènements : définition : Une expérience aléatoire est une expérience ayant plusieurs issues (ou résultats) dont on ne peut pas prévoir ni calculer de façon certaine

Plus en détail

Probabilités. LPO de Chirongui. Cours de terminale S. Probabilités. Conditionnement et indépendance. Probabilité conditionnelle

Probabilités. LPO de Chirongui. Cours de terminale S. Probabilités. Conditionnement et indépendance. Probabilité conditionnelle LPO de Chirongui 1 - - d une intersection Représentation par un arbre pondéré Soit P une probabilité sur un univers Ω et soit A un événement de probabilité non nulle. Pour tout événement B, on appelle

Plus en détail

Chapitre M5 Statistique et probabilités 6 PROBABILITES 3

Chapitre M5 Statistique et probabilités 6 PROBABILITES 3 TBP Chapitre M5(SP6) Page 1/9 Chapitre M5 Statistique et probabilités 6 PROBABILITES 3 Capacités Passer du langage probabiliste d un événement au langage courant et réciproquement Calculer la probabilité

Plus en détail

Probabilités Conditionnement et indépendance

Probabilités Conditionnement et indépendance Probabilités Conditionnement et indépendance 1 Probabilité conditionnelle 1.1 éfinition Soit P une probabilité sur un univers Ω et soit A un événement de probabilité non nulle. Pour tout événement, on

Plus en détail

Probabilités conditionnelles et indépendance

Probabilités conditionnelles et indépendance Probabilités conditionnelles et indépendance I) Conditionnement par un événement 1) Probabilité de B sachant A a) Définition On considère un univers U d une expérience aléatoire et P une loi de probabilité

Plus en détail

Exercices supplémentaires : Probabilités

Exercices supplémentaires : Probabilités Exercices supplémentaires : Probabilités Partie A : Probabilités simples et variables aléatoires On lance trois dés : un rouge, un bleu et un vert. On écrit un nombre de trois chiffres : le chiffre des

Plus en détail

- Déterminer la probabilité d événements dans des situations d équiprobabilité. - Utiliser des modèles définis à partir de fréquences observées.

- Déterminer la probabilité d événements dans des situations d équiprobabilité. - Utiliser des modèles définis à partir de fréquences observées. NOTION de PROBABILITE en classe de TROISIEME L'introduction du programme de 3 ème rappelle que : «c est pour permettre au citoyen d aborder l incertitude et le hasard dans une perspective rationnelle que

Plus en détail

PROBABILITES CONDITIONNELLES

PROBABILITES CONDITIONNELLES I- Probabilté conditionnellle POAILITES CODITIOELLES Soit A et deux événements d un univers Ω muni d une loi de probabilité tels que P (A) 0. La probabilité de l événement sachant que l événement A est

Plus en détail

THEME 7 : PROBABILITES

THEME 7 : PROBABILITES THEME 7 : PROBABILITES A la fin du thème, tu dois savoir : Connaître le vocabulaire sur les probabilités. Connaître les propriétés sur les propriétés (Propriété de la loi des grands nombres) Connaître

Plus en détail

Sommaire. Prérequis. Probabilités conditionnelles

Sommaire. Prérequis. Probabilités conditionnelles Probabilités conditionnelles Stéphane PASQUET, 22 mars 2015 C Sommaire Probabilités conditionnelles.................................. 2 Probabilité d une intersection................................. 2

Plus en détail

Probabilités. Exemple d application 1 : On effectue un lancé de dé à six faces, numérotées de 1 à 6. On définie les quatre événements suivants :

Probabilités. Exemple d application 1 : On effectue un lancé de dé à six faces, numérotées de 1 à 6. On définie les quatre événements suivants : I- Définitions et propriétés Probabilités Exemple d application 1 : On effectue un lancé de dé à six faces, numérotées de 1 à 6. On définie les quatre événements suivants : E 1 : Avoir un chiffre pair

Plus en détail

Expérience aléatoire - modélisation - langage des probabilités

Expérience aléatoire - modélisation - langage des probabilités I Expérience aléatoire - modélisation - langage des probabilités Une expérience aléatoire est une expérience liée au hasard. Les mathématiques interviennent pour apporter un modèle qui comporte un univers

Plus en détail

Probabilité, variable aléatoire. Loi binomiale

Probabilité, variable aléatoire. Loi binomiale DERNIÈRE IMPRESSION LE 9 juin 05 à 9:0 Probabilité, variable aléatoire. Loi binomiale Table des matières Loi de probabilité. Conditions préalables............................ Définitions..................................

Plus en détail

PROBABILITES LES. ACTIVITE 1 : «Lancé d une pièce de monnaie» Partie A : Individuel

PROBABILITES LES. ACTIVITE 1 : «Lancé d une pièce de monnaie» Partie A : Individuel LES ROBABILITES ACTIVITE 1 : «Lancé d une pièce de monnaie» artie A : Individuel 1. Lance 50 fois de suite une pièce de 1 euro et note dans le tableau ci-dessous les résultats obtenus. Tu noteras par lorsque

Plus en détail

TS COURS: PROBABILITES 1 Octobre f euille1 LE POINT SUR LES PROBABILITES ={P,F}.

TS COURS: PROBABILITES 1 Octobre f euille1 LE POINT SUR LES PROBABILITES ={P,F}. TS 00-00 COURS: PROBABILITES Octobre f euille LE POINT SUR LES PROBABILITES I VOCABULAIRE Expérience aléatoire: On appelle expérience aléatoire toute expérience donton connaît les conditions de réalisations

Plus en détail

Probabilités. Chapitre Vocabulaire des ensembles. Sommaire

Probabilités. Chapitre Vocabulaire des ensembles. Sommaire Chapitre 7 Probabilités Sommaire 7.1 Vocabulaire des ensembles.............................................. 93 7.2 Expériences aléatoires................................................. 94 7.2.1 Issues,

Plus en détail

FICHE METHODE PROBABILITES CONDITIONNELLES I) A quoi servent les probabilités Conditionnelles

FICHE METHODE PROBABILITES CONDITIONNELLES I) A quoi servent les probabilités Conditionnelles FICHE METHODE PROBABILITES CONDITIONNELLES I) A quoi servent les probabilités Conditionnelles a) Exemples :. On jette un dé à faces numérotées de à et on obtient un score pair! Quelle est la probabilité

Plus en détail

CHAPITRE 8 : Probabilités (1)

CHAPITRE 8 : Probabilités (1) CHAPITRE 8 : Probabilités (1) I. Généralités (rappels) 1. Vocabulaire Définitions : On appelle expérience aléatoire une expérience dont le résultat dépend du hasard. L'ensemble des résultats (ou issues)

Plus en détail

Probabilités. I Rappels sur les variables aléatoires discrètes. Définition 2

Probabilités. I Rappels sur les variables aléatoires discrètes. Définition 2 Probabilités I Rappels sur les variables aléatoires discrètes Définition Définition On considère E l ensemble des résultats possibles d une expérience aléatoire. Définir une variable aléatoire discrète

Plus en détail

Notions de probabilités discrètes finies

Notions de probabilités discrètes finies Notions de probabilités discrètes finies 1) Définitions... 2 Une expérience est dite aléatoire discrète finie si :...2 Événement...2 Réunion d événements :...2 Intersection d événements...2 Événements

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES I. Probabilités conditionnelles... 2 II. Arbre de probabilités... 3 II.1 Arbre commençant par deux branches 3 II.2 Arbre commençant par plusieurs branches 3 III. Indépendance

Plus en détail

Eléments de probabilités

Eléments de probabilités .. Eléments de probabilités Michaël Genin Université de Lille 2 EA 2694 - Santé Publique : Epidémiologie et Qualité des soins michael.genin@univ-lille2.fr Plan. 1 Introduction. 2 Expérience aléatoire.

Plus en détail

Propriétés : Si X suit la loi binomiale B(n,p) alors E(X) = np, V(X) = np(1-p)

Propriétés : Si X suit la loi binomiale B(n,p) alors E(X) = np, V(X) = np(1-p) Loi binomiale : RAPPEL DE COURS Une épreuve de Bernoulli est une expérience aléatoire à deux issues possibles : «Succès» et «Echec». Si on note p la probabilité d un succès, alors la probabilité d un échec

Plus en détail

Ch 07 Probabilités. Exemple Reprendre l exemple précédent et définir la loi de probabilité de X.

Ch 07 Probabilités. Exemple Reprendre l exemple précédent et définir la loi de probabilité de X. Ch 07 Probabilités I VARIABLE ALEATOIRE ET LOI DE PROBABILITE I.1 - d une variable aléatoire On appelle variable aléatoire discrète toute application X de Ω dans IR. L ensemble des valeurs prises par X,

Plus en détail

Sujet C p315 livre Centres étrangers juin Nouvelle Calédonie Novembre points annales 50p190

Sujet C p315 livre Centres étrangers juin Nouvelle Calédonie Novembre points annales 50p190 Antilles septembre 20 Les parties A et B sont indépendantes Un site internet propose des jeux en ligne. Partie A Pour un premier jeu : * si l internaute gagne une partie, la probabilité qu il gagne la

Plus en détail

PROBABILITES (généralités)

PROBABILITES (généralités) PROBABILITES (généralités) I) VÉRIFIER LES ACQUIS Exercices d'introduction : Ex 1 : (probabilité) On lance un dé truqué de telle manière que les nombres pairs est une probabilité triple de celle des nombres

Plus en détail

CHAPITRE 6 Les Probabilités

CHAPITRE 6 Les Probabilités A) Définitions et généralités 1) Définitions de base a) Expérience aléatoire CHAPITRE 6 Les Probabilités Une expérience aléatoire (du latin "alea", qui signifie dé) est une expérience dont le résultat

Plus en détail

Exercices d application du chapitre probabilités

Exercices d application du chapitre probabilités Exercices d application du chapitre probabilités Exercice 1 : Les questions a, b, c, d, e, f, g et h sont indépendantes. a) Victor choisit au hasard une carte dans un jeu de 32 cartes. i) Quel est le nombre

Plus en détail

LES PROBABILITÉS. Ch 9

LES PROBABILITÉS. Ch 9 Ch 9 LES PROBABILITÉS Sommaire 0- Objectifs 1- Expérience aléatoire 2- Modèles et probabilités 3- Expérience aléatoire à deux épreuves 4- Simulation d'une expérience aléatoire 0- Objectifs Comprendre et

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles Probabilités conditionnelles Table des matières I Activités de découverte 1 1 Activité.............................................. 1 2 Formule générale........................................ 1 3 Exemples.............................................

Plus en détail

Cours 4 ème Sci et inf

Cours 4 ème Sci et inf Mathématiques aux élèves Probabilité sur un ensemble fini Site web : http://www.matheleve.net/ Email :contact @matheleve.com Cours ème Sci et inf I) Rappel ctivité Première situation : ) Quels sont les

Plus en détail

1. On désigne par A et B deux évènements indépendants d un univers muni d une loi de probabilité p.

1. On désigne par A et B deux évènements indépendants d un univers muni d une loi de probabilité p. 2011 Pondichéry ex 3 (5 pts) Un jeu consiste à lancer des fléchettes sur une cible. La cible est partagée en quatre secteurs, comme indiqué sur la figure ci-dessous. On suppose que les lancers sont indépendants

Plus en détail

PROBABILITES : CONDITIONNEMENT ET INDEPENDANCE

PROBABILITES : CONDITIONNEMENT ET INDEPENDANCE PROBABILITES : CONDITIONNEMENT ET INDEPENDANCE Historique : En 1654 le chevalier de Méré pose le problème suivant au mathématicien et philosophe Pascal : «Deux joueurs ont commencé un jeu en plusieurs

Plus en détail

ÉPREUVE DE BERNOULLI ET LOI BINOMIALE...2 I. RAPPEL SUR LA NOTION D ÉVÉNEMENTS INDÉPENDANTS...2 II. ÉPREUVE DE BERNOULLI...2 SCHÉMA DE BERNOULLI...

ÉPREUVE DE BERNOULLI ET LOI BINOMIALE...2 I. RAPPEL SUR LA NOTION D ÉVÉNEMENTS INDÉPENDANTS...2 II. ÉPREUVE DE BERNOULLI...2 SCHÉMA DE BERNOULLI... ÉPREUVE DE BERNOULLI ET LOI BINOMIALE...2 I. RAPPEL SUR LA NOTION D ÉVÉNEMENTS INDÉPENDANTS...2 II. ÉPREUVE DE BERNOULLI...2 III. IV. SCHÉMA DE BERNOULLI...2 VARIABLE ALÉATOIRE...3 V. ARBRE D UN SCHÉMA

Plus en détail

PROBABILITES ET COMBINAISONS EXERCICES

PROBABILITES ET COMBINAISONS EXERCICES S EXERIES On considère un jeu de cartes. On tire simultanément huit certes du jeu. Quelle est la probabilité des évènements suivants : A «obtenir exactement un valet» B «obtenir exactement trois cœurs»

Plus en détail

PANORAMA 15 - Des expériences aléatoires aux probabilités

PANORAMA 15 - Des expériences aléatoires aux probabilités PANORAMA 15 - Des expériences aléatoires aux probabilités 15.1 / 15.3 / 15.5 Probabilités et diagramme en arbre Probabilité théorique d un événement : c est un nombre (fraction, %, décimale) entre 0 et

Plus en détail

Thème 8 : Probabilités

Thème 8 : Probabilités SAVOIR-FAIRE ÉLÉMENTAIRES EN MATHEMATIQUES pour aborder la classe de première Lycée Bascan : toutes séries Thème 8 : Probabilités Exercice (résolu) On tire au hasard une carte dans un jeu de 3 cartes.

Plus en détail

PROBABILITÉS. D après un texte

PROBABILITÉS. D après un texte PROBABILITÉS I Traduction des données en termes de probabilités D après un texte Exercice : On sait que 5% des individus d une population lycéenne pratiquent le cyclisme, que % pratiquent le tennis et

Plus en détail

2 Expérience aléatoire, probabilité, probabilité conditionnelle

2 Expérience aléatoire, probabilité, probabilité conditionnelle Leçon n o 2 Expérience aléatoire, probabilité, probabilité conditionnelle 9 Niveau Lycée Prérequis théorie des ensembles Références [7], [8] 2.1 Expérience aléatoire, événements 2.1.1 Expérience aléatoire

Plus en détail

Sujets de bac : Probabilités

Sujets de bac : Probabilités Sujets de bac : Probabilités Sujet n 1 : Sportifs de haut niveau septembre 1999 Une urne contient quatre boules rouges, quatre boules blanches et quatre boules noires. On prélève simultanément quatre boules

Plus en détail

On lance un dé à six faces et on regarde la parité du nombre inscrit sur sa face supérieure. Citer les issues de cette expérience.

On lance un dé à six faces et on regarde la parité du nombre inscrit sur sa face supérieure. Citer les issues de cette expérience. Exercice p 0, n : On lance un dé à six faces et on regarde le nombre inscrit sur sa face supérieure. Citer les issues de cette expérience. Cette expérience admet issues : «le nombre inscrit est»,,,, «5»,.

Plus en détail

Probabilités, cours de première STG

Probabilités, cours de première STG Probabilités, cours de première STG F.Gaudon 3 juin 2009 Table des matières 1 Expériences aléatoires 2 2 Lois de probabilité 2 3 Probabilités d'événements 3 4 Équiprobabilité 4 5 Calculs avec des probabilités

Plus en détail

Probabilités. EXTRAIT DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires

Probabilités. EXTRAIT DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires robabilités EXTAIT DU B.O. SÉCIAL N DU 8 AOÛT 008 Connaissances Capacités Commentaires. Organisation et gestion de données, fonctions.4 Notion de probabilité Comprendre et utiliser des notions élémentaires

Plus en détail

QCM chapitre 10 (cf. p. 310 du manuel) Pour bien commencer

QCM chapitre 10 (cf. p. 310 du manuel) Pour bien commencer QCM chapitre 10 (cf. p. 310 du manuel) Pour bien commencer Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice 1. Une expérience aléatoire consiste à lancer deux dés à six faces et

Plus en détail

Chapitre 4 - Probabilités conditionnelles

Chapitre 4 - Probabilités conditionnelles Chapitre 4 - Probabilités conditionnelles Dans tout le chapitre, E désigne l ensemble des issues d une expérience aléatoire. I Probabilité conditionnelle TD1 : Réussite au bac Le proviseur d un lycée fait

Plus en détail

1 ES PROBABILITES Cours

1 ES PROBABILITES Cours 1 ES PROILITES Cours 1 ) Loi de probabilité sur un ensemble fini. Définition E = {e 1, e 2,..,e n } est l ensemble des issues d une expérience aléatoire. (Univers) Définir une loi de probabilité sur E,

Plus en détail

3 ème Cours : Statistiques et probabilité

3 ème Cours : Statistiques et probabilité I Statistiques a) Médiane d une série statistique On appelle médiane d une série statistique ordonnée une valeur du caractère qui partage la série en deux groupes de même effectif tels que : un groupe

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROILITÉS CONITIONNELLES Ph EPRESLE 1 er juillet 2015 Table des matières 1 Rappel : Probabilité d un événement 2 1.1 Ensemble des issues................................... 2 1.2 Événement.......................................

Plus en détail

Introduction aux Probabilités

Introduction aux Probabilités Introduction aux Probabilités La théorie des probabilités consiste à mathématiser le hasard, c'est à dire les phénomènes aléatoires et donner un sens précis aux phrases du type: "A pile ou face, j'ai une

Plus en détail

LFA /Terminale S Mme MAINGUY 1. Probabilités conditionnelles

LFA /Terminale S Mme MAINGUY 1. Probabilités conditionnelles LF /Terminale S Mme MINGUY Terminale S Ch.6 Probabilités conditionnelles ans tout ce chapitre, on appelle Ω l'ensemble des issues d'une expérience aléatoire (autrement appelé univers). Exemple d'introduction

Plus en détail

Combinatoire : rappels

Combinatoire : rappels Combinatoire : rappels 1 Savoir utiliser des arbres, des tableaux, des diagrammes pour des exemples simples de dénombrement Exemple 1 : Un arbre... Un enfant joue à «pile ou face» en lançant trois fois

Plus en détail

Proposition de corrigé

Proposition de corrigé Le sujet Programme officiel Proposition de corrigé Introduction La notion de probabilité, en lien direct avec les statistiques, est introduite dans les programmes du collège depuis la rentrée 2008. Elle

Plus en détail

SERIE DES EXERCICES N 1 :

SERIE DES EXERCICES N 1 : SERIE DES EXERCICES N 1 : Exercice 1 : Une urne contient 10 boules de forme et de masse identiques. Quatre des boules sont numérotées 1, trois des boules sont numérotées 2, deux des boules sont numérotées

Plus en détail

Remarque : Dans la suite, on ne traitera que des expériences dont les univers sont finis.

Remarque : Dans la suite, on ne traitera que des expériences dont les univers sont finis. Chapitre 5 Probabilités 5.1 Rappels 5.1.1 Vocabulaire Expérience aléatoire Définition 5.1 Une expérience dont on connaît les issues (les résultats) est appelée expérience aléatoire si on ne peut pas prévoir

Plus en détail

Vidéo https://youtu.be/fsgge2-l3ag Vidéo https://youtu.be/e7jh8a1cdtg

Vidéo https://youtu.be/fsgge2-l3ag Vidéo https://youtu.be/e7jh8a1cdtg LOI BINOMIALE 1 sur 7 I. Répétition d'expériences identiques et indépendantes Exemples : 1) On lance un dé plusieurs fois de suite et on note à chaque fois le résultat. On répète ainsi la même expérience

Plus en détail

TD2. Probabilité sur un ensemble dénombrable.

TD2. Probabilité sur un ensemble dénombrable. Université Pierre & Marie Curie Licence de Mathématiques L3 UE LM345 Probabilités élémentaires Année 2014 15 TD2 Probabilité sur un ensemble dénombrable 1 a Soit (Ω, F, P) un espace de probabilités Soit

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. Exercice n 1 : Une urne contient au départ 0 boules blanches et 10 boules noires indiscernables au toucher. On tire au hasard une boule de l urne : Si la boule est blanche, on la remet dans l urne et on

Plus en détail

Livret d accompagnement. Fiches supports pour l application «Probas»

Livret d accompagnement. Fiches supports pour l application «Probas» Livret d accompagnement Fiches supports pour l application «Probas» J Lien entre fréquence et probabilité Contexte On procède au lancer d un dé à 6 faces équilibrées. On souhaite étudier les fréquences

Plus en détail

Chapitre 08 Loi de probabilité. Table des matières. Chapitre 08 Loi de probabilité TABLE DES MATIÈRES page -1

Chapitre 08 Loi de probabilité. Table des matières. Chapitre 08 Loi de probabilité TABLE DES MATIÈRES page -1 Chapitre 08 Loi de probabilité TABLE DES MATIÈRES page -1 Chapitre 08 Loi de probabilité Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Chapitre 3 Probabilités. Table des matières. Chapitre 3 Probabilités TABLE DES MATIÈRES page -1

Chapitre 3 Probabilités. Table des matières. Chapitre 3 Probabilités TABLE DES MATIÈRES page -1 Chapitre 3 Probabilités TALE DES MATIÈRES page -1 Chapitre 3 Probabilités Table des matières I Exercices I-1 1 I-1 2 I-2 3 I-2 4 I-2 5 I-2 6 I-2 7 I-3 8 I-4 9 I-4 10 I-4 11 I-5 12 I-5 13 I-5 14 I-5 15

Plus en détail

DÉFINITION L effectif d une valeur est le nombre de fois où cette valeur apparait.

DÉFINITION L effectif d une valeur est le nombre de fois où cette valeur apparait. 1 Effectifs et fréquences OJECTIF 1 Vocabulaire En statistique, on étudie sur une population un caractère qui peut prendre plusieurs valeurs. : on a interrogé les élèves d'une classe de 5 e au sujet de

Plus en détail

PROBABILITES. Classe : 3 éme 1 Mr Naifar Med Yassine 1 ) EXPERIENCES ALEATOIRES A ) EXPERIENCE ALEATOIRE, EVENTUALITE, UNIVERS B ) EVENEMENT

PROBABILITES. Classe : 3 éme 1 Mr Naifar Med Yassine 1 ) EXPERIENCES ALEATOIRES A ) EXPERIENCE ALEATOIRE, EVENTUALITE, UNIVERS B ) EVENEMENT 1 ) EXPERIENCES LETOIRES ) EXPERIENCE LETOIRE, EVENTULITE, UNIVERS Un exemple bien connu : ( On considère cet exemple jusqu à la fin du chapitre ) On lance un dé non truqué à six faces numérotées de 1

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles s s rbres s et s s Terminale S Lycée Jacquard 2014/2015 Capacités exigibles s s rbres s et Construire un arbre en lien avec une situation donnée. Exploiter la lecture d un arbre pour déterminer des probabilité.

Plus en détail

Probabilités et statistiques pour la gestion et l économie

Probabilités et statistiques pour la gestion et l économie nne-marie Spalanzani Sylvie Fréreau Probabilités et statistiques pour la gestion et l économie Exercices et corrigés ------- Collection «Gestion en +» Presses universitaires de Grenoble BP 47 38040 Grenoble

Plus en détail

Dans un lycée qui ne reçoit pas d interne, la répartition de 895 élèves se fait de la manière suivante :

Dans un lycée qui ne reçoit pas d interne, la répartition de 895 élèves se fait de la manière suivante : TES Correction des exercices Probabilités (5). Dans cette série d exercices on a parfois noté P(A B) la probabilité conditionnelle de A sachant B. La notation P B (A) est donc parfois remplacée par la

Plus en détail

Activité d'introduction des notions. Tireur d'élite?

Activité d'introduction des notions. Tireur d'élite? Activité d'introduction des notions. Tireur d'élite? 2) On suppose maintenant qu'il fait six tirs et on note Y le nombre de succès obtenus. (Y {0 ; 1 ;... ; 6}) Activité d'introduction des notions. Tireur

Plus en détail

PROBABILITÉS. La variance de la variable aléatoire X est le réel positif, noté V (X), défini par :

PROBABILITÉS. La variance de la variable aléatoire X est le réel positif, noté V (X), défini par : POAILITÉS I. VAIALES ALÉATOIES On note l univers associé à une expérience aléatoire (l ensemble des issues ou éventualités). On suppose que est fini, c est-à-dire qu il y a un nombre fini d issues et qu

Plus en détail

Les jeux de hasard de monsieur Fafard

Les jeux de hasard de monsieur Fafard Mathématique, 1 er cycle du secondaire SAA3 Les jeux de hasard de monsieur Fafard Situation d aide à l apprentissage 3 Gilles Coulombe, CSPO Consignes Réalisez les 6 tâches de la situation; Utilisez la

Plus en détail

PROBABILITÉS. II Rappels : Calcul de probabilités 4

PROBABILITÉS. II Rappels : Calcul de probabilités 4 PROBABILITÉS Table des matières I Rappels : Vocabulaire des événements 2 I. Vocabulaire.............................................. 2 I.2 Intersection et réunion d événements................................

Plus en détail

Probabilité. Concepts de base

Probabilité. Concepts de base Probabilité Concepts de base Théorie des probabilités C est une théorie mathématique fascinante qui nous offre des outils puissants pour porter un jugement sur l issue d une expérience soumise aux lois

Plus en détail

Activité de recherche. Tests d hypothèses sur une pièce truquée

Activité de recherche. Tests d hypothèses sur une pièce truquée Fiche Résumé 1 Arnaud Lathelize, Denys Pommeret IREM Aix-Marseille TITRE: NIVEAU: DOMAINE: DURÉE: Introduction aux tests d hypothèses Construction de tests d hypothèses pour décider Terminale S ou ES Probabilités

Plus en détail

PROBABILITÉS. II Rappels : Calcul de probabilités 4

PROBABILITÉS. II Rappels : Calcul de probabilités 4 PROBABILITÉS Table des matières I Rappels : Vocabulaire des événements 2 I. Vocabulaire.............................................. 2 I.2 Intersection et réunion d événements................................

Plus en détail

CONDITIONNEMENT ET INDEPENDANCE

CONDITIONNEMENT ET INDEPENDANCE CONDITIONNEMENT ET INDEPENDANCE 1 Dans tout le chapitre, E désigne l'ensemble des issues d'une expérience aléatoire et P désigne une loi de probabilité sur E. I. Probabilité conditionnelle Définition :

Plus en détail