Filière de Sciences Économiques et de Gestion
|
|
|
- Alexis Leblanc
- il y a 9 ans
- Total affichages :
Transcription
1 Université Mohammed V Agdal Faculté des Sciences Juridiques, Economiques et sociales RABAT جامعة محمد الخامس اآدال آلية العلوم القانونية والاقتصادية والاجتماعية االرباط Filière de Sciences Économiques et de Gestion Semestre : S 4 Module : M 16 (Méthodes Quantitatives IV) Matière : Algèbre II CHAPIITRE 2 : PRODUIT SCALAIRE-ORTHOGONALITÉ 1. Produit scalaire Exercice 1.1 1) Parmi les applications suivantes définies de vers, lesquelles sont des formes bilinéaires? des produits scalaires?,,,,, ,,,,, 3 4 2,,,,, 3 4 5,,,,, ,,,,, ,,,,, 2 2) Pour les formes bilinéaires, écrire la matrice dans la base canonique de et retrouver les produits scalaires. Exercice 1.2 1) Ecrire l expression analytique de la forme bilinéaire associée à chacune des matrices suivantes : , 2, , , , 2 0 5, , , ) Parmi ces matrices, lesquelles définissent un produit scalaire? Exercice 1.3 1) Pour chacune des formes bilinéaires ci-dessous, écrire la matrice dans la base canonique de :, , , , 2) Pour quelles valeurs du réel λ, les formes bilinéaires ci-dessous définissent-elles un produit scalaire sur? 1
2 Exercice 1.4 Pour quelles valeurs du réel, la matrice définit-elle un produit scalaire? , , Exercice 1.5 1) Utiliser l inégalité de Schwartz,. pour montrer l inégalité. 2) Montrer que : a., b Orthogonalité Exercice 2.1 On considère une base orthonormée,, d un espace euclidien. 1) Calculer,,1, pour tout de. 2) En déduire que : ;,. Exercice 2.2 Dans muni du produit scalaire usuel, on considère les vecteurs : 1,2,1,1 et 0,3,1,1. 1) Déterminer une base orthonormée du sous espace vectoriel,. 2) Déterminer le sous espace vectoriel. Exercice 2.3 Dans muni du produit scalaire usuel, on considère les vecteurs : 3,1,1,3, 5,1,5,7 et 1,1,2,8. 1) Déterminer une base orthonormée du sous espace vectoriel,. 2) Déterminer le sous espace vectoriel. Exercice 2.4 Dans muni du produit scalaire usuel, on considère les vecteurs : 1,2,1,2, 2,3,0,1, 5,2,5,2 et 8,10,10,4. 1) Vérifier que,,, est une base de. 2) Appliquer le procédé de Gram-Schmidt à la base pour construire une base orthonormée de. Exercice 2.5 Dans muni du produit scalaire usuel, on considère les vecteurs : 1,2,2, 1,3,1, et 0,12,6. 1) Vérifier que,, est une base de. 2) Appliquer le procédé de Gram-Schmidt à la base pour construire une base orthonormée de. Exercice 2.6 Soit le sous espace vectoriel de engendré par les vecteurs : 1,0,2 et 4,1,0. 1) Déterminer une base orthonormée de et de. 2) En déduire une base orthonormée de. Exercice 2.7 Soit le sous espace vectoriel de engendré par les vecteurs : 1,0,1 et 1,1,2. 1) Déterminer une base orthonormée de et de. 2) En déduire une base orthonormée de. 2
3 Exercice 2.8 Dans muni du produit scalaire usuel, on considère le sous espace vectoriel :,,, / ) Déterminer une base orthonormée de et de. 2) En déduire une base orthonormée de. Exercice 2.9 Dans muni du produit scalaire usuel, on considère le sous espace vectoriel :,,, / 0 0 1) Déterminer une base orthonormée de et de. 2) En déduire une base orthonormée de. Exercice 2.10 Dans muni du produit scalaire usuel, on considère le sous espace vectoriel :,,, / ) Déterminer une base orthonormée de et de. 2) En déduire une base orthonormée de. 3. Projection Projection orthogonale Exercice 3.1 On considère deux vecteurs et de. 3) Déterminer une base orthonormée du sous espace vectoriel de engendré par. 4) Déterminer l expression analytique de la projection orthogonale sur. 5) En déduire l expression de en fonction de et,. 6) Utiliser la distance de à pour montrer l inégalité de Schwartz :,. Exercice 3.2 Dans muni du produit scalaire usuel, on considère le vecteur 1,2,6. Trouver l image de par la projection orthogonale sur le sous espace vectoriel engendré par les vecteurs : a. 1,1,0 et 1,1,0. b. 3, 1,2 et 1, 1, 2. c. 6,1,3 et 3,0,2. Exercice 3.3 Soit le sous espace vectoriel de engendré par les vecteurs : 1,0,2 et 4, 1,0. Trouver l image de 1,0, 3 par la projection orthogonale sur et par la projection orthogonale sur. Exercice 3.4 Soit le sous espace vectoriel de engendré par les vecteurs : 1,0,1 et 1, 1,2. Trouver l image de 1,1,1 par la projection orthogonale sur et par la projection orthogonale sur. Exercice 3.5 Dans muni du produit scalaire usuel, on considère les vecteurs : 1,2,2, 1,3,1 et 0,12,6. 1) Trouver l image des vecteurs, et par la projection orthogonale sur : a.. b.,. c.,,. 2) Déterminer la matrice de la projection orthogonale sur, dans la base canonique. 3
4 Exercice 3.6 Dans muni du produit scalaire usuel, on considère le sous espace vectoriel :,,, / ) Déterminer l expression analytique de la projection orthogonale sur. 2) Trouver l image des vecteurs de la base canonique de par la projection orthogonale sur. 3) En déduire,, 1,4. Exercice 3.7 Dans muni du produit scalaire usuel, on considère le sous espace vectoriel :,,, / 0 0 1) Déterminer l expression analytique de la projection orthogonale sur. 2) Trouver l image des vecteurs de la base canonique de par la projection orthogonale sur. 3) En déduire,, 1,4. Exercice 3.8 Dans muni du produit scalaire usuel, on considère le sous espace vectoriel :,,, / ) Déterminer l expression analytique de la projection orthogonale sur. 2) Trouver l image des vecteurs de la base canonique de par la projection orthogonale sur. 3) En déduire,, 1,4. 4. Droites plans Exercice 4.1 Dans muni du produit scalaire usuel, on considère le plan d équation : et les droites 0 d équations : 2 0 et Δ: ) Déterminer l intersection des deux droites. 2) Les droites et Δ sont-elles contenues dans le plan? 3) Déterminer l intersection de chacune des deux droites avec le plan. Exercice 4.2 Dans muni du produit scalaire usuel, on considère le plan d équation : 0 et les droites d équations : et Δ:. Reprendre les questions de l exercice précédent. Exercice 4.3 Déterminer l intersection des deux plans de : 1 : : 0 2 : : Exercice 4.4 Dans muni du produit scalaire usuel, on considère le plan d équation : et les droites 0 d équations : 2 0 et Δ: ) Trouver la projection orthogonale du point 1,1,1 sur la droite et sur la droite Δ, puis sur le plan. 2) Exprimer les coordonnés de la projection orthogonale d un point,, sur la droite et sur la droite Δ, puis sur le plan. 3) Trouver la projection orthogonale sur le plan d un point et en déduire la projection orthogonale de la droite sur le plan. 4) Trouver la projection orthogonale sur le plan d un point Δ et en déduire la projection orthogonale de la droite Δ sur le plan. 5) Trouver la projection orthogonale sur le plan d un point Δ. 4
5 Exercice 4.5 Dans muni du produit scalaire usuel, on considère le plan d équation : 0 et les droites d équations : et Δ:. Reprendre les questions de l exercice précédent. Exercice 4.6 Dans muni du produit scalaire usuel, on considère les plans : et : 0. 1) Trouver la projection orthogonale du point 1,1,1 sur et sur P, puis sur. 2) Exprimer les coordonnés de la projection orthogonale d un point,, sur et sur P, puis sur. 3) Trouver la projection orthogonale sur le plan d un point. 4) Trouver la projection orthogonale sur le plan d un point. Exercice 4.7 Dans muni du produit scalaire usuel, on considère les plans : et : Reprendre les questions de l exercice précédent. Exercice 4.8 Dans muni du produit scalaire usuel, on considère le plan d équation : 2 0 1) Déterminer une base orthonormée de et de. 2) Exprimer les coordonnés de la projection orthogonale d un point,, sur le plan et la droite. 5. Image et noyau d une matrice Exercice 5.1 On considère les matrices : , 2, , , 2 0 4, , , , , , , , , , , , , ) Pour chacune de ces matrices, déterminer une base de ImA, de kera, de Im A et de ker A. 2) Vérifier que : ImA Ker A et KerA Im A. 3) A-t-on? 5
6 [S4, Module M 16 : MQ IV, Matière : Algèbre II] Exercice 5.2 On considère les matrices, avec : , 1 1, , ) Pour chacune de ces matrices, déterminer, suivant les valeurs du paramètre une base de ImA, de kera, de Im A et de ker A. 2) Vérifier que : ImA Ker A et KerA Im A. 3) A-t-on? 6. Solution d un système linéaire au sens des MC Exercice 6.1 On considère les systèmes linéaires : ) Déterminer une solution au sens des moindres carrées, de chacun des systèmes linéaires., en utilisant les équations normales... 2) Calculer l erreur associée à la solution au sens des moindres carrées. Exercice 6.2 On considère les systèmes linéaires : ) Déterminer une solution au sens des moindres carrées, de chacun des systèmes linéaires., en utilisant la projection orthogonale de sur. 2) Calculer l erreur associée à la solution au sens des moindres carrées. Exercice Soit 2 1 et 9. On donne deux vecteurs 5 1 et ) Calculer. et., puis calculer. et.. 2) Est-ce que pourrait être une solution au sens des moindres carrées du système linéaire.? Exercice Soit 3 4 et 4. On donne deux vecteurs 4 5 et ) Calculer. et., puis calculer. et.. 2) Est-ce que au moins l un des deux vecteurs ou pourrait être une solution au sens des moindres carrées du système linéaire.? 6
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
Intitulé : Logistique & Transport
Faculté des Sciences Juridiques, Economiques et Sociales Intitulé : Logistique & Transport IDENTIFICATION DE LA FILIERE Intitulé : Sciences Economiques et de Gestion Domaine : Gestion d entreprises Champ
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
1 Complément sur la projection du nuage des individus
TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
Ce cours introduit l'électrodynamique classique. Les chapitres principaux sont :
11P001 ELECTRDYNAMIQUE I Automne 4 crédits BACHELR 1ère ANNEE MASTER BIDISCIPLINAIRE MINEURE PHYSIQUE CURS BLIGATIRES Enseignant(s) G. Iacobucci P Automne (A) Horaire A C2 E2 LU 1113 EPA JE 810 EPA = obligatoire
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA
ENSEA - ABIDJAN ENSAE - DAKAR ISSEA - YAOUNDÉ BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA CENTRE D APPUI AUX
Programme de la classe de première année MPSI
Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E
Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
Étudier si une famille est une base
Base raisonnée d exercices de mathématiqes (Braise) Méthodes et techniqes des exercices Étdier si ne famille est ne base Soit E n K-espace vectoriel. Comment décider si ne famille donnée de vecters de
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS?
PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS? Pierre Baumann, Michel Émery Résumé : Comment une propriété évidente visuellement en dimensions deux et trois s étend-elle aux autres dimensions? Voici une
Calcul différentiel. Chapitre 1. 1.1 Différentiabilité
Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace
Plan du cours : électricité 1
Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Le produit semi-direct
Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
Licence STS mention Mathématiques Parcours Ingénieur Télécom Bretagne (ITB)
Licence STS mention Mathématiques Parcours Ingénieur Télécom Bretagne (ITB) FICHE D IDENTITE DE LA FORMATION Domaine de formation : Sciences, Technologies, Santé Intitulé : Licence Sciences, Technologies,
[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1
[http://mpcpgedupuydelomefr] édité le 3 avril 215 Enoncés 1 Exercice 1 [ 265 ] [correction] On note V l ensemble des matrices à coefficients entiers du type a b c d d a b c c d a b b c d a et G l ensemble
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis
UNIVERSITE TUNIS EL MANAR Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis Campus Universitaire-2092-EL MANAR2 Tél: 71 872 600 Fax: 71 885 350 Site web: www.fst.rnu.tn Présentation
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Corps des nombres complexes, J Paul Tsasa
Corps des nombres complexes, J Paul Tsasa One Pager Février 2013 Vol. 5 Num. 011 Copyright Laréq 2013 http://www.lareq.com Corps des Nombres Complexes Définitions, Règles de Calcul et Théorèmes «Les idiots
NOTATIONS PRÉLIMINAIRES
Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
Fonctions de plusieurs variables et applications pour l ingénieur
Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie
Optimisation, traitement d image et éclipse de Soleil
Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
C1 : Fonctions de plusieurs variables
1er semestre 2012/13 CPUMP 3 U 11 : Abrégé de cours Compléments Analyse 3 : fonctions analytiques Les notes suivantes, disponibles à l adresse http://www.iecn.u-nancy.fr/~bertram/, contiennent les définitions
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Calculer avec Sage. Revision : 417 du 1 er juillet 2010
Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1
Introduction. Mathématiques Quantiques Discrètes
Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.
Résumé du cours d algèbre 1, 2013-2014. Sandra Rozensztajn. UMPA, ENS de Lyon, [email protected]
Résumé du cours d algèbre 1, 2013-2014 Sandra Rozensztajn UMPA, ENS de Lyon, [email protected] CHAPITRE 0 Relations d équivalence et classes d équivalence 1. Relation d équivalence Définition
Approximations variationelles des EDP Notes du Cours de M2
Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation
Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée
EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Exercices et corrigés Mathématique générale Version β
Université libre de Bruxelles Années académiques 2008-2050 Université catholique de Louvain Exercices et corrigés Mathématique générale Version β Laurent Claessens Nicolas Richard Dernière modification
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe
Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie
CMI INGENIERIE FINANCIERE - SPECIALITE FINANCE MATHEMATIQUE ET MARCHES DE CAPITAUX
Université de CERGY 1/3 CMI INGENIERIE FINANCIERE - SPECIALITE FINANCE MATHEMATIQUE ET MARCHES DE CAPITAUX L1 S1 Mathématiques (pratique des fonctions numériques) 4 L1 S1 Outils informatiques et bureautique
Cours d Analyse 3 Fonctions de plusieurs variables
Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet [email protected]
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions.
Problèmes mathématiques de la mécanique/mathematical problems in Mechanics Modèles bi-dimensionnels de coques linéairement élastiques: Estimations de l écart entre leurs solutions. Cristinel Mardare Laboratoire
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Espace II. Algèbres d opérateurs et Géométrie non commutative.
Chapitre 2 Espace II. Algèbres d opérateurs et Géométrie non commutative. Dans le formalisme de la mécanique quantique, les observables ne sont plus des grandeurs ou fonctions numériques, que l on peut
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
Déterminants. Marc SAGE 9 août 2008. 2 Inverses et polynômes 3
Déterminants Marc SAGE 9 août 28 Table des matières Quid des formes n-linéaires alternées? 2 2 Inverses et polynômes 3 3 Formule de Miller pour calculer un déterminant (ou comment illustrer une idée géniale)
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
APPEL D OFFRES OUVERT SUR OFFRES DE PRIX N 1/U.M.V.R/2015 (Lot unique) SEANCE PUBLIQUE
Royaume du Maroc Université Mohammed V de Rabat La Présidence المملكة المغربية جامعة محمد الخامس بالرباط الرئاسة APPEL D OFFRES OUVERT SUR OFFRES DE PRIX N 1/U.M.V.R/2015 (Lot unique) SEANCE PUBLIQUE Objet
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME
Notre cadre de réflexion MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME La proposition de programme qui suit est bien sûr issue d une demande du Premier Cycle : demande de rénovation des contenus
NOTICE DOUBLE DIPLÔME
NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Mesures gaussiennes et espaces de Fock
Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
VI. COMPLÉMENTS SUR LES MODULES, THÉORÈME CHINOIS, FACTEURS INVARIANTS SÉANCES DU 15, 16 ET 22 OCTOBRE
VI. COMPLÉMENTS SUR LES MODULES, THÉORÈME CHINOIS, FACTEURS INVARIANTS SÉANCES DU 15, 16 ET 22 OCTOBRE 12. Compléments sur les modules 12.1. Théorème de Zorn et conséquences. Soient A un anneau commutatif
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions
Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
RAPHAËL ROUQUIER. 1. Introduction
CATÉGORIES DÉRIVÉES ET GÉOMÉTRIE ALGÉBRIQUE Trois exposés à la semaine «Géométrie algébrique complexe» au CIRM, Luminy, décembre 2003 1. Introduction On étudie dans un premier temps les propriétés internes
LES VARIÉTÉS R1EMANNIENNES DONT LA COURBURE SATISFAIT CERTAINES CONDITIONS
LES VARIÉTÉS R1EMANNIENNES DONT LA COURBURE SATISFAIT CERTAINES CONDITIONS Par M. BERGER 1. Variétés riemanniennes Dans toute la suite V désigne une variété indéfiniment differentiable, de dimension d
Cours 7 : Utilisation de modules sous python
Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2
CNAM UE MVA 210 Ph. Duran Algèbre et analyse tensorielle Cours 4: Calcul ierentiel 2 Jeui 26 octobre 2006 1 Formes iérentielles e egrés 1 Dès l'introuction es bases u calcul iérentiel, nous avons mis en
Propriétés électriques de la matière
1 Propriétés électriques de la matière La matière montre des propriétés électriques qui ont été observées depuis l antiquité. Nous allons distinguer les plus fondamentales de ces propriétés. 1 Propriétés
RO04/TI07 - Optimisation non-linéaire
RO04/TI07 - Optimisation non-linéaire Stéphane Mottelet Université de Technologie de Compiègne Printemps 2003 I Motivations et notions fondamentales 4 I1 Motivations 5 I2 Formes quadratiques 13 I3 Rappels
cel-00530377, version 1-28 Oct 2010
Mécanique des milieux continus F r a n ç o i s S i d o r o f f p Ce document est sous licence Creative Commons Paternité Pas d Utilisation Commerciale Partage des Conditions Initiales à l Identique 3.0
4.2 Unités d enseignement du M1
88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)
Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut
Calcul matriciel et systèmes linéaires
Calcul matriciel et systèmes linéaires Jocelyne Erhel Nabil Nassif Bernard Philippe DEA Informatique et modélisation Année 2004 Beyrouth, Liban 2 Contents 1 Bases de l algèbre linéaire 7 1.1 Espaces vectoriels
Statistique Descriptive Multidimensionnelle. (pour les nuls)
Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Multidimensionnelle (pour les nuls) (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Plan du chapitre «Milieux diélectriques»
Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation
UNIVERSITE DES ANTILLES et DE LA GUYANE Campus de Fouillole BP250-97157 Pointe-à-Pitre Cedex CONTRAT 2010-2013 LE MASTER NOM DU DOMAINE STS
UNIVERSITE DES ANTILLES et DE LA GUYANE Campus de Fouillole BP20-9717 Pointe-à-Pitre Cedex CONTRAT 2010-201 LE MASTER NOM DU DOMAINE STS Mention : Mathématiques Implantation : Guadeloupe FICHES DESCRIPTIVES
TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent
TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires
