5.1 Dérivation de la transformée de Fourier. f(t)e jnω 0t dt (5.2)

Dimension: px
Commencer à balayer dès la page:

Download "5.1 Dérivation de la transformée de Fourier. f(t)e jnω 0t dt (5.2)"

Transcription

1 Chapitre 5 Transformée de Fourier Au chapitre précédent, on a vu comment on pouvait représenter une fonction périodique par une somme de sinusoïdes. La transformée de Fourier permet de représenter des signaux qui ne sont pas périodiques. En fait, la transformée de Fourier est un cas spécial de la transformée de Laplace. Alors pourquoi voudrait-on utiliser une autre transformée? La raison est que la transformée de Fourier est plus utile dans certains domaines comme les télécommunications et le traitement de signaux. 5.1 Dérivation de la transformée de Fourier On peut obtenir la transformée de Fourier à partir de la série de Fourier. Soit la série de Fourier, sous forme exponentielle : f(t) = C n e jnω t (5.1) où C n = 1 T n= T/2 T/2 f(t)e jnω t dt (5.2) On cherche une série de Fourier pour un signal apériodique. Si on fait tendre la période T vers l infini (T ), alors on passe d un signal périodique à un signal apériodique. On regarde alors les effets de ceci sur la série de Fourier. Si T augmente, la séparation entre les harmoniques devient de plus en plus petite. On passe donc d un spectre qui est seulement définit à quelques points à un spectre qui est 1

2 continu (infinité d harmoniques). La différence entre deux harmoniques de la série de Fourier est : ω = (n + 1)ω nω = ω (5.3) La différence entre deux harmoniques est tout simplement la fréquence fondamentale. Mais, ω = 2π T (5.4) Alors si T, la séparation entre les fréquences est devient une petite séparation dω. On passe de quelque chose de discret (seulement des fréquences à certains points) à quelque chose de continu. Au fur et à mesure que la période augmente, nω ω (5.5) Quel est l impact de ces changements sur l équation 5.2? Les coefficients de la série de Fourier deviendront de plus en plus faibles : C n lorsque T, ce qui fait du sens, puisque le signal est en train de devenir apériodique. Cependant, le produit C n T ne devient pas nul : C n T Cette dernière équation représente la transformée de Fourier : F (ω) = F{f(t)} = f(t)e jωt dt (5.6) f(t)e jωt dt (5.7) La transformée inverse est donnée par : f(t) = 1 2π F (ω)e jωt dω (5.8) Exemple 1 Faire la transformée de Fourier du pulse suivant : V m v(t) -τ/2 τ/2 t Gabriel Cormier 2 GELE3132

3 En appliquant directement l équation 5.7, on obtient : V (ω) = τ/2 τ/2 e jωt = V m jω = V m jω V m e jωt dt τ/2 τ/2 ( 2j sin ωτ 2 ) On peut écrire ceci sous une autre forme, V (ω) = V m τ sin ωτ/2 ωτ/2 = V m τ sinc(ωτ/2) 5.2 Convergence de la transformée de Fourier Pour que la transformée de Fourier existe, il faut que la fonction f(t) converge. Les pulses et exponentiels qui sont très utilisés en génie électrique sont des intégrales qui converges. Cependant, certains signaux intéressants, comme une constante ou les sinusoïdes, n ont pas d intégrale qui converge. On fait un peu de gymnastique mathématique pour obtenir la transformée de Fourier de ces signaux. On prend l exemple d une constante A. On peut approximer cette fonction par la fonction suivante : f(t) = Ae ɛ t (5.9) Si ɛ, f(t) A. La transformée de Fourier de f(t) est donc : F (ω) = En faisant l intégration, on obtient : F (ω) = Ae ɛt e jωt dt + A ɛ jω + A ɛ + jω = Ae ɛt e jωt dt (5.1) 2ɛA ɛ 2 + ω 2 (5.11) Lorsqu on fait tendre ɛ, la transformée de Fourier devient un pulse δ. La surface sous F (ω) représente la force du pulse et est : La transformée de Fourier d une constante A est donc : 2ɛA dω = 2πA (5.12) ɛ 2 + ω2 F{A} = 2πAδ(ω) (5.13) Gabriel Cormier 3 GELE3132

4 Transformée de Fourier d un signum D autres fonction sont aussi intéressantes à calculer. On commence en premier par la fonction signum. La fonction signum est -1 pour t < et 1 pour t >. On peut exprimer cette fonction en utilisant des échelons : sgn(t) = u(t) u( t) (5.14) Pour calculer la transformée de Fourier de cette fonction, il faut utiliser une approximation. On peut approximer la fonction sgn par l expression suivante : sgn(t) = lim ɛ [e ɛt u(t) e ɛt u( t)], ɛ > (5.15) À partir de l équation 5.7, on calcule F (ω) = = e (ɛ+jω)t e ɛt e jωt dt (ɛ + jω) e(ɛ jω)t ɛ jω e ɛt e jωt dt = 1 ɛ + jω 1 ɛ jω = 2jω ω 2 + ɛ 2 On prend maintenant la limite ɛ, lim ɛ 2jω ω 2 + ɛ = 2 2 jω (5.16) Transformée de Fourier d un échelon On peut faire la transformée de Fourier d un échelon si on s aperçoit qu un échelon peut être décrit par : u(t) = sgn(t) (5.17) Alors, F{u(t)} = F{.5} + F{.5 sgn(t)} = πδ(ω) + 1 jω (5.18) Gabriel Cormier 4 GELE3132

5 5.3 Utilisation de la transformée de Laplace On peut utiliser la transformée de Laplace pour trouver la transformée de Fourier si on suit quelques règles de base. 1. Les pôles de la transformée de Laplace doivent tous être négatifs (ou zéro) et réels. 2. Si f(t) est zéro pour t, la transformée de Fourier est obtenue en remplaçant s par jω. 3. Si f(t) est zéro pour t, la transformée de Fourier est obtenue en faisant une rotation de la fonction autour de l axe y (pour obtenir une fonction où f(t) est zéro pour t ), puis on calcule sa transformée de Laplace, puis on remplace s = jω. 4. Si la fonction est non nulle pour toutes les valeurs de t, on calcule deux transformées pour t < et t >, puis on fait la somme. Exemple 2 Calculer la transformée de Fourier de e at cos(ω t) u(t). La transformée de Laplace de cette fonction est : s + a (s + a) 2 + ω 2 Si on vérifie les conditions, on voit que les pôles sont négatifs et réels. Ensuite, on voit que la fonction est nulle pour t <. On peut donc remplacer s = jω : F{f(t)} = jω + a (jω + a) 2 + ω 2 Exemple 3 Calculer la transformée de Fourier de e at cos(ω t) u( t). On remarque en premier que cette fonction est nulle pour t >. Il faudra donc la transformer à une fonction nulle pour t <. f( t) = e at cos(ω t) u(t) La transformée de Laplace de cette fonction est donnée plus haut. Pour obtenir la transformée de Fourier, il faut remplacer s = jω : F{f(t)} = jω + a ( jω + a) 2 + ω 2 Gabriel Cormier 5 GELE3132

6 Quelques transformées de Fourier importantes sont données dans le tableau 5.1. Fonction f(t) F (ω) impulsion δ(t) 1 constante A 2πAδ(t) signum sgn(t) 2 jω échelon u(t) πδ(ω) + 1 jω exponentiel e at u(t) 1 a + jω, a > cosinus cos(ω t)u(t) π[δ(ω + ω ) + δ(ω ω )] sinus sin(ω t)u(t) jπ[δ(ω + ω ) + δ(ω ω )] Tab. 5.1 Transformées de Fourier communes 5.4 Transformées opérationnelles Tout comme la transformée de Laplace, la transformée de Fourier possède aussi des transformées opérationnelles Multiplication par une constante alors De la définition de la transformée de Fourier, si F{f(t)} = F (ω) (5.19) F{Kf(t)} = KF (ω) (5.2) La multiplication de f(t) par une constante correspond à la multiplication de F (ω) par la même constante. Gabriel Cormier 6 GELE3132

7 5.4.2 Addition (Soustraction) L addition (soustraction) dans le domaine du temps correspond à une addition (soustraction) dans le domaine de fréquence. Donc, si alors F{f 1 (t)} = F 1 (ω) F{f 2 (t)} = F 2 (ω) F{f 3 (t)} = F 3 (ω) F{f 1 (t) + f 2 (t) f 3 (t)} = F 1 (ω) + F 2 (ω) F 3 (ω) (5.21) Dérivé La transformée de Fourier de la dérivée de f(t) est : { } df(t) F = jωf (ω) (5.22) dt De façon générale, { } d n f(t) F = (jω) n F (ω) (5.23) dt n Ces deux équations sont valides si f(t) = à ± Intégration L intégration dans le domaine du temps correspond à diviser par jω dans le domaine de Laplace. { t } F f(x)dx = F (ω) (5.24) jω Cette relation est seulement valide si f(x)dx = (5.25) Changement d échelle Le temps et la fréquence sont des domaines réciproques : si le temps est étiré, la fréquence est compressée (et vice-versa). F {f(at)} = 1 ( ω ) a F, a > (5.26) a Gabriel Cormier 7 GELE3132

8 5.4.6 Translation dans le domaine du temps La translation dans le domaine du temps représente un déphasage : l amplitude du signal ne change pas, mais sa phase change. F {f(t a)} = e jωa F (ω) (5.27) Translation dans le domaine de fréquence La translation dans le domaine de fréquence correspond à une multiplication par un exponentiel dans le domaine du temps. F { e jω t f(t) } = F (ω ω ) (5.28) Modulation La modulation en amplitude est le processus de faire varier l amplitude d un sinusoïde. Si le signal modulant est noté f(t), le signal modulé devient f(t) cos(ω t). Le spectre de ce signal est la moitié de l amplitude de f(t) centré à ±ω. F{f(t) cos(ω t)} =.5F (ω ω ) +.5F (ω + ω ) (5.29) Cette dernière propriété est très importante en télécommunications Convolution La convolution dans le domaine de temps représente une multiplication dans le domaine de fréquence (et vice-versa). { } F x(λ)h(t λ)dλ = X(ω)H(ω) (5.3) 5.5 Application à l analyse de circuits La transformée de Laplace est plus utilisée pour calculer la réponse d un circuit que la transformée de Fourier pour deux raisons : 1) l intégrale de la transformée de Laplace converge Gabriel Cormier 8 GELE3132

9 pour plus de fonctions que l intégrale de la transformée de Fourier, et 2), la transformée de Laplace permet d accommoder les conditions initiales. Cependant, on fera ici quelques exemples de la transformée de Fourier appliquée à l analyse de circuits. Exemple 4 Utiliser la transformée de Fourier pour calculer le courant i o (t) dans le circuit suivant. La source de courant est i g (t) = 2 sgn(t). 3Ω i g (t) 1Ω i o (t) 1H La transformée de Fourier de la source est : I g (ω) = F{2 sgn(t)} = 4 jω La fonction de transfert du circuit est I o /I g. On peut l obtenir directement (à l aide du diviseur de courant) : H(ω) = I o 1 = I g 4 + jω La transformée de Fourier de la sortie est donc : I o (ω) = I g (ω)h(ω) = 4 jω(4 + jω) Pour solutionner et obtenir i o (t), il faut faire l expansion en fractions partielles, I o (ω) = K 1 jω + K jω qu on solutionne pour obtenir I o (ω) = 1 jω jω Gabriel Cormier 9 GELE3132

10 La réponse en fonction du temps est obtenue à l aide de la transformée inverse : i o (t) = 5 sgn(t) 1e 4t u(t) Le graphe du courant en fonction du temps est donné à la figure suivante. 5 Courant (A) temps (s) Est-ce que la réponse obtenue fait du sens? Pour t <, la source de courant fournit -2A. Si ce courant est fixe depuis longtemps, alors l inductance agit comme un court-circuit. Le courant est donc distribué dans les 2 branches : 1/4 dans la branche avec le 3Ω, et 3/4 dans la branche avec le 1Ω (obtenu par diviseur de courant). Alors, i o =.25( 2) = 5A, ce qui est le cas. Pour t >, le courant est maintenant 2A. À la longue, l inductance redeviendra un court-circuit, et on aura la même distribution de courant dans les branches, soit i o = 5A. La réponse calculée est donc correcte. 5.6 Théorème de Parseval Le théorème de Parseval permet de faire le lien entre l énergie d un signal en fonction du temps et l énergie en fonction de la fréquence. Puisque la fréquence et le temps sont deux domaines qui permettent de décrire complètement un signal, il faut que l énergie totale soit la même dans les deux domaines. Le théorème de Parseval est : f 2 (t)dt = 1 2π F (ω) 2 dω (5.31) Gabriel Cormier 1 GELE3132

11 Exemple 5 Le courant dans une résistance de 4Ω est i = 2e 2t u(t) A. Quel est le pourcentage de l énergie totale dissipée dans la résistance qui provient de la bande de fréquence < ω 2 3rad/s? L énergie totale dissipée dans la résistance est : W = R = 4 J i 2 dt = 4 4e 4t dt On peut aussi vérifier l énergie totale par le théorème de Parseval. La transformée de Fourier du courant est : F (ω) = jω Donc, 2 F (ω) = 4 + ω 2 L énergie totale est : W = 4 π = 16 π = 4 J ω dω 2 ( 1 ω ) 2 tan 1 2 L énergie dans la bande de < ω 2 3rad/s est donnée par : W 1 = 4 π 2 3 = 16 π = ω dω 2 ( 1 ω ) 2 tan 1 2 Le pourcentage de l énergie dans cette bande est donc : J 8/3 4 = 66.67% 2 3 Gabriel Cormier 11 GELE3132

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Erreur statique. Chapitre 6. 6.1 Définition

Erreur statique. Chapitre 6. 6.1 Définition Chapitre 6 Erreur statique On considère ici le troisième paramètre de design, soit l erreur statique. L erreur statique est la différence entre l entrée et la sortie d un système lorsque t pour une entrée

Plus en détail

5. Analyse des signaux non périodiques

5. Analyse des signaux non périodiques 5. Analyse des signaux non périodiques 5.. Transformation de Fourier 5... Passage de la série à la transformation de Fourier Le passage d'un signal périodique à un signal apériodique peut se faire en considérant

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Automatique (AU3): Précision des systèmes bouclés Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Plan de la présentation Introduction 2 Écart statique Définition Expression Entrée

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

5.2 Théorème/Transformée de Fourier a) Théorème

5.2 Théorème/Transformée de Fourier a) Théorème . Théorème de Fourier et Transformée de Fourier Fourier, Joseph (788). Théorème/Transformée de Fourier a) Théorème Théorème «de Fourier»: N importe quelle courbe peut être décomposée en une superposition

Plus en détail

M1107 : Initiation à la mesure du signal. T_MesSig

M1107 : Initiation à la mesure du signal. T_MesSig 1/81 M1107 : Initiation à la mesure du signal T_MesSig Frédéric PAYAN IUT Nice Côte d Azur - Département R&T Université de Nice Sophia Antipolis frederic.payan@unice.fr 15 octobre 2014 2/81 Curriculum

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

1.1.1 Signaux à variation temporelle continue-discrète

1.1.1 Signaux à variation temporelle continue-discrète Chapitre Base des Signaux. Classi cation des signaux.. Signaux à variation temporelle continue-discrète Les signaux à variation temporelle continue sont des fonctions d une ou plusieurs variables continues

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

Partie 1 - Séquence 3 Original d une fonction

Partie 1 - Séquence 3 Original d une fonction Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)

Plus en détail

LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB

LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB 5.1 Introduction Au cours de séances précédentes, nous avons appris à utiliser un certain nombre d'outils fondamentaux en traitement du

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Cours de Systèmes Asservis

Cours de Systèmes Asservis Cours de Systèmes Asservis J.Baillou, J.P.Chemla, B. Gasnier, M.Lethiecq Polytech Tours 2 Chapitre 1 Introduction 1.1 Définition de l automatique Automatique : Qui fonctionne tout seul ou sans intervention

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes

Plus en détail

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Charges électriques - Courant électrique

Charges électriques - Courant électrique Courant électrique Charges électriques - Courant électrique Exercice 6 : Dans la chambre à vide d un microscope électronique, un faisceau continu d électrons transporte 3,0 µc de charges négatives pendant

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

CHAPITRE V. Théorie de l échantillonnage et de la quantification

CHAPITRE V. Théorie de l échantillonnage et de la quantification CHAPITRE V Théorie de l échantillonnage et de la quantification Olivier FRANÇAIS, SOMMAIRE I INTRODUCTION... 3 II THÉORIE DE L ÉCHANTILLONNAGE... 3 II. ACQUISITION DES SIGNAUX... 3 II. MODÉLISATION DE

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année 2003-2004. Cours de Génie Electrique G.

Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année 2003-2004. Cours de Génie Electrique G. Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année 2003-2004 Cours de Génie Electrique G. CHAGNON 2 Table des matières Introduction 11 1 Quelques mathématiques...

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure. Filtres passe-bas Ce court document expose les principes des filtres passe-bas, leurs caractéristiques en fréquence et leurs principales topologies. Les éléments de contenu sont : Définition du filtre

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Chapitre I La fonction transmission

Chapitre I La fonction transmission Chapitre I La fonction transmission 1. Terminologies 1.1 Mode guidé / non guidé Le signal est le vecteur de l information à transmettre. La transmission s effectue entre un émetteur et un récepteur reliés

Plus en détail

GELE5222 Chapitre 9 : Antennes microruban

GELE5222 Chapitre 9 : Antennes microruban GELE5222 Chapitre 9 : Antennes microruban Gabriel Cormier, Ph.D., ing. Université de Moncton Hiver 2012 Gabriel Cormier (UdeM) GELE5222 Chapitre 9 Hiver 2012 1 / 51 Introduction Gabriel Cormier (UdeM)

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Traitement du signal avec Scilab : la transformée de Fourier discrète

Traitement du signal avec Scilab : la transformée de Fourier discrète Traitement du signal avec Scilab : la transformée de Fourier discrète L objectif de cette séance est de valider l expression de la transformée de Fourier Discrète (TFD), telle que peut la déterminer un

Plus en détail

Equations différentielles linéaires à coefficients constants

Equations différentielles linéaires à coefficients constants Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I

Plus en détail

Cours. Un premier pas en traitement du signal

Cours. Un premier pas en traitement du signal 2ème année d IUT de Mesures Physiques Cours Un premier pas en traitement du signal Olivier BACHELIER Courriel : Olivier.Bachelier@univ-poitiers.fr Tel : 5-49-45-36-79 ; Fax : 5-49-45-4-34 Les commentaires

Plus en détail

Automatique Linéaire 1 1A ISMIN

Automatique Linéaire 1 1A ISMIN Automatique linéaire 1 J.M. Dutertre 2014 Sommaire. I. Introduction, définitions, position du problème. p. 3 I.1. Introduction. p. 3 I.2. Définitions. p. 5 I.3. Position du problème. p. 6 II. Modélisation

Plus en détail

5. Les conducteurs électriques

5. Les conducteurs électriques 5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Analyse spectrale. jean-philippe muller. version juillet 2002. jean-philippe muller

Analyse spectrale. jean-philippe muller. version juillet 2002. jean-philippe muller Analyse spectrale version juillet 2002 Analyse spectrale des signaux continus 1) La représentation temporelle d un signal 2) La représentation fréquentielle d un signal simple 3) Exemples de spectres de

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Chapitre 2 : Techniques de transmission

Chapitre 2 : Techniques de transmission Chapitre 2 : Techniques de transmission /home/kouna/d01/adp/bcousin/repr/cours/2.fm - 14 Janvier 1998 20:09 Plan. Introduction. Phénomènes caractéristiques. Les éléments de la transmission. La modulation.

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique PGA & SDUEE Année 008 09 Interaction milieux dilués rayonnement Travaux dirigés n. Résonance magnétique : approche classique Première interprétation classique d une expérience de résonance magnétique On

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

TP Modulation Démodulation BPSK

TP Modulation Démodulation BPSK I- INTRODUCTION : TP Modulation Démodulation BPSK La modulation BPSK est une modulation de phase (Phase Shift Keying = saut discret de phase) par signal numérique binaire (Binary). La phase d une porteuse

Plus en détail

Systèmes de transmission

Systèmes de transmission Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Communications numériques

Communications numériques Communications numériques 1. Modulation numérique (a) message numérique/signal numérique (b) transmission binaire/m-aire en bande de base (c) modulation sur fréquence porteuse (d) paramètres, limite fondamentale

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

SYSTÈMES ASSERVIS CORRECTION

SYSTÈMES ASSERVIS CORRECTION SYSTÈMES ASSERVIS CORRECTION //07 SYSTÈMES ASSERVIS CORRECTION ) Introduction... 3.) Les différents systèmes de commande... 3.2) Performances des systèmes asservis... 4.3) Fonction de transfert en boucle

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

Intégrales doubles et triples - M

Intégrales doubles et triples - M Intégrales s et - fournie@mip.ups-tlse.fr 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5

Plus en détail

Programme Pédagogique National du DUT «Réseaux et Télécommunications» Présentation de la formation

Programme Pédagogique National du DUT «Réseaux et Télécommunications» Présentation de la formation Programme Pédagogique National du DUT «Réseaux et Télécommunications» Présentation de la formation PPN Réseaux et Télécommunications publié par arrêté du 24 juillet 2008 Sommaire 1 Présentation générale

Plus en détail

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Fonctions Analytiques

Fonctions Analytiques 5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise.

LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise. M Informatique Réseaux Cours bis Couche Physique Notes de Cours LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise. Les technologies utilisées sont celles du traitement

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE

J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE RANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE Un message numérique est une suite de nombres que l on considérera dans un premier temps comme indépendants.ils sont codés le plus souvent

Plus en détail

Caractéristiques des ondes

Caractéristiques des ondes Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace

Plus en détail

Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus.

Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus. JF WALHIN* J PARIS* * Université Catholique de Louvain, Belgique Le Mans Assurances, Belgique RÉSUMÉ Nous proposons une méthodologie générale pour construire un système bonus-malus équilibré basé sur une

Plus en détail

1 Systèmes triphasés symétriques

1 Systèmes triphasés symétriques 1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

ACOUSTIQUE DU BATIMENT

ACOUSTIQUE DU BATIMENT ACOUSTIQUE DU BATIMENT 4 GCU Version 9 Année scolaire 9 Cours Auteurs de la Ressource Pédagogique Mrs Krauss Gérard, Yezou René, Kuznik Frédéric 4ème Année F. KUZNIK G. KRAUSS R. YEZOU SOMMAIRE. CARACTERISATION

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS)

INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS) 1 Géologie, géotechnique, risques naturels, hydrogéologie, environnement et services scientifico-techniques INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS) INTERPRETATION DES

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,

Plus en détail

Programme Pédagogique National du DUT «Génie Électrique et Informatique Industrielle» Présentation de la formation

Programme Pédagogique National du DUT «Génie Électrique et Informatique Industrielle» Présentation de la formation Programme Pédagogique National du DUT «Génie Électrique et Informatique Industrielle» Présentation de la formation Sommaire 2 1 Préambule... 3 2 Présentation générale de la formation... 3 2.1 Compétences

Plus en détail