Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel."

Transcription

1 Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

2 BREVET DE TECHNICIEN SUPÉRIEUR SERVICES INFORMATIQUES AUX ORGANISATIONS SESSION 2015 ÉPREUVE EF2 MATHÉMATIQUES APPROFONDIES Sous épreuve EF2 - facultative Durée : 2 heures Seuls les points supérieurs à 10 sont pris en compte Calculatrice autorisée, conformément à la circulaire n du 16 novembre 1999 : «Toutes les calculatrices de poche, y compris les calculatrices programmables, alphanumériques ou à écran graphique, à condition que leur fonctionnement soit autonome et qu il ne soit pas fait usage d imprimante, sont autorisées. Les échanges de machines entre candidats, la consultation des notices fournies par les constructeurs ainsi que les échanges d informations par l intermédiaire des fonctions de transmission des calculatrices sont interdits». Dès que le sujet vous est remis, assurez-vous qu il est complet. Il comprend 4 pages numérotées de la page 1/4 à 4/4. Une feuille de papier millimétré est à fournir avec le sujet. Durée : 2 heures Page 1/4

3 Exercice 1 (10 points) Les trois parties A, B et C peuvent être traitées de manière indépendante. Une entreprise d envergure internationale produit des composants pour ordinateurs portables, notamment des batteries et des écrans. Partie A Au cours de la production, les batteries peuvent présenter, de façon indépendante, deux défauts principaux, notés a et b. On considère qu une batterie produite est défectueuse lorsqu elle comporte au moins l un des défauts a ou b. On prélève une batterie au hasard dans la production d une journée. La probabilité que le défaut a apparaisse est égale à 0,02, celle que le défaut b apparaisse est égale à 0,01. On note A l événement «le défaut a apparaît», et B l événement «le défaut b apparaît». 1. a) Justifier l égalité : P( A B) P( A) P( B). b) Calculer la probabilité qu une batterie produite soit défectueuse. On arrondira le résultat à la quatrième décimale. 2. On prélève au hasard dans la production un lot de 100 batteries. La production est suffisamment importante pour que ce prélèvement soit assimilé à un tirage aléatoire avec remise. On note X la variable aléatoire qui, à tout prélèvement de 100 batteries, associe le nombre de batteries défectueuses détectées. a) Quelle est la loi de probabilité suivie par la variable aléatoire X? Justifier et donner les paramètres de cette loi. b) Calculer PX ( 3), en arrondissant à la quatrième décimale. Interpréter le résultat. Partie B On s intéresse maintenant à la durée de charge de ces batteries. On prélève au hasard une batterie dans la production, et l on note Y la variable aléatoire qui modélise le temps de charge, en minute, de cette batterie. On admet que la variable aléatoire Y suit la loi normale de paramètres m 80 et Calculer la probabilité P 60 Y 100. On arrondira le résultat à la quatrième décimale. 2. Déterminer le réel h, arrondi à la deuxième décimale, tel que P Y h 0,95. Formuler une interprétation de ce résultat. Durée : 2 heures Page 2/4

4 Partie C La durée de bon fonctionnement d un écran, exprimée en jour, est modélisée par une variable aléatoire T qui suit une loi exponentielle de paramètre. Le temps moyen de bon fonctionnement des écrans est de 1900 jours. 1. En arrondissant à la quatrième décimale, justifier que s exprime en jour 1 par : 0, Quelle est la probabilité que l écran fonctionne encore correctement après 4000 jours d utilisation? On arrondira le résultat à la quatrième décimale. 3. Déterminer le réel t tel que P( T t) 0,7. On donnera la valeur de t arrondie à l entier. Interpréter le résultat obtenu. A. Étude d une fonction Exercice 2 (10 points) On considère la fonction f définie pour tout réel x de l intervalle [1 ; 6,5] par : 2 f ( x) 2x 20x 18 16ln( x). On note C f la courbe représentative de la fonction f dans un repère orthogonal O ; i, j. 4( x 1)( x 4) 1. a) Démontrer que pour tout réel x de l intervalle [1 ; 6,5], on a : f '( x). x b) Étudier le signe de f '( x ) sur l intervalle [1 ; 6,5]. c) Dresser le tableau de variation de la fonction f sur cet intervalle. 2. a) Recopier et compléter le tableau de valeurs suivant, en arrondissant les résultats au dixième. x ,5 f( x ) b) Tracer la courbe C f dans le repère O ;, i j. On pourra choisir pour unités graphiques : 1 cm pour une unité en abscisses et 1 cm pour une unité en ordonnées. 3. Soit F la fonction définie pour tout réel x de l intervalle [1 ; 6,5] par : F( x) x 10 x 2x 16 x ln( x). 3 Vérifier que la fonction F est une primitive de la fonction f sur l intervalle [1 ; 6,5]. Durée : 2 heures Page 3/4

5 B. Applications à l économie Une entreprise fabrique des pièces qu elle conditionne par paquets de cent. Sa fabrication journalière varie entre 100 pièces et 650 pièces. Le bénéfice de l entreprise en milliers d euro, pour q centaines de pièces fabriquées (1 q 6,5 ), est modélisé par f( q ), où f est la fonction définie dans la partie A. 1. a) Justifier que l équation f( q) 0 admet une solution dans l intervalle [4 ; 6,5], et donner une valeur approchée au centième de cette solution. b) En déduire jusqu à quel nombre de pièces fabriquées l entreprise réalise un bénéfice. 2. Déterminer le nombre de pièces que doit fabriquer l entreprise afin d obtenir le bénéfice maximal. Calculer ce bénéfice maximal, arrondi à la centaine d euro. 3. Avec la modélisation choisie, le bénéfice moyen B m réalisé par l entreprise, s exprime, en milliers d euro, par : 1 6,5 Bm f ( x)d x 5,5 1. Calculer ce bénéfice moyen, arrondi à la centaine d euro. Durée : 2 heures Page 4/4

Brevet de technicien supérieur Opticien lunetier session 2010

Brevet de technicien supérieur Opticien lunetier session 2010 Brevet de technicien supérieur Opticien lunetier session 2010 A. P. M. E. P. Exercice 1 11 points Les deux parties A et D peuvent être traitées indépendamment des parties B et C A. Ajustement affine Une

Plus en détail

L'aire du domaine limité par la courbe, l'axe des abscisses et les droites d'équations 4 et 16 est d'environ 0,95 unités d'aire.

L'aire du domaine limité par la courbe, l'axe des abscisses et les droites d'équations 4 et 16 est d'environ 0,95 unités d'aire. T ES/L DEVOIR SURVEILLE 6 24 MAI 2013 Durée : 3h Calculatrice autorisée NOM : Prénom : «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Sujets. Formulaire. mai 2011. Amérique du Nord. novembre 2011. Nouvelle-Calédonie. mai 2012. BTS Métopole (B1) mai 2013.

Sujets. Formulaire. mai 2011. Amérique du Nord. novembre 2011. Nouvelle-Calédonie. mai 2012. BTS Métopole (B1) mai 2013. LOIS CONTINUES Sujets mai 2011 novembre 2011 mai 2012 mai 2013 Amérique du Nord Nouvelle-Calédonie BTS Métopole (B1) BTS Métropole (D) Formulaire LOIS CONTINUES 1 Amérique du Nord mai 2011. EXERCICE 2

Plus en détail

Baccalauréat ES Antilles Guyane 19 juin 2013

Baccalauréat ES Antilles Guyane 19 juin 2013 Exercice Baccalauréat ES Antilles Guyane 9 juin Cet exercice est un questionnaire à choix multiples. Pour chacune des quatre questions, quatre réponses sont proposées ; une seule de ces réponses est exacte.

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPRTION DU BCCLURÉT MTHÉMTIQUES SÉRIE ES Obligatoire et Spécialité 8 Janvier Durée de l épreuve : heures Coefficient : 5 ou 7 L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

Brevet de technicien supérieur Comptabilité et gestion des organisations

Brevet de technicien supérieur Comptabilité et gestion des organisations Comptabilité et gestion des organisations Exercice Les parties A, B et C de cet exercice peuvent être traitées de façon indépendante. A. Utilisation d un ajustement affine La Fédération Française de Franchise

Plus en détail

Date Travail effectué PROBABILITES CONDITIONNELLES

Date Travail effectué PROBABILITES CONDITIONNELLES Date Travail effectué 06/09 Prise de contact. Présentation du programme et de l épreuve de BTS. Devoir maison (Exercice analyse BTS 2007) A faire pour le 13/09 PROBABILITES CONDITIONNELLES Introduction

Plus en détail

MATHÉMATIQUES (1 heure)

MATHÉMATIQUES (1 heure) NE RIEN ÉCRIRE DANS CE CADRE Académie : Session : Modèle E.N. Examen : Série : Spécialité/option : Repère de l épreuve : Epreuve/sous épreuve : NOM (en majuscule, suivi s il y a lieu, du nom d épouse)

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 21 février 2015 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 21 février 2015 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 février 015 MATHEMATIQUES durée de l épreuve : 3h coefficient Le sujet est paginé de 1 à 5. Veuillez vérifier que vous avez bien toutes les pages. En cas d anomalie,

Plus en détail

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire Année universitaire 2013-2014 Diplôme de D.A.E.U Option A 1 ère session Juin 2014 Intitulé de la matière : Nom de l enseignant : Mathématiques Mme Baulon Date de l épreuve : Mercredi 11 juin 2014 13.30-16.30

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Brevet de technicien supérieur Polynésie mai 2014 - Services informatiques aux organisations

Brevet de technicien supérieur Polynésie mai 2014 - Services informatiques aux organisations Brevet de technicien supérieur Polynésie mai 204 - Épreuve facultative A. P. M. E. P. Exercice 0 points Le centre de radiologie RadioPro souhaite confier à une entreprise la sauvegarde de fichiers de données

Plus en détail

Baccalauréat ES Amérique du Nord 3 juin 2010

Baccalauréat ES Amérique du Nord 3 juin 2010 Baccalauréat ES Amérique du Nord 3 juin 2010 EXERCICE 1 On considère la fonction f définie et dérivable sur l intervalle ( [ 2 ; 11], et on donne sa courbe représentative C f dans un repère orthogonal

Plus en détail

Exercice 1 ( Pondichéry 2011) ( 5 points)

Exercice 1 ( Pondichéry 2011) ( 5 points) Terminale STG ANNALES de bac sur la fonction ln 00-0 Eercice ( Pondichér 0) ( 5 points) Soit f la fonction définie sur l intervalle [ ; 8] par f() = 30 ln() + 0 0.. n admet que la fonction f est dérivable

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session 2016. MATHÉMATIQUES - Série ES - ENSEIGNEMENT OBLIGATOIRE. MATHÉMATIQUES - Série L - ENSEIGNEMENT DE SPECIALITE

BACCALAURÉAT GÉNÉRAL. Session 2016. MATHÉMATIQUES - Série ES - ENSEIGNEMENT OBLIGATOIRE. MATHÉMATIQUES - Série L - ENSEIGNEMENT DE SPECIALITE BACCALAURÉAT GÉNÉRAL Session 2016 MATHÉMATIQUES - Série ES - ENSEIGNEMENT OBLIGATOIRE Durée de l'épreuve : 3 heures - Coefficient : 5 MATHÉMATIQUES - Série L - ENSEIGNEMENT DE SPECIALITE Durée de l'épreuve

Plus en détail

DIPLOME NATIONAL DU BREVET - SESSION 2003 Académie d Aix-Marseille Série : Collège Mathématiques

DIPLOME NATIONAL DU BREVET - SESSION 2003 Académie d Aix-Marseille Série : Collège Mathématiques DIPLOME NATIONAL DU BREVET - SESSION 2003 Académie d Aix-Marseille Mathématiques Notation sur 40 Page 1/5 L expression écrite et la présentation de la copie sont notées (4 points). Toutes les calculatrices

Plus en détail

Corrigé du baccalauréat STMG Antilles Guyane 18 juin 2014

Corrigé du baccalauréat STMG Antilles Guyane 18 juin 2014 Durée : 3 heures Corrigé du baccalauréat STMG Antilles Guyane 18 juin 2014 EXERCICE 1 5 points Partie A Cette partie est un questionnaire à choix multiples (QCM). Une agence de voyage, propose un itinéraire

Plus en détail

C est donné par : ( ) 2) Calculer le nombre n de sacs fabriqués pour un coût de production de 288 000. ( n) P( n) C( n)

C est donné par : ( ) 2) Calculer le nombre n de sacs fabriqués pour un coût de production de 288 000. ( n) P( n) C( n) EXERCICES SUR LES FONCTIONS DÉRIVÉES Exercice 1 Pour une fabrication comprise entre 1000 et 3000 sacs par an, le bureau d'étude établit les éléments suivants (n désigne le nombre de sacs produits, les

Plus en détail

B A C C A L A U R E A T G E N E R A L

B A C C A L A U R E A T G E N E R A L B A C C A L A U R E A T G E N E R A L SESSION 2006 MATHÉMATIQUES SERIE : ES DUREE DE L EPREUVE: 3 heures - COEFFICIENT : 7 Ce sujet comporte 6 pages dont feuille ANNEXE L utilisation d une calculatrice

Plus en détail

Soit la fonction f définie sur ]2 ; 10] par 2

Soit la fonction f définie sur ]2 ; 10] par 2 T le ES 2 Chapitre 10 Convexité 2014-2015 Exercice 1 : On considère une fonction f définie et dérivable sur l intervalle [ 2 ; 4]. On note f la fonction dérivée de la fonction f. La courbe C f représente

Plus en détail

Corrigé du baccalauréat ES Asie 16 juin 2015

Corrigé du baccalauréat ES Asie 16 juin 2015 Corrigé du baccalauréat ES Asie 16 juin 015 EXERCICE 1 Commun à tous les candidats Aucune justification n était demandée dans cet exercice. 5 points 1. On lance une pièce de monnaie bien équilibrée 10

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

Probabilités conditionnelles Exercices

Probabilités conditionnelles Exercices Probabilités conditionnelles Exercices 1 Exercice Lors d une enquête portant sur les 2000 salariés d une entreprise, on a obtenu les informations suivantes : 30 % des salariés ont 40 ans ou plus ; 40 %

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES Durée de l épreuve : 3 heures Coefficient : 7 (ES) ES : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques de poche sont autorisées conformément

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Chapitre 8 Lois à densité

Chapitre 8 Lois à densité Introduction Une urne contient 10 boules indiscernables au toucher numérotées 0 à 9. Une expérience aléatoire consiste à tirer une boule dans cet urne et à regarder son numéro. On note X la fonction qui

Plus en détail

a. (0,5) Probabilité que le candidat n ait pas un dossier de bonne qualité et soit admis à la formation :. b. (0,5)

a. (0,5) Probabilité que le candidat n ait pas un dossier de bonne qualité et soit admis à la formation :. b. (0,5) Exercice 1 : (5 points) 1 On choisit un candidat au hasard et on note : l évènement : «le candidat a un dossier jugé de bonne qualité»; l évènement : «le candidat est admis à suivre la formation» a (0,5)

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Le sujet comporte 8 pages numérotées de à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Donner les réponses à cet exercice dans le cadre prévu à la page 3 Un distributeur

Plus en détail

Baccalauréat STI Génie civil Métropole 16 septembre 2010

Baccalauréat STI Génie civil Métropole 16 septembre 2010 Durée : 4 heures Baccalauréat STI Génie civil Métropole 16 septembre 010 L utilisation d une calculatrice est autorisée pour cette épreuve. Le candidat doit traiter les deux exercices et le problème. EXERCICE

Plus en détail

Corrigé du baccalauréat STI Métropole juin 2011 Génie électronique, électrotechnique, optique

Corrigé du baccalauréat STI Métropole juin 2011 Génie électronique, électrotechnique, optique Durée : 4 heures Corrigé du baccalauréat STI Métropole juin 011 Génie électronique, électrotechnique, optique EXERCICE 1 5 points 1. Équation z z +4=0 : = ( ) 4 4=86= 8= ( i ) < 0. L équation a donc deux

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

Chapitre 1. Droites. Nos objectifs. Activités et applications. Chapitre 1. 2. Équations de droites. 1. Coefficient directeur

Chapitre 1. Droites. Nos objectifs. Activités et applications. Chapitre 1. 2. Équations de droites. 1. Coefficient directeur hapitre Droites Nos objectifs Beaucoup d élèves ont des difficultés avec les droites et la résolution de sstèmes d équations linéres est pourquoi nous avons choisi de regrouper dans un chapitre «à part»

Plus en détail

U U. BAC BLANC MATHEMATIQUES Jeudi 17 janvier 2013, 9h00 12h00 TES 1/6

U U. BAC BLANC MATHEMATIQUES Jeudi 17 janvier 2013, 9h00 12h00 TES 1/6 BAC BLANC MATHEMATIQUES Jeudi 17 janvier 2013, 9h00 12h00 TES 1/6 Durée de l épreuve : 3 heures Calculatrice autorisée. Tout élève doit traiter quatre exercices. La feuille 5/6 est à rendre pour les élèves

Plus en détail

Module de Maths approfondies. Enoncés des exercices

Module de Maths approfondies. Enoncés des exercices Module de Maths approfondies Enoncés des exercices Université Paul Sabatier - Toulouse 3 IUT de Toulouse 3 A Département GEA PONSAN Clement Rau clement.rau@iut-tlse3.fr Systémes linéaires, Pivot de Gauss.

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Comptabilité et gestion des organisations de 2001 à 2011

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Comptabilité et gestion des organisations de 2001 à 2011 BREVET DE TECHNICIEN SUPÉRIEUR A. P. M. E. P. SOUS ÉPREUVE : MATHÉMATIQUES Comptabilité et gestion des organisations de 2001 à 2011 Nouvelle-Calédonie 2000................................ 4 Métropole 2001..........................................

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

NATHALIE RODRIGUEZ avril 2014

NATHALIE RODRIGUEZ avril 2014 Ä ÒÒ Ð Ù ÌË Å Ø Ñ Ø ÕÙ º ºÇº NATHALIE RODRIGUEZ avril 2014 IREM PARIS XIII - GROUPE «ENSEIGNEMENTS TECHNOLOGIQUES» Sommaire 1 C.G.O. métropole, mai 2002 9 Exercice 1 : suite géométrique, fonction exponentielle,

Plus en détail

CREATION D UN SITE INTERNET COMMUN ET FOURNITURE ET POSE DE SUPPORTS NUMERIQUES TACTILES EN SUD- ESSONNE

CREATION D UN SITE INTERNET COMMUN ET FOURNITURE ET POSE DE SUPPORTS NUMERIQUES TACTILES EN SUD- ESSONNE D E P A R T E M E N T D E L ' E S S O N N E COMMUNE DE DOURDAN CREATION D UN SITE INTERNET COMMUN ET FOURNITURE ET POSE DE SUPPORTS NUMERIQUES TACTILES EN SUD- ESSONNE REGLEMENT DE LA CONSULTATION (R.C.)

Plus en détail

TAUX d EVOLUTIONS (cours)

TAUX d EVOLUTIONS (cours) TAUX d EVOLUTIONS (cours) Table des matières 1 calcul d un taux d évolution 3 1.1 activité.................................................. 3 1.2 corrigé activité..............................................

Plus en détail

VENTE GESTION. BP Esthétique Académie de BORDEAUX Avril 2005. Nicole NOILHETAS IEN économie Gestion Académie de BORDEAUX

VENTE GESTION. BP Esthétique Académie de BORDEAUX Avril 2005. Nicole NOILHETAS IEN économie Gestion Académie de BORDEAUX VENTE GESTION Brevet Professionnel Esthétique Arrêté du 23 Juillet - J.O du 2 Août 2003 Note à l attention des enseignants de vente et de gestion EPREUVES PONCTUELLES EPREUVE E3A : Suivi de clientèle et

Plus en détail

CONCOURS POUR LE RECRUTEMENT DE :

CONCOURS POUR LE RECRUTEMENT DE : CONCOURS POUR LE RECRUTEMENT DE : Techniciens supérieurs de la météorologie de première classe, spécialité «instruments et installations» (concours interne et externe). ***************** SESSION 205 *****************

Plus en détail

Les parties A et B sont indépendantes. Fin pour

Les parties A et B sont indépendantes. Fin pour EXERCICE 1 ( 5 points ) Commun à tous les élèves Une somme de 3 000 C a été empruntée auprès d un organisme de crédit aux conditions suivantes : des mensualités de remboursement fixes de 150 C ; un taux

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

MINISTERE DE L EDUCATION Direction des Enseignements Secondaires POLYNESIE FRANCAISE SESSION 2011 S U J E T DNB C11-22 SÉRIE COLLÈGE

MINISTERE DE L EDUCATION Direction des Enseignements Secondaires POLYNESIE FRANCAISE SESSION 2011 S U J E T DNB C11-22 SÉRIE COLLÈGE MINISTERE DE L EDUCATION Direction des Enseignements Secondaires POLYNESIE FRANCAISE SESSION 2011 S U J E T DNB C11-22 SÉRIE COLLÈGE EXAMEN ÉPREUVE DURÉE : : : 2 heures COEFFICIENT : 2 NB DE PAGE(S) :

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

A.P soutien maths. Exercice 2 : Ci-contre, voici la représentation graphique de g dans un repère

A.P soutien maths. Exercice 2 : Ci-contre, voici la représentation graphique de g dans un repère A.P soutien maths Exercice 1 : Soit la fonction f définie sur IR par f(x) = 4x 2 + 16 x + 29 a) Quelle est la nature de f? b) Déterminer les variations de f c) Tracer la représentation graphique de f dans

Plus en détail

Epreuve E6 PROJET ET PRATIQUES DE LA COMMUNICATION

Epreuve E6 PROJET ET PRATIQUES DE LA COMMUNICATION Epreuve E6 PROJET ET PRATIQUES DE LA COMMUNICATION Épreuve orale - durée 40 minutes - Coefficient 4 U6 1. Finalités et objectifs L objectif visé est d apprécier l aptitude du candidat à conduire un projet

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S BACCALAURÉAT GÉNÉRAL Session 2015 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 22 JUIN 2015 Enseignement Obligatoire Coefficient : 7 Durée de l épreuve : 4 heures Ce sujet comporte 7 pages numérotées de 1 à

Plus en détail

par : Bx: 10* 1 lnx /x 10* x x Bx = 0,x

par : Bx: 10* 1 lnx /x 10* x x Bx = 0,x Métropole Juin 20 Série ES Eercice Dans une entreprise, le résultat mensuel, eprimé en milliers d euros, réalisé en vendant centaines d objets fabriqués est modélisé par la fonction B définie et dérivable

Plus en détail

Lycée Louis de Broglie

Lycée Louis de Broglie Lycée Louis de Broglie Livret de révisions de Mathématiques pour l entrée en classe de seconde Ce livret vous proposé pour vous remettre au travail avant votre entrée en seconde Il s agit d exercices divers

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Donner les réponses à cet exercice dans le cadre prévu à la page Une librairie

Plus en détail

T ES/L DEVOIR SURVEILLE 2 12 OCTOBRE 2012

T ES/L DEVOIR SURVEILLE 2 12 OCTOBRE 2012 T ES/L DEVOIR SURVEILLE 2 12 OCTOBRE 2012 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Transferts Thermiques TP n 1 PROBLEMES BIDIMENSIONNELS

Transferts Thermiques TP n 1 PROBLEMES BIDIMENSIONNELS Transferts Thermiques TP n 1 PROBLEMES BIDIMENSIONNELS Ce TP est à réaliser en salle d informatique, seul ou en binôme. Il ne donnera pas lieu à une évaluation directe, et il n est pas demandé de compte-rendu.

Plus en détail

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Classe : TES1 Le 12/05/2003 MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Le tableau suivant donne l évolution du prix d un paquet de café

Plus en détail

Baccalauréat ES/L Amérique du Sud 25 novembre 2015

Baccalauréat ES/L Amérique du Sud 25 novembre 2015 Baccalauréat ES/L Amérique du Sud 25 novembre 2015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Les deux parties de l exercice sont indépendantes. Les probabilités demandées seront données

Plus en détail

L1/S1 : MATH 101 - Pratique des Fonctions Numériques. Livret d exercices II : Limites - continuité - Dérivabilité. Chapitre 2 - Limites

L1/S1 : MATH 101 - Pratique des Fonctions Numériques. Livret d exercices II : Limites - continuité - Dérivabilité. Chapitre 2 - Limites UNIVERSITÉ DE CERGY Année 2013-2014 LICENCE d ÉCONOMIE FINANCE et GESTION Première année - Semestre 1 L1/S1 : MATH 101 - Pratique des Fonctions Numériques Livret d exercices II : Limites - continuité -

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID I NOMBRE DÉRIVÉ DÉFINITION Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. f() f(a) Lorsque le rapport admet une

Plus en détail

Baccalauréat ES L Antilles Guyane juin 2016

Baccalauréat ES L Antilles Guyane juin 2016 Baccalauréat ES L ntilles Guyane juin 016 EXERCICE 1 Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. ucune justification n est demandée. Une bonne réponse rapporte

Plus en détail

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 :

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 : Terminale S - ACP Ex1 : Antilles Septembre 2006 Partie A - Restitution organisée des connaissances On suppose connu le résultat suivant : Si est une variable aléatoire qui suit une loi exponentielle de

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

Baccalauréat ES/L Amérique du Nord 30 mai 2014

Baccalauréat ES/L Amérique du Nord 30 mai 2014 Durée : 3 heures Baccalauréat ES/L Amérique du Nord 30 mai 2014 A. P. M. E. P. Exercice 1 Commun à tous les candidats 4 points Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Durée : 4 heures. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Durée : 4 heures. Les calculatrices sont interdites SESSION 215 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Durée : 4 heures N.B. : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si

Plus en détail

Annexe III HORAIRE ANNUEL

Annexe III HORAIRE ANNUEL 2269 Annexe III HORAIRE ANNUEL Horaire indiqué par discipline, en nombre d'heures à répartir sur les deux années de formation DISCIPLINES A B C 1 Expression française 60 60 2 Langues vivantes étrangères

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Suites géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Déterminer la limite d une suite géométrique de raison strictement positive.

Suites géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Déterminer la limite d une suite géométrique de raison strictement positive. Chapitre 01 Suites géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Suites géométriques. Reconnaître et exploiter une suite géométrique dans une situation donnée. Connaître la formule donnant 1 +

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR AÉRONAUTIQUE ÉPREUVE DE SCIENCES PHYSIQUES ET CHIMIQUES APPLIQUÉES

BREVET DE TECHNICIEN SUPÉRIEUR AÉRONAUTIQUE ÉPREUVE DE SCIENCES PHYSIQUES ET CHIMIQUES APPLIQUÉES BREVET DE TECHNICIEN SUPÉRIEUR AÉRONAUTIQUE ÉPREUVE DE SCIENCES PHYSIQUES ET CHIMIQUES APPLIQUÉES SESSION 2011 Durée : 2 heures Coefficient : 2 Matériel autorisé : - Toutes les calculatrices de poche y

Plus en détail

BREVET BLANC N 2 samedi 20 mai 06

BREVET BLANC N 2 samedi 20 mai 06 REVET LN N samedi 0 mai 06 L'usage de la calculatrice et des instruments de géométrie est autorisé. La présentation, la clarté de la rédaction, la précision des justifications et le soin apporté aux tracés

Plus en détail

REGLEMENT DU JEU TELEVISE «TELE LA QUESTION!»

REGLEMENT DU JEU TELEVISE «TELE LA QUESTION!» REGLEMENT DU JEU TELEVISE «TELE LA QUESTION!» 1. Description du jeu «Télé la question!» 1.1 Organisation et principe du Jeu «Télé la question!» est un jeu organisé par la RTS Radio Télévision Suisse, ayant

Plus en détail

Extremums d une fonction

Extremums d une fonction Extremums d une fonction I) Définitions (rappels de seconde : voir la fiche de cours correspondante) Soit une fonction définie sur un ensemble D inclus dans, et deux réels. est le maximum de sur D si et

Plus en détail

EXERCICES SUR LES FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako. 12 ) lim 2 ; 4 ) + 7. x + ; 11 ) ; 14 ) lim.

EXERCICES SUR LES FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako. 12 ) lim 2 ; 4 ) + 7. x + ; 11 ) ; 14 ) lim. EXERCICE :01 EXERCICES SUR LES FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako Calculer les ites suivantes : + 1 + 1 1 ) ; ) ; ) 5 + + + + 5 ) ; 6 ) + + 6 + 6 + 9 ) ( + ) ; 10

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Calcul mental. Je pense à un nombre, je lui ajoute 27, je trouve 60. Quel est ce nombre?

Calcul mental. Je pense à un nombre, je lui ajoute 27, je trouve 60. Quel est ce nombre? Calcul mental Le golf. Il s agit, à partir d un nombre donné, d atteindre un nombre cible, en respectant un certain nombre de contraintes : Nombre de départ : 12 Nombre cible : 53 Contraintes : ajouter

Plus en détail

Corrigé du baccalauréat ES Nouvelle-Calédonie 19 novembre 2015

Corrigé du baccalauréat ES Nouvelle-Calédonie 19 novembre 2015 Corrigé du baccalauréat ES Nouvelle-Calédonie 19 novembre 2015 EXERCICE 1 Commun à tous les candidats 4 points On donne ci-contre la représentation graphique (C d une fonction f définie et dérivable sur

Plus en détail

B.E.P. MATHÉMATIQUES SCIENCES GROUPE "IMPRESSION"

B.E.P. MATHÉMATIQUES SCIENCES GROUPE IMPRESSION MATHÉMATIQUES SCIENCES DIPLÔMES CONCERNÉS : INTITULÉ DURÉE BEP INDUSTRIES GRAPHIQUES : OPTIONS : IMPRESSION PREPARATION DE LA FORME IMPRIMANTE 2 h 00 CONSIGNES GENERALES : - L'usage des instruments de

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

FONCTIONS DE DEUX VARIABLES SURFACES LIGNES DE NIVEAU EXERCICES CORRIGES

FONCTIONS DE DEUX VARIABLES SURFACES LIGNES DE NIVEAU EXERCICES CORRIGES Exercice n 1. FONCTIONS DE DEUX VARIABLES SURFACES LIGNES DE NIVEAU EXERCICES CORRIGES On considère la fonction f des variables réelles x et y définie par : 1 f ( xy, ) = x xy + 5xy La surface S est la

Plus en détail

CONCOURS «Gagne ta passe VIP 100% Animal» Règlements de participation

CONCOURS «Gagne ta passe VIP 100% Animal» Règlements de participation CONCOURS «Gagne ta passe VIP 100% Animal» Règlements de participation 1. Le concours est organisé par Attraction Images Productions II inc. (ci-après les «Organisateurs du concours») dans le cadre de l

Plus en détail

BREVET BLANC N 1 ~ CORRIGÉ ~

BREVET BLANC N 1 ~ CORRIGÉ ~ Collège Didier Daurat 2 0 1 0 / 2 0 1 1 BREVET BLANC N 1 ~ CORRIGÉ ~ Épreuve de mathématiques Partie 1 : Partie 2 : Partie 3 : Rédaction et soin : 12 points 12 points 12 points 4 points La page numérotée

Plus en détail

Bac S 2015 Métropole - Correction épreuve de mathématiques.

Bac S 2015 Métropole - Correction épreuve de mathématiques. Bac S 2015 Métropole - Correction épreuve de mathématiques. Exercice 1 : 6 points Commun à tous les candidats Les résultats des probabilités seront arrondis à 10 3 près. Partie 1 : 1 ) Soit X une variable

Plus en détail

Exercice N 1 : Extrait du BEP secteur 1 session 2005

Exercice N 1 : Extrait du BEP secteur 1 session 2005 Exercice N 1 : Extrait du BEP secteur 1 session 2005 Tarifs Sam souhaite aller à la piscine municipale dont les tarifs sont présentés dans le tableau ci-contre : Normal 3,80 Groupe 3 On note x le nombre

Plus en détail

Baccalauréat ES Polynésie 10 juin 2011

Baccalauréat ES Polynésie 10 juin 2011 Baccalauréat ES Polynésie 10 juin 2011 Exercice 1 Commun à tous les candidats. 4 points Soit f une fonction définie sur l ensemble ] ; 1[ ]1 ; + [. On note ( C f ) la courbe représentative de f dans le

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Règlement de la Consultation

Règlement de la Consultation MARCHES PUBLICS DE FOURNITURES COURANTES ET SERVICES Groupement de commande : Ville de Vannes et CCAS Service de la commande publique Mairie de VANNES 29, rue Thiers BP 509 56019 VANNES Tél: 02 97 01 61

Plus en détail

Chapitre 5 : Application - Forces Centrales

Chapitre 5 : Application - Forces Centrales Cours de Mécanique du Point matériel Chapitre 5: Application - Forces Centrales SMPC Chapitre 5 : Application - Forces Centrales I Force Centrale I.)- Définition Un point matériel est soumis à une force

Plus en détail

BACCALAUREAT BLANC. Session 2012 MATHEMATIQUES. -Série S- ENSEIGNEMENT DE SPECIALITE. Durée de l épreuve : 4 heures

BACCALAUREAT BLANC. Session 2012 MATHEMATIQUES. -Série S- ENSEIGNEMENT DE SPECIALITE. Durée de l épreuve : 4 heures Cours Privé Catholique Maintenon BACCALAUREAT BLANC Session 2012 MATHEMATIQUES -Série S- ENSEIGNEMENT DE SPECIALITE Durée de l épreuve : 4 heures Les calculatrices électroniques de poche sont autorisées,

Plus en détail

RENOVATION D UN COURT DE TENNIS

RENOVATION D UN COURT DE TENNIS COMMUNE DE LE BREUIL Tél. 03.85.55.28.78 Fax : 03.85.56.08.59 mairie@lebreuilbourgogne.fr RENOVATION D UN COURT DE TENNIS Règlement de la consultation MARCHE 2015 Marchés Publics de travaux Date limite

Plus en détail

Décrets, arrêtés, circulaires

Décrets, arrêtés, circulaires Décrets, arrêtés, circulaires TEXTES GÉNÉRAUX MINISTÈRE DE LA JUSTICE Arrêté du 19 décembre 2008 relatif à la formation professionnelle des commissaires aux comptes NOR : JUSC0828437A La garde des sceaux,

Plus en détail

TP CPGE T.P. numéro 2 : système du premier ordre : réponse fréquentielle.

TP CPGE T.P. numéro 2 : système du premier ordre : réponse fréquentielle. T.P. numéro 2 : système du premier ordre : réponse fréquentielle. Buts du TP : le but du TP n 2 est l étude générale des systèmes du premier ordre alimentés par un signal sinusoïdal (réponse fréquentielle).

Plus en détail

NATHALIE RODRIGUEZ mars 2014

NATHALIE RODRIGUEZ mars 2014 Ä ÒÒ Ð Ù ÌË Å Ø Ñ Ø ÕÙ Áº º Ô٠˺ÁºÇº NATHALIE RODRIGUEZ mars 2014 IREM PARIS XIII - GROUPE «ENSEIGNEMENTS TECHNOLOGIQUES» Sommaire 1 I.G. Nouvelle-Calédonie, novembre 2000 13 Exercice 1 (5 pts) : calcul

Plus en détail

Partie numérique. Réponses proposées N Proposition n 1 Proposition n 2 Proposition n 3 1

Partie numérique. Réponses proposées N Proposition n 1 Proposition n 2 Proposition n 3 1 Durée : 2 heures L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation et de la rédaction entrent pour 4 points dans l appréciation des copies. Exercice n 1 : Partie numérique

Plus en détail

Terminale ST2S juin 2009

Terminale ST2S juin 2009 Terminale STS juin 009 Polynésie 1. Exercice 1 5 points Cet exercice est un questionnaire à choix multiples. ucune justification n est demandée. Pour chacune des questions, une seule des réponses proposées

Plus en détail