Le cycle de vie d'un projet en intelligence d'affaires

Dimension: px
Commencer à balayer dès la page:

Download "Le cycle de vie d'un projet en intelligence d'affaires"

Transcription

1 MTI820 Entrepôts de données et intelligence d affaires Le cycle de vie d'un projet en intelligence d'affaires Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 1

2 QuesKons Rappel: Qu est- ce que le BI? Qu est- ce que l entreposage de données Quels sont les avantages d une solukon de BI / entreposage de données? Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 2

3 QuesKons Quelles sont les principales étapes d un projet en technologie de l informakon (TI)? Quelles sont les différentes approches de développement d une solukon de TI? Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 3

4 Le cycle de vie d un projet en BI Diagramme de flux de travail: Concep<on de l architecture technique Sélec<on et installa<on des produits Croissance Planifica<on de projet / programme Défini<on des besoins d affaires Modélisa<on des données Concep<on physique Concep<on et développement du système ETL Déploiement Concep<on des applica<on de BI Développement des applica<ons de BI Maintenance Ges<on de projet / programme Note: dépendance horizontale et verkcale entre les ackvités; Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 4

5 Projet vs programme de BI Projet: Une seule itérakon dans le cycle de vie d un projet de BI; A une date de début et de fin; Plus facile à planifier. Programme: CoordinaKon de ressources, infrastructures et communicakons sur plusieurs projets; DéfiniKon conknuelle de nouveaux projets (pas de fin abrupte); Plus difficile à planifier. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 5

6 Phases d un projet de BI [1/7] PlanificaKon: Fait interackvement avec la définikon des besoins; Comprend: DéfiniKon de la portée; Recrutement; IdenKficaKon, eskmakon et affectakon des tâches. GesKon du projet: Assure la coordinakon des ackvités du projet; Comprend: Suivi de l avancement et de l état du projet; Suivi des problèmes; Contrôle des changements (ex: portée du projet); Développement du plan de communicakon (affaires et TI). Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 6

7 Phases d un projet de BI [2/7] DéfiniKon des besoins: CriKque à la réussite du projet; Se concentre sur les u<lisateurs, et non les données; IdenKfie les besoins les plus prioritaires; Comprend: Entrevue des uklisateurs; IdenKficaKon des processus d affaires; PréparaKon du document de descripkon des besoins. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 7

8 Phases d un projet de BI [3/7] ModélisaKon des données: Se base sur le document de descripkon des besoins; Processus hautement itérakf et dynamique; Vise la simplicité et l efficacité; Comprend (modèle mul+dimensionnel): IdenKficaKon des faits et leur granularité; IdenKficaKon des dimensions et leur hiérarchie; Stratégies: dénormalisakon, geskon des changements, etc. ConcepKon physique: UKlise le modèle de données; Comprend: Détail du schéma relakonnel (ex: clés, types, contraintes, etc.); OpKmisaKon de la performance (ex: indexes, parkkonnement, agrégakon, etc.); GesKon de la sécurité. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 8

9 Phases d un projet de BI [4/7] ConcepKon de l architecture technique: Définit la vision d ensemble de la solukon et l intégrakon des technologies du projet; Se concentre sur les besoins, pas les aspects techniques; Doit considérer: Environnement technique actuel; DirecKons stratégiques prévues. Comprend: IdenKficaKon des besoins techniques; CréaKon du plan d architecture. SélecKon et installakon des produits: Se base sur le plan d architecture; Produits: DBMS, ETL, reporkng, analyse mulkdimensionnelle, forage de données, etc. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 9

10 Phases d un projet de BI [5/7] ConcepKon et développement du système ETL: Représente environ 70% des efforts et risques du projet; Doit considérer: Nombre et type des sources de données; OuKls disponibles. Comprend: IdenKficaKon et analyse des sources de données; Développement des méthodes d extrackon, de netoyage et de consolidakon des données (code maison ou oukls commerciaux); Développement des méthodes d inserkon de données (ex: scripts, oukls complexes); ValidaKon de la qualité des données. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 10

11 Phases d un projet de BI [6/7] ConcepKon et développement des applicakons de BI: Se fait en parallèle avec la modélisakon des données et la concepkon du plan d architecture; Nécessite une interackon importante avec les uklisateurs; Comprend: ModélisaKon des tableaux de bord, rapports, indices de performances (KPI) adaptés aux uklisateurs; DéfiniKon des modèles de prédickon, classificakon et clustering; ConfiguraKon des oukls et des métadonnées; ImplémentaKon du portail de navigakon; ValidaKon des applicakons. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 11

12 Phases d un projet de BI [7/7] Déploiement: Point de convergence des ackvités de développement; Ne doit pas être fait avant d avoir: Matériel de formakon des uklisateurs; Mécanismes de geskon et de suivi d erreurs; DocumentaKon complète; ValidaKon des données et oukls; Processus efficace de communicakon. Maintenance et croissance: Assure le fonckonnement opkmal du système et prévoit l ajout de nouvelles fonckonnalités; Comprend: Suivi de l uklisakon et réglages de performance (tuning); Sauvegarde et récupérakon des données; Support aux uklisateurs; PréparaKon de nouveaux cycles de développement. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 12

13 QuesKon Doit- on modéliser la solukon tout d un coup (approche top- down) ou bien y aller morceau par morceau (approche bo6om- up)? Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 13

14 Approche top- down vs bo6om- up Caractéris<que Top- down (B. Inmon) BoRom- up (R. Kimball) Objec<fs Livrer une solukon technologiquement saine basée sur des méthodes et technologies éprouvées des bases de données Complexité de la méthode Plutôt complexe Plutôt simple Importance de la concep<on physique Importante Livrer une solukon permetant aux usager d obtenir facilement et rapidement des réponses à leurs requêtes d analyse Peu importante Orienta<on du modèle Orienté données Orienté processus d affaires Accessibilité des u<lisateurs finaux Ou<ls de concep<on Faible TradiKonnels (diagrammes enkté- relakon et flot de données) Forte ModélisaKon dimensionnelle (schéma en étoile) Auditoire principal Professionnels en TI UKlisateurs finaux Source: E. Turban, R. Sharda, D. Delen et D. King (2010). «Business intelligence: A manegerial approach», Pearson. Département de génie logiciel et des TI MTI820 Hiver 2011 C. Desrosiers 14

15 QuesKon Quels sont les facteurs les plus déterminants pour la réussite d un projet de TI? Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 15

16 Besoins prioritaires en TI Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 16

17 Taux de réussite: Le succès d'un projet de BI Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 17

18 Critères de prédisposikon [1/3] Les 5 critères de succès (selon R.Kimball): Critère Le parrainage de la haute direckon* La mokvakon et la légikmité du changement* La faisabilité* Le partenariat entre les intervenants d affaires et des TI La culture analykque Contribu<on 60 % 15 % 15 % 5 % 5 % *: critères indispensables Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 18

19 Critères de prédisposikon [2/3] Parrainage de la haute direckon: Facteur crikque au succès du projet; CaractérisKques d un sponsor idéal: ConvicKon de l impact potenkel de la solukon de BI; Influence importante au sein de l entreprise; Exigeant mais réaliste; Connaissance des concepts de base du BI est un atout; Vision axée sur le succès à long- terme du projet. Important d avoir plusieurs sponsors dans le projet. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 19

20 Critères de prédisposikon [1/3] MoKvaKon et la légikmité du changement: Besoin urgent d améliorer l accès à de l informakon de qualité (ex: concurrence, nouvelle réglementakon, etc.); Les projets de BI alignés avec des besoins d affaires réels ont de meilleures chances de réussir; Le projet est plus facilement juskfiable lorsqu il existe de telles mokvakons. Faisabilité: Concerne principalement la disponibilité de données de qualité: Niveau de détail (granularité) suffisamment fin; Effort raisonnable pour netoyer et consolider. Se détermine à l aide du profilage de données (profiling). Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 20

21 QuesKons Qu est- ce que la portée d un projet de TI? Comment détermine- t- on cete portée? Quels impacts le choix de la portée a- t- il sur le projet? Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 21

22 La portée préliminaire du projet [1/2] Dépend de: Le nombre de sujets d analyse visés (ex: fonckons d affaires, régions, etc.) Le nombre et le type de sources de données brutes; L approche employée pour charger les données des sources dans l entrepôt de données; Les règles d affaires appliquées aux données sources lors de la validakon; Le contenu, le niveau de détail, et l historique des données sources; Les oukls frontaux (front- end) d intelligence d affaires employées pour l analyse; La complexité architecturelle de l environnement. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 22

23 La portée préliminaire du projet DirecKves pour déterminer la portée: Définie en fonckon de besoins spécifiques; Doit apporter une valeur d affaires suffisante à l entreprise, tout en restant faisable; Doit être fait conjointement avec les représentants d affaires et ceux des TI. Approche botom- up (Kimball) ou top- down (Inmon); Document de portée du projet: InformaKon de base sur le projet; Les inclusions et exclusions de la portée; Les critères de succès; Les risques et stratégies de geskon de risque. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 23

24 Informa<on de base Exemple de document de portée Nom du projet BigCo désire maximiser les revenus provenant de ses ackvités de promokon. Présentement, elle dépense environ $40 million annuellement en publicité. L objeckf est de réduire les dépenses reliées aux ackvités promokonnelle de 25% d ici trois ans. La prochaine phase du projet de BI portera sur l informakon promokonnelle, complémentant le projet précédent consacré aux données de vente. Les équipes de vente et de markekng auront accès à la fois aux données de vente et de promokon, permetant ainsi le développement de stratégie promokonnelles plus efficaces. Portée du projet: Trois années de données historiques sur les ackvités internes de promokon; Maximum de 25 uklisateurs inikalement, avec le plan d augmenter la capacité à 150 uklisateurs; L architecture technique sera basée sur Exclusions: Données externes, telles que les informakon sur les ventes et promokons des principaux compékteurs; Support pour des programmes promokonnels non- domeskques; Critères de succès: Une seule source d informakon employée pour les analyses reliées aux ackvités de promokon; RéducKon du temps requis pour effectuer une analyse reliées aux ackvités de promokon; Risques et stratégies de ges<on des risques: Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 24

25 QuesKon Comment juskfie- t- on un projet de TI à la direckon et aux invesksseurs de l entreprise? Comment peut- on démontrer la valeur du projet à ceux- ci? Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 25

26 JusKficaKon du projet [1/2] Retour sur l inveskssement (ROI): ROI = Bénéfices Dépenses. InvesKssements et coûts: Achat/mise à niveau de composantes matérielles: Ex: serveurs, réseau, HD, etc. Achat/mise à niveau de composantes logicielles: Ex: Profilage de données, ETL, DBMS, analyse mulkdimensionnelle, etc. Embauches internes: Ex: analyste de données, DBA, directeur de projet, etc. Ressources externes: Ex: consultants, support technique de produits achetés, etc. Coûts de maintenance: Ex: Frais de maintenance, support et croissance. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 26

27 JusKficaKon du projet [2/2] Bénéfices: AugmentaKon des revenus de vente; Meilleur taux de réponse aux envois publicitaires; ÉliminaKon des produits à faible marge de profit; Meilleure geskon des fournisseurs; RéducKon des dépenses en markekng; DiminuKon du taux d atrikon; RéducKon des cas de fraude; etc. Coûts et bénéfices es<més au stade de planificakon. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 27

28 Exemple de ROI [1/2] Qui: Compagnie IBM, complexe de produckon de semi- conducteurs dans l'état de New- York; Défis: SaKsfaire les besoins en rapports (reporkng) des équipes de produckon et d'ingénierie; SoluKon: SAS Business Intelligence; 600 uklisateurs; 100 sources; 100 Gb; source: Nucleus Research Inc., 2007 Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 28

29 Coûts et bénéfices: Exemple de ROI [2/2] Bénéfices principaux: RéducKon du temps de créakon de rapports; AmélioraKon de la qualité et la visibilité des données; Embauche d'employé en TI évitée; ROI: 386% (après 3 ans) source: Nucleus Research Inc., 2007 Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 29

30 QuesKon Quelle est la composikon d une équipe de développement d une solukon de TI? Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 30

31 Équipe d un projet de BI [1/6] Analogie avec une équipe de hockey: Propriétaire, Président Sponsors Directeur général Directeur de projet Entraîneur chef, Entraîneur adjoint Gardien de but, Centres, Ailiers, Défenseurs Unités spéciales Chef de projet Analyste d affaires, Architecte de données, Analyste en QA, Administrateur de BD, Architecte/développeur ETL, Architecte/développeur d applica<ons BI Spécialiste technique, Spécialiste en sécurité, Spécialiste en forage de données, Chargé des tests, Éducateur Par<sans U<lisateurs Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 31

32 Équipe d un projet de BI [2/6] Sponsor: Membre de la haute direckon; Approuve les budgets; Défend le projet en cas de besoin. Directeur de projet: Sert de liaison entre les sponsors et les autres membres de l équipe; Responsable du leadership et de la direckon du projet; Influence les décisions stratégiques et architecturelles. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 32

33 Équipe d un projet de BI [3/6] Chef de projet: Gère le projet au jour le jour: CoordinaKon des ressources et des ackvités; PlanificaKon des tâches et des budgets; Suivi de l état et de l avancement du projet. Doit pouvoir réagir rapidement aux problèmes rencontrés, avant que ceux- ci s intensifient. Analyste d affaires: Gère la collecte et la définikon des besoins; Assure la juste représentakon des besoins dans les autres étapes du projet; Doit très bien connaître les processus d affaires de l entreprise. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 33

34 Équipe d un projet de BI [4/6] Analyste en QA / intendant des données: Responsable d établir une vue consolidée des définikons et règles des données, à l échelle de l entreprise; S assure que les données insérées dans l entrepôt sont valides et complètes; Peut également être responsable de vérifier l intégrité des applicakons de BI. Architecte de données: En charge de définir une architecture facilitant la réuklisabilité, l intégrakon et l opkmisakon des données; Conçoit et développe le modèle dimensionnel des données; ParKcipe parfois à la collecte des besoins. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 34

35 Équipe d un projet de BI [5/6] Administrateur de BD (DBA): Responsable de converkr le modèle des données en structures physiques de l entrepôt (ex: tables, colonnes, etc.); Choisit des paramètres physiques maximisant la performance de l entrepôt (ex: disposikon des disques, parkkonnement, indexes, etc.) Gère l intégrité, la disponibilité et la performance de l entrepôt au quokdien. Architecte/développeur ETL: Responsable de la concepkon et développement du système ETL; Architecte est souvent impliqué dans la collecte des besoins; Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 35

36 Équipe d un projet de BI [6/6] Architecte/développeur d applicakon de BI: En charge de concevoir la couche d interackon aux données; Conçoit et développe les applicakons de BI, souvent à l aide de produits commerciaux; Configure la couche sémankque des oukls de BI. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 36

37 QuesKons Comment planifie- t- on un projet de TI? À quoi sert cete planificakon? Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 37

38 Plan de projet [1/2] Définit pour chaque ackvité: Ressources responsables; Les dates de début et de fin eskmées (ne doivent pas être modifiées); L état courant (ex: future, en cours ou complétée); Les dates de début et de fin mises à jour; Le nombre de jours de retard; Le % complété; Les dépendances (autres tâches). Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 38

39 Plan de projet [2/2] Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 39

40 La geskon du risque (selon Kimball) Dangers: Ne pas pouvoir recruter un sponsor influent et visionnaire provenant de la haute direckon; En faire trop en même temps, au lieu d employer une approche de développement itérakve centrée sur un sujet à la fois; Être séduit par la technologie, au lieu de se concentrer sur les objeckfs et les besoins de l entreprise; Supposer qu il est possible de développer le projet sans l apport des membres d affaires; Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 40

41 La geskon du risque (selon Kimball) Dangers (suite): Aller de l avant avec le projet, même si les données source sont de piètre qualité ou n ont pas été validées; Faire la concepkon d un entrepôt de données comme s il s agissait d une BD transackonnelle (ex: normalisakon); Sous- eskmer la quankté de travail reliée au netoyage et la consolidakon des données; Accorder trop d importance au système ETL, au détriment de la performance et la qualité des applicakons de BI (et vice- versa). Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 41

42 QuesKons À quoi correspond le développement Agile? Quels sont les avantages/inconvénients de ce mode de développement? Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 42

43 Le développement en mode agile [1/2] Philosophie Agile: «Si un projet doit se solder par un échec, mieux vaut le savoir après 1 seul mois, qu après 15 mois» Jeffries, Anderson et Hendrickson (2000). Extreme Programming Installed. Principes de base des méthodes agile: Se concentrer sur les besoins prioritaires; Développer en itérakons/prototype; PeKtes équipes; CollaboraKon soutenue entre l équipe de développement et les clients; La livraison est plus importante que le processus; DocumentaKon : seulement le nécessaire. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 43

44 Le développement en mode agile [2/2] Agile vs Développement en cascade: Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 44

45 Les entrepôts de données en mode agile [1/3] Exemple d itérakons de développement agile ITÉRATION 1: Défini<on des besoins ITÉRATION 2: Défini<on de la portée ITÉRATION 3: Dévelopement de la solu<on ITÉRATION 4: Intégra<on de la solu<on Durée 1-2 mois 1-2 mois 4-8 mois 1-2 mois Livrable Prototype SoluKon BI SoluKon complète SoluKon complète livrée Processus 75% Besoins 25% ConcepKon 0% Développement 0% Test 25% Besoins 50% ConcepKon 15% Développement 10% Test 5% Besoins 10% ConcepKon 50% Développement 35% Test 5% Besoins 10% ConcepKon 50% Développement 35% Test Ressources 50% UKlisateur 100% Architect 25% Lead technique 0% Sp. modélisakon 0% Développeur ETL 0% Développeur BI 50% UKlisateur 100% Architecte 100% Lead technique 50% Sp. modélisakon 0% Développeur ETL 50% Développeur BI 25% UKlisateur 100% Architecte 100% Lead technique 100% Sp. modélisakon 100% Développeur ETL 100% Développeur BI 100% Sp. tests 100% UKlisateur 100% Architecte 100% Lead technique 50% Sp. modélisakon 50% Développeur ETL 50% Développeur BI 100% Sp. tests 100% Chef livraison Technologie Accès uklisateurs Accès uklisateurs Données d analyse Données source Accès uklisateurs Données d analyse Netoyage et transfert Données source Accès uklisateurs Données d analyse Netoyage et transfert Données source Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 45

46 Les entrepôts de données en mode agile [2/3] Avantages vs inconvénients: Avantages Livraison plus rapide de la solukon; RéducKon des coûts; Évite d avoir des besoins obsolètes. Inconvénients Peut développer des silos de données; PotenKel de réduire: o Qualité de données; o Stabilité du système; o Partage d informakon. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 46

47 Les entrepôts de données en mode agile [3/3] SoluKon: Integrated Sandboxing*: Créer un environnement de prototype (Sand box); AdministraKon de données flexible et allégée; Copie de produckon / fédérakon des données; Ramener les données rapidement sans trop de formalisme; Gouvernance; Déploiement en produckon; *: S. Brobst, M. McInKre et E. Rado (2008). Agile Data Warehousing with Integrated Sandboxing, Business Intelligence Journal, vol. 13, no. 1. Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 47

Architecture des entrepôts de données

Architecture des entrepôts de données MTI820 Entrepôts de données et intelligence d affaires Architecture des entrepôts de données Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaEi, C. Desrosiers 1 Le cycle de vie d un projet

Plus en détail

MTI820 Entrepôts de données et intelligence d affaires. Intégra*on des données et ETL

MTI820 Entrepôts de données et intelligence d affaires. Intégra*on des données et ETL MTI820 Entrepôts de données et intelligence d affaires Intégra*on des données et ETL Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaEi, C. Desrosiers 1 Le cycle de vie d un projet en BI

Plus en détail

MTI820 Entrepôts de données et intelligence d affaires. Gouvernance des données et ges1on des données de référence

MTI820 Entrepôts de données et intelligence d affaires. Gouvernance des données et ges1on des données de référence MTI820 Entrepôts de données et intelligence d affaires Gouvernance des données et ges1on des données de référence 1 La gouvernance des données Défini1on: «Processus de supervision et de décision qui permet

Plus en détail

Présenta;on du cours

Présenta;on du cours MTI820 Entrepôts de données et intelligence d affaires Présenta;on du cours Hiver 2015 C. Desrosiers Département de génie logiciel et des TI MTI820 Hiver 2013 C. Desrosiers 1 InformaBons de base Titre:

Plus en détail

Introduc;on à l intelligence d affaires et aux entrepôts de données

Introduc;on à l intelligence d affaires et aux entrepôts de données MTI820 Entrepôts de données et intelligence d affaires Introduc;on à l intelligence d affaires et aux entrepôts de données C. Desrosiers Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaBi,

Plus en détail

MTI820 Entrepôts de données et intelligence d affaires. Les applica+ons de BI

MTI820 Entrepôts de données et intelligence d affaires. Les applica+ons de BI MTI820 Entrepôts de données et intelligence d affaires Les applica+ons de BI Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaEi, C. Desrosiers 1 Le cycle de vie d un projet en BI Diagramme

Plus en détail

Présentation Level5. Editeur de Logiciels. «If it s not monitored, it s not in production» Theo Schlossnagle #velocityconf

Présentation Level5. Editeur de Logiciels. «If it s not monitored, it s not in production» Theo Schlossnagle #velocityconf Editeur de Logiciels Présentation Level5 «If it s not monitored, it s not in production» Theo Schlossnagle #velocityconf «If you can not measure it, you can not improve it» Lord Kelvin vous accompagne

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

MTI820 Entrepôts de données et intelligence d affaires. Concep)on physique des données

MTI820 Entrepôts de données et intelligence d affaires. Concep)on physique des données MTI820 Entrepôts de données et intelligence d affaires Concep)on physique des données Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaFi, C. Desrosiers 1 Le cycle de vie d un projet en

Plus en détail

Postes en technologie de l information

Postes en technologie de l information Mutation 2013 Postes en technologie de l information Consultez les témoignages de nos ambassadeurs Suzanne Samson Gestionnaire en technologies de l information Simon Barriault Analyste en informatique

Plus en détail

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1 JASPERSOFT ET LE PAYSAGE ANALYTIQUE Jaspersoft et le paysage analytique 1 Ce texte est un résumé du Livre Blanc complet. N hésitez pas à vous inscrire sur Jaspersoft (http://www.jaspersoft.com/fr/analyticslandscape-jaspersoft)

Plus en détail

Chapitre 1 «mes chiffres clés à portée de mains»

Chapitre 1 «mes chiffres clés à portée de mains» Chapitre 1 «mes chiffres clés à portée de mains» Le volume des données manipulées par les acteurs du tourisme est de plus en plus important. Au delà des données mé6ers qui se complexifient, les données

Plus en détail

Enquête 2014 de rémunération globale sur les emplois en TIC

Enquête 2014 de rémunération globale sur les emplois en TIC Enquête 2014 de rémunération globale sur les emplois en TIC Enquête 2014 de rémunération globale sur les emplois en TIC Les emplois repères de cette enquête sont disponibles selon les trois blocs suivants

Plus en détail

Entrepôt de données et l Analyse en ligne. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot

Entrepôt de données et l Analyse en ligne. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot Entrepôt de données et l Analyse en ligne Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot Déroulement du cours 17 janvier : cours et TD 20 janvier : cours?

Plus en détail

Solu%on de Business Intelligence leader pour la ges%on de la performance d entreprise. myssii www.myssii.fr - 2012 Jedox AG, www.jedox.

Solu%on de Business Intelligence leader pour la ges%on de la performance d entreprise. myssii www.myssii.fr - 2012 Jedox AG, www.jedox. by Solu%on de Business Intelligence leader pour la ges%on de la performance d entreprise 2014 Jedox by myssii Pour toute entreprise, l informatique d aide à la décision est devenue une arme de compétitivité

Plus en détail

Cabinet Conseil en Intelligence d Affaires. L'Intégration de données et la Qualité des données dans l'écosystème BI actuel et future

Cabinet Conseil en Intelligence d Affaires. L'Intégration de données et la Qualité des données dans l'écosystème BI actuel et future Cabinet Conseil en Intelligence d Affaires L'Intégration de données et la Qualité des données dans l'écosystème BI actuel et future Nous croyons que Les données sont des actifs corporatifs Les projets

Plus en détail

Catalogue de FORMATIONS 2015

Catalogue de FORMATIONS 2015 Catalogue de FORMATIONS 2015 Qui sommes nous? î SmartView est un cabinet de conseil et de forma1on, basé à Montpellier et Paris, qui accompagne ses clients professionnels, grands comptes ou PME innovantes,

Plus en détail

Design & conception de site web optimisé SEO. augmentez la conversion sur vos sites

Design & conception de site web optimisé SEO. augmentez la conversion sur vos sites Design & conception de site web optimisé SEO augmentez la conversion sur vos sites Consultant web indépendant, mon approche en conception de site internet est centrée utilisateurs, prend en compte vos

Plus en détail

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM Étude de cas technique QlikView : Big Data Juin 2012 qlikview.com Introduction La présente étude de cas technique QlikView se consacre au

Plus en détail

VIRTUALISATION: Des solutions technologiques pour tous vos besoins d'affaires

VIRTUALISATION: Des solutions technologiques pour tous vos besoins d'affaires VIRTUALISATION: EN FAIRE PLUS AVEC MOINS Des solutions technologiques pour tous vos besoins d'affaires De plus en plus de serveurs. Pas surprenant que les coûts en informatique continuent de monter! Si

Plus en détail

Conseiller en architecture d entreprise. Conseiller en architecture organique. Conseiller en architecture fonctionnelle

Conseiller en architecture d entreprise. Conseiller en architecture organique. Conseiller en architecture fonctionnelle Cliquez sur le poste désiré pour consulter sa description : Conseiller en architecture d entreprise Conseiller en architecture organique Conseiller en architecture fonctionnelle Conseiller en architecture

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Les méthodes Agiles. Introduc)on aux méthodes Agiles Exemple : Scrum

Les méthodes Agiles. Introduc)on aux méthodes Agiles Exemple : Scrum Les méthodes Agiles Introduc)on aux méthodes Agiles Exemple : Scrum Défini)on de base Les méthodes Agiles sont des procédures de concep)on de logiciel qui se veulent plus pragma)ques que les méthodes tradi)onnelles

Plus en détail

Comment puis- je appuyer mon Scrum Master?

Comment puis- je appuyer mon Scrum Master? Je prend charge d un projet Agile: Comment puis- je appuyer mon Scrum Master? Novembre 2013 Agile Tour Copyright 2012, Pyxis Technologies inc. Tous droits réservés Qui sommes nous? Mar$n Dupont mdupont@pyxis-

Plus en détail

Technologie data distribution Cas d usage. www.gamma-soft.com

Technologie data distribution Cas d usage. www.gamma-soft.com Technologie data distribution Cas d usage www.gamma-soft.com Applications stratégiques (ETL, EAI, extranet) Il s agit d une entreprise industrielle, leader français dans son domaine. Cette entreprise est

Plus en détail

Business Intelligence avec SQL Server 2012

Business Intelligence avec SQL Server 2012 Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Table des matières Les éléments à télécharger sont disponibles

Plus en détail

Objectif : Passer de l analyse métier et fonctionnelle à la définition des applications qui

Objectif : Passer de l analyse métier et fonctionnelle à la définition des applications qui Formation PARTIE 1 : ARCHITECTURE APPLICATIVE DUREE : 5 h Objectif : Passer de l analyse métier et fonctionnelle à la définition des applications qui automatisent les fonctions Définir une architecture

Plus en détail

QLIKVIEW POUR SALESFORCE

QLIKVIEW POUR SALESFORCE QLIKVIEW POUR SALESFORCE Exploiter rapidement et facilement les données issues de votre CRM QlikView simplifie l intégration de la Business Discovery à une Plate-forme PaaS (Platform as a Service) éprouvée

Plus en détail

Impartition réussie du soutien d entrepôts de données

Impartition réussie du soutien d entrepôts de données La force de l engagement MD POINT DE VUE Impartition réussie du soutien d entrepôts de données Adopter une approche globale pour la gestion des TI, accroître la valeur commerciale et réduire le coût des

Plus en détail

CONNECTEUR QLIKVIEW POUR INFORMATICA POWERCENTER

CONNECTEUR QLIKVIEW POUR INFORMATICA POWERCENTER CONNECTEUR QLIKVIEW POUR INFORMATICA POWERCENTER Tirer pleinement profit de l ETL d Informatica à l aide d une plate-forme de Business Discovery rapide et flexible De plus en plus d entreprises exploitent

Plus en détail

Groupe d Usagers SharePoint Québec. Rencontre du groupe d usagers OCTOBRE 2008

Groupe d Usagers SharePoint Québec. Rencontre du groupe d usagers OCTOBRE 2008 Groupe d Usagers SharePoint Québec Rencontre du groupe d usagers OCTOBRE 2008 Agenda Nouvelles et Annonces Survol des données de l enquête SharePoint Québec Pause Présentation des chapitres Montréal -

Plus en détail

Re-Platforming SAP. Jean-Baptiste Rouzaud. EMEA SAP Services lead EMC Global Services. Copyright 2013 EMC Corporation. All rights reserved.

Re-Platforming SAP. Jean-Baptiste Rouzaud. EMEA SAP Services lead EMC Global Services. Copyright 2013 EMC Corporation. All rights reserved. Re-Platforming SAP Jean-Baptiste Rouzaud EMEA SAP Services lead EMC Global Services 1 Agenda Introduction Pourquoi Transformer? L approche Étude de cas Questions / Réponses 2 Pourquoi Transformer? 3 Les

Plus en détail

Services technologiques mondiaux IBM Canada Services de personnel d appoint. Catalogue des fonctions techniques

Services technologiques mondiaux IBM Canada Services de personnel d appoint. Catalogue des fonctions techniques technologiques mondiaux IBM Canada de personnel d appoint Catalogue des fonctions techniques de personnel d appoint Catalogue des postes techniques de personnel d appoint Postes techniques Table des matières

Plus en détail

CURRICULUM VITAE. Martin Harnois. Consultant depuis 23 ans Spécialiste en Business Intelligence / entrepôt de données depuis 11 ans.

CURRICULUM VITAE. Martin Harnois. Consultant depuis 23 ans Spécialiste en Business Intelligence / entrepôt de données depuis 11 ans. CURRICULUM VITAE Consultant depuis 23 ans Spécialiste en Business Intelligence / entrepôt de données depuis 11 ans Renseignements personnels : Langue maternelle : Français Autre langue parlée et écrite

Plus en détail

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 10 Introduction 1. Présentation du décisionnel 15 1.1 La notion de décideur 15 1.2 Les facteurs d'amélioration

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Plan d action SMB d une Approche Agile de la BITM Pour les PME

Plan d action SMB d une Approche Agile de la BITM Pour les PME Plan d action SMB d une Approche Agile de la BITM Pour les PME Personnel, processus et technologie nécessaires pour élaborer une solution rapide, souple et économique Copyright 2013 Pentaho Corporation.

Plus en détail

Les Entrepôts de Données. (Data Warehouses)

Les Entrepôts de Données. (Data Warehouses) Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage

Plus en détail

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants:

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Tassadit BOUADI 22 Juin 2010, Saint Jacut 1 Plan Introduc

Plus en détail

Améliorez et industrialisez vos feedback produit

Améliorez et industrialisez vos feedback produit Améliorez et industrialisez vos feedback produit Jean- Philippe Gillibert, architecte logiciel et coach agile chez Introduc)on Retour d expérience sur un projet à la SNCF Méthode originale de traitement

Plus en détail

Landmark Agence International

Landmark Agence International Landmark Agence International Propulsez votre agence à la prochaine étape de sa croissance Landmark Agence International (anciennement Adtraq ) est un logiciel conçu pour aider les agences de publicité

Plus en détail

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 11 Introduction 1. Présentation du décisionnel 13 1.1 La notion de décideur 14 1.2 Les facteurs d'amélioration

Plus en détail

Méthodes Agiles et gestion de projets

Méthodes Agiles et gestion de projets Méthodes Agiles et gestion de projets Eric LELEU Consultant Solutions Collaboratives Contact ericleleu@nordnet.fr Site Personnel http://home.nordnet.fr/~ericleleu Blog http://ericleleu.spaces.live.fr La

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Optimisation de la supervision by Somone. - Présentation Générale -!

Optimisation de la supervision by Somone. - Présentation Générale -! Optimisation de la supervision by Somone - Présentation Générale -! Somone et le Service 27% 18% 18% 37% Consultants Juniors (0-2 ans) Confirmés (2-5 ans) Séniors (5-8 ans) Référents (>8 ans) 30% 10% 12%

Plus en détail

GESTION DE PROJET SÉANCE 2 : LES CYCLE DE VIE D'UN PROJET

GESTION DE PROJET SÉANCE 2 : LES CYCLE DE VIE D'UN PROJET GESTION DE PROJET SÉANCE 2 : LES CYCLE DE VIE D'UN PROJET 1 Tianxiao LIU Licence Professionnelle Réseaux & Sécurité Université de Cergy-Pontoise http://depinfo.u-cergy.fr/~tliu/lpg.php PLAN Objectif et

Plus en détail

Comment assurer le plein potentiel de votre solution analytique. Guillaume Bédard, Directeur des Solutions d Affaires Odesia

Comment assurer le plein potentiel de votre solution analytique. Guillaume Bédard, Directeur des Solutions d Affaires Odesia L Comment assurer le plein potentiel de votre solution analytique ODESIA 1155 University suite 800 Montreal, Qc, Canada H3B 3A7 Phone: (514) 876-1155 Fax: (514) 876-1153 www.odesia.com Guillaume Bédard,

Plus en détail

Qu'est-ce que le BPM?

Qu'est-ce que le BPM? Qu'est-ce que le BPM? Le BPM (Business Process Management) n'est pas seulement une technologie mais, dans les grandes lignes, une discipline de gestion d'entreprise qui s'occupe des procédures contribuant

Plus en détail

WEB15 IBM Software for Business Process Management. un offre complète et modulaire. Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm.

WEB15 IBM Software for Business Process Management. un offre complète et modulaire. Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm. WEB15 IBM Software for Business Process Management un offre complète et modulaire Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm.com Claude Perrin ECM Client Technical Professional Manager

Plus en détail

Évolu>on et maintenance

Évolu>on et maintenance IFT3912 Développement et maintenance de logiciels Évolu>on et maintenance Bruno Dufour Université de Montréal dufour@iro.umontreal.ca Modifica>on des logiciels Les modifica>ons sont inévitables Des nouveaux

Plus en détail

Gestion de la virtualisation et de l automatisation CA : Construisez votre pratique de la virtualisation et accélérez les initiatives de vos clients

Gestion de la virtualisation et de l automatisation CA : Construisez votre pratique de la virtualisation et accélérez les initiatives de vos clients Gestion de la virtualisation et de l automatisation CA : Construisez votre pratique de la virtualisation et accélérez les initiatives de vos clients Progrès de la virtualisation La virtualisation des serveurs

Plus en détail

Jean-François McNeil. Consultant en Analyse d Affaires Certification de l IIBA (CCBA) jf@solutionsmcn.com

Jean-François McNeil. Consultant en Analyse d Affaires Certification de l IIBA (CCBA) jf@solutionsmcn.com Jean-François McNeil Profil personnel Consultant en Analyse d Affaires Certification de l IIBA (CCBA) jf@solutionsmcn.com Consultant orienté sur les résultats, à l affut de meilleures pratiques d analyse

Plus en détail

Analyse de données électroniques et intelligence d affaires

Analyse de données électroniques et intelligence d affaires Analyse de données électroniques et intelligence d affaires Valoriser les données internes et externes 3 avril 2014 Ordre du jour UNE INTRODUCTION À L ANALYSE DE DONNÉES Analyse de données et l intelligence

Plus en détail

Comment mettre en oeuvre une gestion de portefeuille de projets efficace et rentable en 4 semaines?

Comment mettre en oeuvre une gestion de portefeuille de projets efficace et rentable en 4 semaines? DOSSIER SOLUTION Package CA Clarity PPM On Demand Essentials for 50 Users Comment mettre en oeuvre une gestion de portefeuille de projets efficace et rentable en 4 semaines? agility made possible CA Technologies

Plus en détail

La gestion des données de référence ou comment exploiter toutes vos informations

La gestion des données de référence ou comment exploiter toutes vos informations La gestion des données de référence ou comment exploiter toutes vos informations La tour de Babel numérique La gestion des données de référence (appelée MDM pour Master Data Management) se veut la réponse

Plus en détail

Processus de déploiement d une stratégie CRM

Processus de déploiement d une stratégie CRM CRM odyssey Inc. SYNTHESE DE LA MÉTHODOLOGIE CRM odyssey est aussi la marque de commerce d une méthodologie de déploiement de stratégie CRM dans les entreprises. Elle repose sur un processus dynamique

Plus en détail

Libérez votre intuition

Libérez votre intuition Présentation de Qlik Sense Libérez votre intuition Qlik Sense est une application nouvelle génération de visualisation de données en libre-service qui permet à chacun de créer facilement des visualisations

Plus en détail

FILIÈRE METHODOLOGIE & PROJET

FILIÈRE METHODOLOGIE & PROJET FILIÈRE METHODOLOGIE & PROJET 109 Gestion de projet METHODOLOGIE ET PROJET Durée 3 jours Conduite de projet COND-PRO s Intégrer les conditions de réussite d une démarche de management par projet. Impliquer

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL INTELLIGENCE D AFFAIRES ET LES LOGICIELS À CODE SOURCE LIBRE POUR LES PME

UNIVERSITÉ DU QUÉBEC À MONTRÉAL INTELLIGENCE D AFFAIRES ET LES LOGICIELS À CODE SOURCE LIBRE POUR LES PME UNIVERSITÉ DU QUÉBEC À MONTRÉAL INTELLIGENCE D AFFAIRES ET LES LOGICIELS À CODE SOURCE LIBRE POUR LES PME PROJET DE RECHERCHE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN GÉNIÉ LOGICIEL PAR GABRIELA

Plus en détail

Le Processus RUP. H. Kadima. Tester. Analyst. Performance Engineer. Database Administrator. Release Engineer. Project Leader. Designer / Developer

Le Processus RUP. H. Kadima. Tester. Analyst. Performance Engineer. Database Administrator. Release Engineer. Project Leader. Designer / Developer Le Processus RUP Database Administrator Project Leader H. Kadima Performance Engineer Release Engineer Analyst Designer / Developer Tester Table des matières 1. De l artisanat à l industrialisation de

Plus en détail

Plan de cours. 1. Mise en contexte. 2. Place du cours dans le programme. 3. Descripteur du cours

Plan de cours. 1. Mise en contexte. 2. Place du cours dans le programme. 3. Descripteur du cours Faculté des sciences Centre de formation en technologies de l information Plan de cours Cours : INF 735 Entrepôt et forage de données Trimestre : Hiver 2015 Enseignant : Robert J. Laurin 1. Mise en contexte

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

Déterminer quelle somme dépenser en matière de sécurité des TI

Déterminer quelle somme dépenser en matière de sécurité des TI Déterminer quelle somme dépenser en matière de sécurité des TI Un InfoDossier d IDC 2015 Introduction Les organisations peinent à déterminer quelle somme dépenser en matière de sécurité des TI, un investissement

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on

Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on Thierry Badard, PhD, ing. jr Centre de Recherche en Géoma6que Conférence ITIS - Big Data et Open Data au coeur

Plus en détail

SWISS ORACLE US ER GRO UP. www.soug.ch. Newsletter 5/2014 Sonderausgabe. OBIF DB licensing with VMware Delphix 12c: SQL Plan / Security Features

SWISS ORACLE US ER GRO UP. www.soug.ch. Newsletter 5/2014 Sonderausgabe. OBIF DB licensing with VMware Delphix 12c: SQL Plan / Security Features SWISS ORACLE US ER GRO UP www.soug.ch Newsletter 5/2014 Sonderausgabe OBIF DB licensing with VMware Delphix 12c: SQL Plan / Security Features 42 TIPS&TECHNIQUES Alexandre Tacchini, Benjamin Gaillard, Fabien

Plus en détail

Concevoir et déployer un data warehouse

Concevoir et déployer un data warehouse Concevoir et déployer un data warehouse Ralph Kimball Éditions Eyrolles ISBN : 2-212-09165-6 2000 2 Le cycle de vie dimensionnel Avant d étudier de plus près les spécificités de la conception, du développement

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

ITIL Examen Fondation

ITIL Examen Fondation ITIL Examen Fondation Échantillon d examen B, version 5.1 Choix multiples Instructions 1. Essayez de répondre aux 40 questions. 2. Vos réponses doivent être inscrites sur la grille de réponses fournie.

Plus en détail

Présentation. Pour. Gilles ALAIS, Country Manager Barloworld Supply Chain Software France 20 Rue des Petits Hôtels, 75010 Paris

Présentation. Pour. Gilles ALAIS, Country Manager Barloworld Supply Chain Software France 20 Rue des Petits Hôtels, 75010 Paris Présentation Pour Gilles ALAIS, Country Manager Barloworld Supply Chain Software France 20 Rue des Petits Hôtels, 75010 Paris Email: galais@barloworldscs.com Tel : + 33 1 73 03 04 10 / + 33 6 08 01 52

Plus en détail

Analyse structurée de solutions pour BMC Remedy IT Service Management v 7

Analyse structurée de solutions pour BMC Remedy IT Service Management v 7 LIVRE BLANC SUR LES PRATIQUES ITIL Analyse structurée de solutions pour BMC Remedy IT Service Management v 7 Exploiter le potentiel des pratiques ITIL grâce aux ateliers d analyse de solutions organisés

Plus en détail

DOSSIER SOLUTION CA ERwin Modeling. Comment gérer la complexité des données et améliorer l agilité métier?

DOSSIER SOLUTION CA ERwin Modeling. Comment gérer la complexité des données et améliorer l agilité métier? DOSSIER SOLUTION CA ERwin Modeling Comment gérer la complexité des données et améliorer l agilité métier? CA ERwin Modeling fournit une vue centralisée des définitions de données clés afin de mieux comprendre

Plus en détail

Distribuez une information fiable. IBM InfoSphere Master Data Management Server 9.0. Des données fiables pour de meilleurs résultats

Distribuez une information fiable. IBM InfoSphere Master Data Management Server 9.0. Des données fiables pour de meilleurs résultats IBM InfoSphere Master Data Management Server 9.0 Des données fiables pour de meilleurs résultats Les entreprises génèrent et collectent chaque jour une multitude de données : informations sur les comptes,

Plus en détail

Une infrastructure IT innovante et flexible avec le Virtual Data Centre de BT

Une infrastructure IT innovante et flexible avec le Virtual Data Centre de BT Une infrastructure IT innovante et flexible avec le Virtual Data Centre de BT Vous aimeriez répondre plus rapidement aux nouveaux besoins du métier tout en réduisant les coûts, en accroissant votre fiabilité

Plus en détail

Développement itératif, évolutif et agile

Développement itératif, évolutif et agile Document Développement itératif, évolutif et agile Auteur Nicoleta SERGI Version 1.0 Date de sortie 23/11/2007 1. Processus Unifié Développement itératif, évolutif et agile Contrairement au cycle de vie

Plus en détail

D1.2 Management (MGMT) Exploiting the Cloud to make sensor data collection scalable

D1.2 Management (MGMT) Exploiting the Cloud to make sensor data collection scalable Projet de fin d'études [E] 2012-2013 D1.2 Management (MGMT) Exploiting the Cloud to make sensor data collection scalable Participants : Robin Monjo, robinmonjo@gmail.com, SI5 / Architecture Logicielle

Plus en détail

Développez votre système d'information en toute simplicité

Développez votre système d'information en toute simplicité Développez votre système d'information en toute simplicité IT CONSULTING HOSTING as a service SR opérations SA Société suisse fondée en 2003, SR opérations SA est une filiale de SRF groupe SA. SR opérations

Plus en détail

X2BIRT : Mettez de l interactivité dans vos archives

X2BIRT : Mettez de l interactivité dans vos archives Présentation Produit Présentation Produit X2BIRT : Mettez de l interactivité dans vos archives L accès à l information est capital pour les affaires. X2BIRT, la dernière innovation d Actuate, prend le

Plus en détail

IBM Business Process Manager

IBM Business Process Manager IBM Software WebSphere Livre blanc sur le leadership en matière d innovation IBM Business Process Manager Une plateforme de BPM complète, unifiée et facilement adaptable aux projets et aux programmes d

Plus en détail

AGILE et le PMO. Conférence présentée à Agile Montréal 12 septembre 2013. Stéphane Lecuyer & Frédérick H. Stoltz

AGILE et le PMO. Conférence présentée à Agile Montréal 12 septembre 2013. Stéphane Lecuyer & Frédérick H. Stoltz AGILE et le PMO Conférence présentée à Agile Montréal 12 septembre 2013 Stéphane Lecuyer & Frédérick H. Stoltz 1 Qui sommes-nous? Frédérick H. Stoltz, PMP, ITIL Parallèlement à son engagement en tant que

Plus en détail

LES ENTREPOTS DE DONNEES

LES ENTREPOTS DE DONNEES Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des

Plus en détail

Techniques de Développement

Techniques de Développement Techniques de Développement Quelques définitions relatives au développement de logiciel Sébastien Faucou Université de Nantes (IUT de Nantes, département Informatique) Licence Professionnelle Systèmes

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Tendances salariales et d embauche en technologies de l'information (TI)

Tendances salariales et d embauche en technologies de l'information (TI) Tendances salariales et d embauche en technologies de l'information (TI) Perspectives 2014 -Canada 2013 Robert Half Technology. Employeur offrant l équité en matière d emploi. La discussion d aujourd hui

Plus en détail

BTS Assurance et passerelles mé2ers en Mutualité

BTS Assurance et passerelles mé2ers en Mutualité BTS Assurance et passerelles mé2ers en Mutualité Le BTS Assurance vous prépare à exercer des responsabilités dans le domaine de la souscrip2on des assurances ou du règlement des sinistres Lieux d exercice

Plus en détail

étude de cas Intégration de la solution VMware VIEW CSSS de Charlevoix

étude de cas Intégration de la solution VMware VIEW CSSS de Charlevoix étude de cas Intégration de la solution VMware VIEW CSSS de Charlevoix Intégration de la solution VMware VIEW au CSSS de Charlevoix Mise en situation Comme beaucoup d établissements et d organismes du

Plus en détail

Compte rendu de créa/on : Hupareel, un projet géolocalisé en réalités alternées?

Compte rendu de créa/on : Hupareel, un projet géolocalisé en réalités alternées? Compte rendu de créa/on : Hupareel, un projet géolocalisé en réalités alternées? Défini'on ini'ale du projet Extrait du scénario de mai 2013 : «Hupareel est le projet d'un jeu en réalités alternées entre

Plus en détail

Découverte et investigation des menaces avancées PRÉSENTATION

Découverte et investigation des menaces avancées PRÉSENTATION Découverte et investigation des menaces avancées PRÉSENTATION AVANTAGES CLÉS RSA Security Analytics offre les avantages suivants : Surveillance de la sécurité Investigation des incidents Reporting sur

Plus en détail

ROYAUME DU MAROC PROJET E-RH DANS L ADMINISTRATION PUBLIQUE MAROCAINE - PREMIÈRE PHASE

ROYAUME DU MAROC PROJET E-RH DANS L ADMINISTRATION PUBLIQUE MAROCAINE - PREMIÈRE PHASE MMSP ROYAUME DU MAROC PROJET E-RH DANS L ADMINISTRATION PUBLIQUE MAROCAINE - PREMIÈRE PHASE Termes de référence et documents techniques de l'offre concernant la Version 1.0 Page i TABLE DES MATIÈRES 1.

Plus en détail

Guide de référence pour l achat de Business Analytics

Guide de référence pour l achat de Business Analytics Guide de référence pour l achat de Business Analytics Comment évaluer une solution de décisionnel pour votre petite ou moyenne entreprise : Quelles sont les questions à se poser et que faut-il rechercher?

Plus en détail

S organiser pour le Cloud

S organiser pour le Cloud S organiser pour le Cloud Apporter une valeur supplémentaire à l entreprise en optimisant l organisation des services informatiques pour le Cloud LIVRE BLANC VMWARE Sommaire Synthèse.... 3 Contexte....

Plus en détail

Workshop HPC - AMIES / CEMRACS h4p://www.ini:a:ve- hpc- pme.org/ Stéphane Requena - GENCI

Workshop HPC - AMIES / CEMRACS h4p://www.ini:a:ve- hpc- pme.org/ Stéphane Requena - GENCI Workshop HPC - AMIES / CEMRACS h4p://www.ini:a:ve- hpc- pme.org/ Stéphane Requena - GENCI Le calcul intensif Un ou&l stratégique pour la compé&&vité q Aux Etats- Unis (1er top500 juin 2012), au Japon (1er

Plus en détail

Scrum/XP adapté au BI/DW

Scrum/XP adapté au BI/DW Scrum/XP adapté au BI/DW Marc-Éric Larocque, PMP, MBA, CBIP, PSM marc-eric.larocque@procimaexperts.com Jean-François Pilon, CBIP jean-francois.pilon@procimaexperts.com PROCIMAEXPERTS.COM Introduction Objectifs

Plus en détail

MODELE DE MATURITE SOCIAL MEDIA MARKETING

MODELE DE MATURITE SOCIAL MEDIA MARKETING Online Intelligence Solutions MODELE DE MATURITE SOCIAL MEDIA MARKETING Jean-Marie Camiade, knowledge manager Mélanie Claisse, product marketing manager WHITE PAPER SOMMAIRE INTRODUCTION 3 1. Modélisation

Plus en détail

Gestion Projet. Cours 3. Le cycle de vie

Gestion Projet. Cours 3. Le cycle de vie Gestion Projet Cours 3 Le cycle de vie Sommaire Généralités 3 Séquentiel 7 Itératif/Incrémental 17 Extreme Programming 22 Que choisir? 29 Etats Transverse 33 Cours 3 2006-2007 2 Généralités Cours 3 2006-2007

Plus en détail

Les termes du cloud CUMULO NUMBIO 2015 O. COLLIN

Les termes du cloud CUMULO NUMBIO 2015 O. COLLIN Les termes du cloud CUMULO NUMBIO 2015 O. COLLIN Agenda Pe$t glossaire du cloud : termes qui seront u$lisés lors de ce5e école Virtualisa$on CMP Environnement Bioinforma$que Linux Comment les machines

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail