Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5"

Transcription

1 Contents Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 1

2 Systèmes d'équations non linéaires On considère un intervalle I R (borné ou non) et une fonction f : I R. On cherche à résoudre x I, f (x) = 0 1. Dichotomie 1.1. Description. Soit f : [a, b] R une fonction continue telle que f (a) f (b) < 0 Alors en vertu du théorème des valeurs intermédiaire, il existe x 0 [a, b] tel que f (x 0 ) = 0. Soit c = a+b 2, alors si f (c) = 0, c est solution, sinon f (a) f (c) < 0 ou bien f (c) f (b) < 0 dans le premier cas, on pose b = c dans le deuxième cas, on pose a = c. Dans les deux cas on obtient à nouveau f (a) f (b) < 0. On peut alors réitérer le processus, jusqu'à ce que l'une des conditions suivantes soit réalisée : (1) b a < ɛ (2) f (c) < δ Si l'un des deux tests d'arret est positif, on estime que l'on a convergé vers une solution approchée de l'équation f (x) = Algorithme. L'algorithme s'écrit (il s'agit ici un code scilab): Algorithm 1.1. [k,e]=dichotomie(f, a,b,ɛ,k) //Résolution de f (z) = 0 par dichotomie //entrée a < b intervalle initial // ɛ pour le test d'arret f (c) < ɛ // K pour limiter le nombre d'itérations. //Sortie : k, nombre d'itérations // X=(c i, 0 i k), les itérés // E=( f (c i ), 0 i k) if f(a)*f(b)>0 then return c=(a+b)*0.5;fc=f(c); C=c;E=abs(fc); k=1; while abs(fc)>epsɛ & k<k do k=k+1; if f(a)*fc<0 then b=c; else a=c; c=(a+b)*0.5;fc=f(c); E=[E,abs(fc)] return k,c,e; 2

3 2. POINT FIXE 3 function 1.3. Convergence. Theorem. Soient [a 0, b 0 ], [a 1, b 1 ],..., [a n, b n ],... les intervalles engrés par l'algorithme de dichotomie, alors les suites a n et b n sont adjacente et leur limite commune est un zéro de f. Soit r = lim n c n avec c n = an+bn 2, alors r c n 2 (n+1) b 0 a 0 Example 1.2. Si [a, b] = [0, 1], pour obtenir une précision x x n < 10 6, il faut 19 itérations, quelle que soit la fonction f. 2. Point xe L'équation f (x) = 0 est supposée mise sous la forme F (x) = x 2.1. Description. Definition 2.1. On dit que x est un point xe de F si et seulement si F (x) = x la méthode de point xe consiste à considérer la suite x 0 R x n+1 = F (x n ) Dans quelles conditions la suite est-elle convergente? C'est ce à quoi nous allons essayer de répondre dans le paragraphe sur la convergence. Auparavent : 2.2. L'algorithme. Voici le code scilab de l'algorithme de point xe pour la résolution de F (x) = x: function [k,x,e]=pointfixe(f,x,eps,k) //resolution de F(x)=x par la méthode du point fixe //x valeur initiale puis solution //eps réel positif : la precision on arete lorsque F(x)-x <eps // K entier : nombre max d'itérations //E vecteur réel : historique de l'erreur F(x)-x //k entier : nombre d'itérations k=1;y=f(x);dx=abs(y-x);e=dx; while dx>eps & k<k do x=y; y=f(x); dx=abs(y-x); E=[E,dx] k=k+1 return k,x,e function

4 2. POINT FIXE Conditions de convergence. Theorem 2.2. Soit I un intervalle fermé, borné de R et F : I R vériant (1) F (I) I (2) F continue sur I (3) F monotone sur I alors F admet un point xe x I Definition 2.3. Soit I = [a, b] et f : I R. L'application f est dite contractante sur I si : il existe un réel λ [0, 1[ tel que pour tout x, y I : F (x) F (y) λ x y Proposition 2.4. Soit I = [a, b] et soit F une application de classe C 1 sur I vériant sup F < 1 I Alors F est contractante sur I. Le théorème suivant donne des conditions susantes pour que F admette un point xe x et pour que la suite x n converge vers x. Theorem 2.5. Soit I un intervalle fermé de R et F : I R une application contractante sur I, telle que F (I) I alors (1) F admet un unique point xe x I et (2) pour tout x 0 I, la suite x n+1 = F (x n ) converge vers x. Proposition 2.6. Soit I = [a, b], soit F une application de classe C 1 sur I admettant un point xe x I, et vériant F (x ) < 1. Alors on peut trouver un intervalle I δ = [x δ, x + δ] tel que F (I) I et F est contractante sur I δ. Corollary 2.7. Si F admet un point xe x, si F est de classe C 1 au voisinage de x, si F (x ) < 1, alors il existe un voisinage V de x tel que pour tout x 0 V, la suite x n+1 = F (x n ) converge vers x Ordre de convergence d'une suite réelle. Definition 2.8. soit (u n ) une suite réelle convergent vers u. Si l'erreur e n = u u n vérie e n+1 = O ( e n α ) on dit que l'ordre de convergence de la suite est (au moins) α. Si α = 1 la convergence est linéaire, si 1 < α < 2 la convergence est dite super-linéaire, si α = 2 la convergence est dite quadratique, Proposition 2.9. Pour que l'ordre de convergence soit α il sut e que lim n+1 n α e n existe et soit nie.

5 3. MÉTHODES DE NEWTON ET ET DE LA SÉCANTE 5 Figure 1. Méthode de point xe, diérents cas de gure Proposition Pour F assez régulière, si la suite x n+1 = F (x n ) converge vers x, alors son ordre de convergence est q, le plus petit entier tel que F (q) (x ) 0 3. Méthodes de Newton et et de la sécante 3.1. Description. La méthode de Newton pour résoudre les équations non linéaires f (x) = 0 est un cas particulier de la méthode de point xe. On considère l'équation et on suppose donc f de classe C 2 au voisinage de la solution x. Si l'on dispose d'une approximation x n pas trop éloignée de x, alors on peut écrire en posant x = x n + h (h est l'erreur) et en utilisant la formule de Taylor : (1) 0 = f (x ) = f (x n ) + hf (x n ) + O ( h 2) f (x n ) + hf (x n ) Ce faisant, on a linéarisé le problème au voisinage de x n. Linéariser la fonction f au voisinage du point x consiste à remplacer la fonction h f (x + h) par sa partie linéaire : h f (x) + hf (x). On a donc approximativement h f(xn) f (x n), à condition que f (x n ) 0. On peut donc corriger l'approximation courante en écrivant x x n+1 avec x n+1 = x n f (x n) f (x n ) On réitère le processus, et on obtient la méthode de Newton.

6 3. MÉTHODES DE NEWTON ET ET DE LA SÉCANTE 6 Figure 2. Algorithmes de Newton et de la sécante (ou Quasi-Newton) (a) Newton (b) quasi-newton (sécante) Si l'on ne dispose pas de la dérivée ou si celle-ci coûte trop cher à calculer, on peut l'approcher par f (x n ) f (x n) f (x n 1 ) x n x n 1 on obtient alors la méthode de la sécante, qui est une méthode de quasi-newton. x n+1 = x n f (x n ) 3.2. Algorithmes (codes scilab). Algorithm 3.1. [k,x,e]=newton(f,df,x 0,ɛ,K) (x n x n 1 ) f (x n ) f (x n 1 ) #Méthode de Newton pour la résolution de f(x)=0 #Entree : f, df la fonction et sa dérivée. # x 0 R approximation initiale # ɛ > 0 le test d'arret est f (x) < ɛ # K nombre max d'iterations #Sortie : k nombre d'iterations, # X R k, la suite des itérés x n # E R k, la suite des f (x n) x=x 0 ;k=1;fx=f(x);dfx=df(x); X=x 0 ;E=abs(fx); while abs(fx)>eps & k<k do

7 3. MÉTHODES DE NEWTON ET ET DE LA SÉCANTE 7 x=x-fx/dfx; fx=f(x); dfx=df(x); X=[X,x]; E=[E,abs(fx)] k=k+1; return k,x,e; function Algorithm 3.2. [k,x,e]=secante(f,x 0,x 1,ɛ,K) k=1; x0=x 0 ;x1=x 1 ; fx0=f(x0);fx1=f(x1); X=x 0, x 1 ;E=abs(fx0),abs(fx1); c=fx1*(x0-x1)/(fx0-fx1); while abs(fx1)>eps & k<k do x0=x1;x1=x1-c; fx0=fx1;fx1=f(x1); c=fx1*(x0-x1)/(fx0-fx1); X=[X,x1]; E=[E,abs(fx1)] k=k+1; return k,x,e; function 3.3. Convergence. La méthode de Newton est très rapide si l'on démarre assez près (c'est un des sens de l'expression au voisinage de) de la solution, comme l'exprime le théorème suivant : Theorem 3.3. Supposons f continue et x zéro simple de f (i.e. f (x ) 0). Alors il existe un voisinage V de x et une constante réelle C tels que si x 0 V, la méthode de Newton converge avec un ordre de convergence quadratique pour n 0 : x n+1 x C x n x 2

Équations non linéaires

Équations non linéaires CHAPTER 1 Équations non linéaires On considère une partie U R d et une fonction f : U R d. On cherche à résoudre { x U 1..1) f x) = R d On distinguera les cas d = 1 et d > 1. 1.1. Dichotomie d = 1) 1.1.1.

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

M33 Analyse numérique

M33 Analyse numérique Licence Sciences et Techniques L MATH & MASS M Analyse numérique Recueil d exercices corrigés et aide-mémoire Gloria Faccanoni i http://faccanoniuniv-tlnfr/enseignementshtml Année 4 Dernière mise-à-jour

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Compte rendu des TP matlab

Compte rendu des TP matlab Compte rendu des TP matlab Krell Stella, Minjeaud Sebastian 18 décembre 006 1 TP1, Discrétisation de problèmes elliptiques linéaires 1d Soient > 0, a R, b 0, c, d R et f C([0, 1], R). On cerce à approcer

Plus en détail

Corrigé Pondichéry 1999

Corrigé Pondichéry 1999 Corrigé Pondichéry 999 EXERCICE. = 8 = i ). D'où les solutions de l'équation : z = + i et z = z = i. a. De manière immédiate : z = z = b. Soit θ la mesure principale de arg z : cos θ = Par suite arg z

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Introduction à l Optimisation Numérique

Introduction à l Optimisation Numérique DÉPARTEMENT STPI 3ÈME ANNÉE MIC Introduction à l Optimisation Numérique Frédéric de Gournay & Aude Rondepierre Table des matières Introduction 5 Rappels de topologie dans R n 7 0.1 Ouverts et fermés de

Plus en détail

UPJV - Amiens Licence Professionnelle SILDA Algorithmique Exercices

UPJV - Amiens Licence Professionnelle SILDA Algorithmique Exercices UPJV - Amiens Licence Professionnelle SILDA Algorithmique Exercices Gilles Dequen 1 Échauements Exercice 1 Premier algorithme Écrire un algorithme qui eectue la saisie d'un entier, ache son carré puis

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

MATHS Rappels Suites, Fonctions, Développements limités

MATHS Rappels Suites, Fonctions, Développements limités INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE MATHS Rappels Suites, Fonctions, Développements limités Pascal Floquet Xuân Meyer Première Année à Distance Septembre 006 Jean-Claude Satge Table des matières

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2

Optimisation. 1 Petite taxinomie des problèmes d optimisation 2 Table des matières Optimisation 1 Petite taxinomie des problèmes d optimisation 2 2 Optimisation sans contraintes 3 2.1 Optimisation sans contrainte unidimensionnelle........ 3 2.1.1 Une approche sans

Plus en détail

Calcul différentiel et intégral

Calcul différentiel et intégral Chapitre 27. Calcul différentiel et intégral 27 Limites... 27 2 Limite en un point fini... 27 2 Limite à droite ou à gauche... 27 2 Limite à l infini... 27 2 Utilisation de conditions... 27 2 Dérivation...

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

Algorithmique au lycée

Algorithmique au lycée Stage PAF christian.brucker@ac-strasbourg.fr jean-paul.quelen@ac-strasbourg.fr 13 mars 2015 Lycée Jean Monnet STRASBOURG Sommaire du stage Les programmes Sommaire du stage Les programmes Sommaire du stage

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane

Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane Poteaux Adrien XLIM-DMI, UMR-CNRS 6172 Université de Limoges Soutenance de thèse 15 octobre

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

Fonctions analytiques

Fonctions analytiques CHAPITRE Fonctions analytiques Les principaux résultats à retenir : soit U un ouvert de C et f : U C. f est analytique sur U si et seulement si f est développable en série entière au voisinage de chaque

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Corrigé des TD 1 à 5

Corrigé des TD 1 à 5 Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Algorithmique. Groupe ALGO Lille. Utilisation des langages Python Scilab et Xcas. Table des matières. 1 Langage Python 3

Algorithmique. Groupe ALGO Lille. Utilisation des langages Python Scilab et Xcas. Table des matières. 1 Langage Python 3 Algorithmique Utilisation des langages Python Scilab et Xcas Groupe ALGO Lille Table des matières 1 Langage Python 3 2 Langage Scilab 10 2.1 Lignes de commentaires.............................................

Plus en détail

Séance de TP 4 Lentilles minces. Romain BEL 3 janvier 2002

Séance de TP 4 Lentilles minces. Romain BEL 3 janvier 2002 Séance de TP 4 Lentilles minces Romain BEL 3 janvier 2002 1 Table des matières 1 Lentilles minces, stigmatisme, relations de conjugaison 3 1.1 Lentilles minces............................. 3 1.2 L'approximation

Plus en détail

1.8 Exercices. Analyse d'erreurs 43

1.8 Exercices. Analyse d'erreurs 43 1.8 Exercices Analyse d'erreurs 43 1. Tous les chires des nombres suivants sont signicatifs. Donner une borne supérieure de l'erreur absolue et estimer l'erreur relative. a) 0,1234 b) 8,760 c) 3,14156

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Introduction à Sage-Python

Introduction à Sage-Python Introduction à Sage-Python Aurélien Greuet Université de Versailles http://lmv.math.cnrs.fr/annuaire/aurelien-greuet/ 1 Python? Sage?! Calcul formel?!? 1.1 Python Python est un langage de programmation

Plus en détail

2.1. Les fonctions. Les fonctions se définissent de la manière suivante : NomDeLaFonction(param1, param2,...)= { \\ Code de la fonction

2.1. Les fonctions. Les fonctions se définissent de la manière suivante : NomDeLaFonction(param1, param2,...)= { \\ Code de la fonction TP1, prise en main de Pari/GP et arithmétique Le programme que nous allons utiliser pour les TP se nomme PARI/GP dont le point fort est la théorie des nombres (au sens large). Il est donc tout à fait adapter

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

Analyse - Résumés et exercices

Analyse - Résumés et exercices Analyse - Résumés et exercices Georges Skandalis Université Paris Diderot (Paris 7) - IREM Préparation à l Agrégation Interne 6 mars 205 Table des matières Suites de nombres réels. Développement décimal

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008) Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Algorithmique P2. Les paradigmes de résolution Suite Renaud Dumont, Ulg 2009-2010

Algorithmique P2. Les paradigmes de résolution Suite Renaud Dumont, Ulg 2009-2010 Algorithmique P2 Les paradigmes de résolution Suite Renaud Dumont, Ulg 2009-2010 Glouton : Exercice 1 Vous souhaitez vous rendre de Liège à Brest en scooter Votre réservoir vous permet de rouler R Km Vous

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Analyse. Gaëtan Bisson. bisson@gaati.org

Analyse. Gaëtan Bisson. bisson@gaati.org Analyse Gaëtan Bisson bisson@gaati.org Table des matières Nombres réels 4. Construction........................................ 4. Densité et distance..................................... 6.3 Exercices...........................................

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Mathématiques I. Recueil d exercices #2. Analyse II

Mathématiques I. Recueil d exercices #2. Analyse II FACULTE DES SCIENCES ECONOMIQUES ET SOCIALES Sections des sciences économiques et des hautes études commerciales Mathématiques I Cours du professeur D. Royer Recueil d exercices #2 Analyse II Semestre

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13 Maths PCSI Cours Table des matières Suites réelles 1 Généralités 2 2 Limite d une suite 2 2.1 Convergence d une suite....................... 2 2.2 Deux premiers résultats....................... 3 2.3 Opérations

Plus en détail

1 Recherche en table par balayage

1 Recherche en table par balayage 1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Figure 2.1 : fenêtre de travail d'excel v7.0

Figure 2.1 : fenêtre de travail d'excel v7.0 2.1. Excel 2.1.1. Présentation Les tableurs sont des utilitaires parfois intégrés aux éditeurs de texte (Works, Word, Kspread) ou non (Excel) et qui permettent la gestion de données numériques, le graphisme

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Retournement Temporel

Retournement Temporel Retournement Temporel Rédigé par: HENG Sokly Encadrés par: Bernard ROUSSELET & Stéphane JUNCA 2 juin 28 Remerciements Je tiens tout d'abord à remercier mes responsables de mémoire, M.Bernard ROUSSELET

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Relations binaires Relations d équivalence Exercice 1 [ 02643 ] [Correction] Soit R une relation binaire sur un ensemble E à la fois réflexive

Plus en détail

UEO11 Cours/TDn 2 Algorithmique : bases - 2007-2008. 3- Algorithmique...1 3.1 Définition : algorithmique...1. Critère algorithmique élémentaire

UEO11 Cours/TDn 2 Algorithmique : bases - 2007-2008. 3- Algorithmique...1 3.1 Définition : algorithmique...1. Critère algorithmique élémentaire UEO11 Cours/TDn 2 Algorithmique : bases - 2007-2008 Table des matières 3- Algorithmique...1 3.1 Définition : algorithmique...1 Critère algorithmique élémentaire...1 3.2 De l algorithme au programme...2

Plus en détail

ACTIVITES NUMERIQUES 12 points

ACTIVITES NUMERIQUES 12 points BREVET BLANC Mai 2012 Mathématiques Le corrigé La rédaction et la présentation sont prises en compte pour 4 points. Les calculatrices sont autorisées. Durée de l'épreuve : 2 heures. EXERCICE 1 On donne

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Cours de Techniques Quantitatives Appliquées

Cours de Techniques Quantitatives Appliquées Université de Nice Faculté de Droit et Sciences Économiques AES - L1 Cours de Techniques Quantitatives Appliquées Analyse Premier et Deuxième Semestre Stéphane Descombes Année 2009-2010 Table des matières

Plus en détail

Cours 3. La conditionnelle: instructions si et selon Les boucles Comment raisonner sur les boucles: les invariants de boucle

Cours 3. La conditionnelle: instructions si et selon Les boucles Comment raisonner sur les boucles: les invariants de boucle Cours 3 : Instructions qui changent l ordre d exécution séquentiel 1 Cours 3 Instructions qui changent l ordre d exécution séquentiel La conditionnelle: instructions si et selon Les boucles Comment raisonner

Plus en détail

Analyse numérique avec Python

Analyse numérique avec Python Analyse numérique avec Python PTSI Lycée Eiffel mai 14 Retour au Python pour ce dernier gros chapitre de l année (un tout petit chapitre final sera sûrement consacré aux rudiments de Scilab), où nous allons

Plus en détail

2 de AP1 : utilisation de la calculatrice en mode «Programme» CORRECTION

2 de AP1 : utilisation de la calculatrice en mode «Programme» CORRECTION 2 de AP1 : utilisation de la calculatrice en mode «Programme» CORRECTION Algorithmes et programmes : Un algorithme est un ensemble d'instructions structuré de manière à atteindre un but. Ces instructions

Plus en détail

I.2: Le test fonctionnel I.2.2 : Le test fonctionnel de logiciel

I.2: Le test fonctionnel I.2.2 : Le test fonctionnel de logiciel I.2: Le test fonctionnel I.2.2 : Le test fonctionnel de logiciel Introduction Notre contexte : pas possible d exprimer toutes les combinaisons de DT. Le test fonctionnel est basé sur la spécification/interface

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

Annexe D: Les nombres complexes

Annexe D: Les nombres complexes Annexe D: Les nombres complexes L'équation t + 1 = 0 n'a pas de solution dans les nombres réels. Pourtant, vous verrez lors de vos études qu'il est très pratique de pouvoir résoudre des équations de ce

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail