Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut

Dimension: px
Commencer à balayer dès la page:

Download "Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut"

Transcription

1 Probabilité conditionnelle et indépendance Télécom Saint-Étienne 2014

2 Sommaire 1 Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) 2 Indépendance de deux évènements Indépendance mutuelle de n évènements

3 Plan 1 Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) 2

4 Notion de probabilité conditionnelle - 1 Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) Soient A et B deux évènements associés à une même expérience aléatoire e. On suppose P(A) 0. La probabilité conditionnelle de B par rapport à l évènement A est la probabilité que B soit réalisé lorsque l on sait que A est réalisé.

5 Notion de probabilité conditionnelle - 1 Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) Soient A et B deux évènements associés à une même expérience aléatoire e. On suppose P(A) 0. La probabilité conditionnelle de B par rapport à l évènement A est la probabilité que B soit réalisé lorsque l on sait que A est réalisé. Notation La probabilité conditionnelle de B en sachant A est notée P A (B) ou P(B A). On préfèrera la seconde notation.

6 Notion de probabilité conditionnelle - 2 Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) On jette un dé. Soient les évènements A := on obtient une face paire et B := on obtient une face supérieure ou égale à trois. L univers Ω = {ω 1, ω 2, ω 3, ω 4, ω 5, ω 6 } est muni de l équiprobabilité. Ici, A = {ω 2, ω 4, ω 6 } d où P(A) = 3 6 = 1 2. Et, B = {ω 3, ω 4, ω 5, ω 6 } d où P(B) = 4 6 = 2 3.

7 Notion de probabilité conditionnelle - 2 Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) On jette un dé. Soient les évènements A := on obtient une face paire et B := on obtient une face supérieure ou égale à trois. L univers Ω = {ω 1, ω 2, ω 3, ω 4, ω 5, ω 6 } est muni de l équiprobabilité. Ici, A = {ω 2, ω 4, ω 6 } d où P(A) = 3 6 = 1 2. Et, B = {ω 3, ω 4, ω 5, ω 6 } d où P(B) = 4 6 = 2 3. Puis, A B = {ω 4, ω 6 } d où P(A B) = 2 6 = 1 3.

8 Notion de probabilité conditionnelle - 3 Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) On jette le dé. Supposons que l on sache que l on a obtenu une face paire. (Pour ce faire, il suffit de relancer le dé jusqu à ce que la face obtenue soit paire.) Quelle est la probabilité qu on obtienne une face supérieure ou égale à trois?

9 Notion de probabilité conditionnelle - 3 Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) On jette le dé. Supposons que l on sache que l on a obtenu une face paire. (Pour ce faire, il suffit de relancer le dé jusqu à ce que la face obtenue soit paire.) Quelle est la probabilité qu on obtienne une face supérieure ou égale à trois? Dans notre exemple, l univers est A et la probabilité que B soit réalisé est donc la probabilité que A B soit réalisé pour l univers A muni de l équiprobabilité associée P A avec P A (ω 2 ) = P A (ω 4 ) = P A (ω 6 ) = 1 3.

10 Notion de probabilité conditionnelle - 3 Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) On jette le dé. Supposons que l on sache que l on a obtenu une face paire. (Pour ce faire, il suffit de relancer le dé jusqu à ce que la face obtenue soit paire.) Quelle est la probabilité qu on obtienne une face supérieure ou égale à trois? Dans notre exemple, l univers est A et la probabilité que B soit réalisé est donc la probabilité que A B soit réalisé pour l univers A muni de l équiprobabilité associée P A avec P A (ω 2 ) = P A (ω 4 ) = P A (ω 6 ) = 1 3. Il vient ainsi P A (A B) = #A B #A = 2 3 = P(A B) P(A).

11 Notion de probabilité conditionnelle - 3 Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) On jette le dé. Supposons que l on sache que l on a obtenu une face paire. (Pour ce faire, il suffit de relancer le dé jusqu à ce que la face obtenue soit paire.) Quelle est la probabilité qu on obtienne une face supérieure ou égale à trois? Dans notre exemple, l univers est A et la probabilité que B soit réalisé est donc la probabilité que A B soit réalisé pour l univers A muni de l équiprobabilité associée P A avec P A (ω 2 ) = P A (ω 4 ) = P A (ω 6 ) = 1 3. Il vient ainsi P A (A B) = #A B #A = 2 3 = P(A B) P(A). Conséquemment, on a P(B A) = P(A B) P(A).

12 Définition Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) Soit A un évènement de probabilité P(A) non nulle. On définit l application P(. A) qui, à tout évènement B fait correspondre le nombre

13 Définition Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) Soit A un évènement de probabilité P(A) non nulle. On définit l application P(. A) qui, à tout évènement B fait correspondre le nombre P(A B) P(B A) :=. P(A)

14 Définition Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) Soit A un évènement de probabilité P(A) non nulle. On définit l application P(. A) qui, à tout évènement B fait correspondre le nombre P(A B) P(B A) :=. P(A) On commence par établir le résultat suivant : Théorème P(. A) est une probabilité sur Ω.

15 Remarques Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) Remarque Tous les résultats portant sur les probabilités peuvent donc s appliquer à la probabilité P(. A).

16 Remarques Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) Remarque Tous les résultats portant sur les probabilités peuvent donc s appliquer à la probabilité P(. A). ATTENTION On définit une probabilité conditionnelle mais en aucun cas on ne définit des évènements conditionnels.

17 Théorème des probabilités composées Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) Théorème des probabilités composées Soient deux évènements A et B de probabilités non nulles. Alors, on a P(A B) = P(B A)P(A) = P(A B)P(B).

18 Théorème de Bayes - 1 Soit (A 1,,A n ) un système complet d évènements de Ω. Soit B un évènement de Ω de probabilité non nulle. On suppose que l on connaît P(A 1 ),,P(A n ) ainsi que P(B A 1 ),,P(B A n ). On cherche à calculer P(A k B) pour tout 1 k n.

19 Théorème de Bayes - 1 Soit (A 1,,A n ) un système complet d évènements de Ω. Soit B un évènement de Ω de probabilité non nulle. On suppose que l on connaît P(A 1 ),,P(A n ) ainsi que P(B A 1 ),,P(B A n ). On cherche à calculer P(A k B) pour tout 1 k n. Pour cela, on utilise le théorème des probabilités composées : P(A k B) = P(B A k) P(B).

20 Théorème de Bayes - 1 Soit (A 1,,A n ) un système complet d évènements de Ω. Soit B un évènement de Ω de probabilité non nulle. On suppose que l on connaît P(A 1 ),,P(A n ) ainsi que P(B A 1 ),,P(B A n ). On cherche à calculer P(A k B) pour tout 1 k n. Pour cela, on utilise le théorème des probabilités composées : P(A k B) = P(B A k) P(B) Or, (A 1,,A n ) est un système complet d évènements de Ω. Ainsi, il vient n P(B) = P(B A k ). k=1.

21 Théorème de Bayes - 1 Soit (A 1,,A n ) un système complet d évènements de Ω. Soit B un évènement de Ω de probabilité non nulle. On suppose que l on connaît P(A 1 ),,P(A n ) ainsi que P(B A 1 ),,P(B A n ). On cherche à calculer P(A k B) pour tout 1 k n. Pour cela, on utilise le théorème des probabilités composées : P(A k B) = P(B A k) P(B) Or, (A 1,,A n ) est un système complet d évènements de Ω. Ainsi, il vient n P(B) = P(B A k ). k=1 On utilise à nouveau le théorème des probabilités composées et l on a alors P(A k B) = P(B A k )P(A k ) P(B A 1 )P(A 1 )+ +P(B A n )P(A n )..

22 Théorème de Bayes - 2 Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) Théorème de Bayes Soit (A 1,,A n ) un système complet d évènements de Ω. Soit B un évènement de Ω de probabilité non nulle. Alors : P(A i B) = P(B A i )P(A i ) nj=1 P(B A j )P(A j ).

23 Théorème de Bayes - 2 Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) Théorème de Bayes Soit (A 1,,A n ) un système complet d évènements de Ω. Soit B un évènement de Ω de probabilité non nulle. Alors : P(A i B) = P(B A i )P(A i ) nj=1 P(B A j )P(A j ). On a notamment le cas particulier avec (A,A c ). Alors : P(A B) = P(B A)P(A) P(B A)P(A)+P(B A c )P(A c ).

24 Théorème de Bayes - 3 Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou de la probabilité des causes) Exemple Paradoxe de Monty Hall.

25 Plan 1 Probabilité conditionnelle 2 Indépendance de deux évènements Indépendance mutuelle de n évènements

26 Heuristique Probabilité conditionnelle Indépendance de deux évènements Indépendance mutuelle de n évènements Soient A et B deux évènements associés à une même expérience aléatoire e. Supposons maintenant qu on sache que l évènement B est réalisé. Les chances de voir A réalisé vont a priori changer et être quantifiées par le nombre P(A B). Toutefois, il se peut que le fait de savoir que B est réalisé ne donne aucune influence quant à la réalisation de A. On dit alors que A est indépendant de B.

27 Indépendance de deux évènements - 1 Définition On dit que A est indépendant de B si l on a P(A B) = P(A).

28 Indépendance de deux évènements - 1 Définition On dit que A est indépendant de B si l on a P(A B) = P(A). Exemple On jette deux dés. L un est rouge et l autre est bleu. On considère les évènements A := le dé rouge indique une face paire et B := le dé bleu indique une face paire. Alors A est indépendant de B : P(A B) = P(A) = 1 2. De même, B est indépendant de A.

29 Indépendance de deux évènements - 1 Définition On dit que A est indépendant de B si l on a P(A B) = P(A). Exemple On jette deux dés. L un est rouge et l autre est bleu. On considère les évènements A := le dé rouge indique une face paire et B := le dé bleu indique une face paire. Alors A est indépendant de B : P(A B) = P(A) = 1 2. De même, B est indépendant de A. Contre-exemple On tire deux cartes dans un jeu de 32 cartes. On considère les évènements A := la première carte est l as de cœur et B := la deuxième carte est l as de cœur. Alors A n est pas indépendant de B : P(A B) = 0 tandis que P(A) = De même, B n est pas indépendant de A.

30 Indépendance de deux évènements - 2 Indépendance de deux évènements Indépendance mutuelle de n évènements Théorème La relation d indépendance est symétrique : si A est indépendant de B alors B est indépendant de A. De plus, A et B sont indépendants si et seulement si P(A B) = P(A)P(B).

31 Indépendance de deux évènements - 2 Indépendance de deux évènements Indépendance mutuelle de n évènements Théorème La relation d indépendance est symétrique : si A est indépendant de B alors B est indépendant de A. De plus, A et B sont indépendants si et seulement si P(A B) = P(A)P(B). ATTENTION Deux évènements incompatibles et de probabilités non nulles ne sont pas indépendants. L indépendance et l incompatibilité sont deux notions radicalement différentes.

32 Indépendance de deux évènements Indépendance mutuelle de n évènements Propriétés de l indépendance de deux évènements Propriété On a équivalence entre les quatre propositions suivantes : A et B sont indépendants.

33 Indépendance de deux évènements Indépendance mutuelle de n évènements Propriétés de l indépendance de deux évènements Propriété On a équivalence entre les quatre propositions suivantes : A et B sont indépendants. A et B c sont indépendants.

34 Indépendance de deux évènements Indépendance mutuelle de n évènements Propriétés de l indépendance de deux évènements Propriété On a équivalence entre les quatre propositions suivantes : A et B sont indépendants. A et B c sont indépendants. A c et B sont indépendants.

35 Indépendance de deux évènements Indépendance mutuelle de n évènements Propriétés de l indépendance de deux évènements Propriété On a équivalence entre les quatre propositions suivantes : A et B sont indépendants. A et B c sont indépendants. A c et B sont indépendants. A c et B c sont indépendants.

36 Approche intuitive Une urne contient quatre jetons : un bleu, un blanc, un rouge et un bleu-blanc-rouge. On en tire un au hasard. Considérons les trois évènements A := {le jeton tiré contient du bleu}. B := {le jeton tiré contient du blanc}. C := {le jeton tiré contient du rouge}.

37 Approche intuitive Une urne contient quatre jetons : un bleu, un blanc, un rouge et un bleu-blanc-rouge. On en tire un au hasard. Considérons les trois évènements A := {le jeton tiré contient du bleu}. B := {le jeton tiré contient du blanc}. C := {le jeton tiré contient du rouge}. Il est clair que P(A) = P(B) = P(C) = 2 4 = 1 2.

38 Approche intuitive Une urne contient quatre jetons : un bleu, un blanc, un rouge et un bleu-blanc-rouge. On en tire un au hasard. Considérons les trois évènements A := {le jeton tiré contient du bleu}. B := {le jeton tiré contient du blanc}. C := {le jeton tiré contient du rouge}. Il est clair que P(A) = P(B) = P(C) = 2 4 = 1 2. D autre part, on a P(A B) = P({on tire le jeton tricolore}) = 1 4 = P(A)P(B). Et, de même P(B C) = 1 4 = P(B)P(C) et P(A C) = 1 4 = P(A)P(C).

39 Approche intuitive Une urne contient quatre jetons : un bleu, un blanc, un rouge et un bleu-blanc-rouge. On en tire un au hasard. Considérons les trois évènements A := {le jeton tiré contient du bleu}. B := {le jeton tiré contient du blanc}. C := {le jeton tiré contient du rouge}. Il est clair que P(A) = P(B) = P(C) = 2 4 = 1 2. D autre part, on a P(A B) = P({on tire le jeton tricolore}) = 1 4 = P(A)P(B). Et, de même P(B C) = 1 4 = P(B)P(C) et P(A C) = 1 4 = P(A)P(C). Ainsi, les évènements A, B et C sont deux à deux indépendants.

40 Approche intuitive Une urne contient quatre jetons : un bleu, un blanc, un rouge et un bleu-blanc-rouge. On en tire un au hasard. Considérons les trois évènements A := {le jeton tiré contient du bleu}. B := {le jeton tiré contient du blanc}. C := {le jeton tiré contient du rouge}. Il est clair que P(A) = P(B) = P(C) = 2 4 = 1 2. D autre part, on a P(A B) = P({on tire le jeton tricolore}) = 1 4 = P(A)P(B). Et, de même P(B C) = 1 4 = P(B)P(C) et P(A C) = 1 4 = P(A)P(C). Ainsi, les évènements A, B et C sont deux à deux indépendants. Cependant, P(A B C) = 1 car B C = {on tire le jeton tricolore}. Donc la connaissance simultanée de B et C modifie notre information sur A.

41 Indépendance de deux évènements Indépendance mutuelle de n évènements Indépendance mutuelle de n évènements Définition Soient n évènements A 1,,A n associés à une même expérience aléatoire e. On dit que les évènements A 1,,A n sont mutuellement indépendants si pour toute sous-famille A i1,a i2,,a ik avec 1 i 1 < < i k n, on a : P(A i1 A ik ) = P(A i1 ) P(A ik ).

42 Indépendance de deux évènements Indépendance mutuelle de n évènements Indépendance mutuelle de n évènements Définition Soient n évènements A 1,,A n associés à une même expérience aléatoire e. On dit que les évènements A 1,,A n sont mutuellement indépendants si pour toute sous-famille A i1,a i2,,a ik avec 1 i 1 < < i k n, on a : P(A i1 A ik ) = P(A i1 ) P(A ik ). L indépendance mutuelle implique évidemment l indépendance deux à deux et la réciproque est fausse comme le montre l Exemple.

43 Indépendance de deux évènements Indépendance mutuelle de n évènements Propriétés de l indépendance mutuelle Propriété Soient n évènements A 1,,A n associés à une même expérience aléatoire e. On suppose que les évènements A 1,,A n sont mutuellement indépendants. Alors toute famille obtenue en remplaçant certains des A i par leur complémentaires est encore mutuellement indépendante.

44 Indépendance de deux évènements Indépendance mutuelle de n évènements Propriétés de l indépendance mutuelle Propriété Soient n évènements A 1,,A n associés à une même expérience aléatoire e. On suppose que les évènements A 1,,A n sont mutuellement indépendants. Alors toute famille obtenue en remplaçant certains des A i par leur complémentaires est encore mutuellement indépendante. Propriété Soient n évènements A 1,,A n associés à une même expérience aléatoire e. On suppose que les évènements A 1,,A n sont mutuellement indépendants. Alors, on a P(A 1 A n ) = 1 (1 P(A 1 )) (1 P(A n )).

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015 Indépendance de deux évènements Chapitre 2 : Le modèle probabiliste - Indépendance d évènements 15 janvier 2015 Sommaire 1 Indépendance de deux évènements 2 Indépendance de deux évènements Approche intuitive

Plus en détail

I. Qu est-ce qu une probabilité?

I. Qu est-ce qu une probabilité? I. Qu est-ce qu une probabilité? 1. Première approche : Une probabilité en mathématique est un chiffre compris entre 0 et 1. Ce chiffre représente une évaluation du caractère probable d un événement. Si

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles 22 Probabilités conditionnelles Ω, B, P est un espace probabilisé. 22. Définition et propriétés des probabilités conditionnelles Considérons l expérience aléatoire qui consiste à lancer deux fois un dé

Plus en détail

CHAPITRE II NOTIONS DE PROBABILITES

CHAPITRE II NOTIONS DE PROBABILITES CHAPITRE II NOTIONS DE PROBABILITES II.1. Un exemple : le poker Distribuer une main de poker (5 cartes sur 52) revient à tirer au hasard 5 cartes parmi 52. On appelle expérience aléatoire une telle expérience

Plus en détail

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités Chapitre II : Espaces probabilisés 1 Notions d événements 1.1 Expérience

Plus en détail

Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires.

Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires. Probabilités Terminologie Une expérience ou une épreuve est qualiée d'aléatoire si on ne peut pas prévoir son résultat et si, répétée dans des conditions identiques, elle peut donner des résultats diérents.

Plus en détail

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention

Plus en détail

Probabilités et statistique

Probabilités et statistique Probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon les termes de la licence

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Probabilité mathématique et distributions théoriques

Probabilité mathématique et distributions théoriques Probabilité mathématique et distributions théoriques 3 3.1 Notion de probabilité 3.1.1 classique de la probabilité s Une expérience ou une épreuve est dite aléatoire lorsqu on ne peut en prévoir exactement

Plus en détail

Tel que mentionné à la section 9.5, les probabilités utilisées dans les arbres de décision sont des probabilités conditionnelles.

Tel que mentionné à la section 9.5, les probabilités utilisées dans les arbres de décision sont des probabilités conditionnelles. 9A Probabilités conditionnelles et théorème de Bayes Probabilités conditionnelles Tel que mentionné à la section 9.5, les probabilités utilisées dans les arbres de décision sont des probabilités conditionnelles.

Plus en détail

II. Eléments des probabilités

II. Eléments des probabilités II. Eléments des probabilités Exercice II.1 Définir en extension l ensemble fondamental Ω des résultats associé à chacune des expériences aléatoires suivantes: 1. jeter une pièce de monnaie et observer

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Fiche méthodologique Les pièges dans les dénombrements

Fiche méthodologique Les pièges dans les dénombrements Fiche méthodologique Les pièges dans les dénombrements BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Dans cette fiche, on résume quelques points techniques sur les dénombrements et la théorie des probabilités.

Plus en détail

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires Chapitre I Probabilités Bcpst 1 2 novembre 2015 I Exemples d expériences aléatoires Une expérience aléatoire est une expérience dont on ne peut pas prédire le résultat avant de l avoir réalisée... ce qui

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Exercices supplémentaires

Exercices supplémentaires Exercices supplémentaires Christophe Lalanne Emmanuel Chemla Exercices Exercice 1 Un grand magasin a n portes d entrée ; r personnes arrivent à des instants divers et choisissent au hasard une entrée indépendamment

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

2 Probabilités conditionnelles. Événements indépendants

2 Probabilités conditionnelles. Événements indépendants 2 Probabilités conditionnelles. Événements indépendants 2.1 Probabilité conditionnelle Soient A et B deux événements tels que P(B) > 0. Soit alors P(A B), la probabilité que A se réalise, B étant réalisé.

Plus en détail

3D Compléments de cours. Guy GREISEN

3D Compléments de cours. Guy GREISEN 3D Compléments de cours Guy GREISEN 14 septembre 2009 3D 3 Table des matières 1 SECOND DEGRÉ 6 1.1 Introduction................................................ 6 1.2 Formule générale.............................................

Plus en détail

Exercices corrigés de probabilités et statistique

Exercices corrigés de probabilités et statistique Exercices corrigés de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi & Fabrice Le Lec Cette œuvre est mise à disposition

Plus en détail

1. Probabilités élémentaires

1. Probabilités élémentaires 1. Probabilités élémentaires MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: probabilités 1/48 Plan 1. Expériences aléatoires et événements 2. Probabilités 3. Analyse combinatoire

Plus en détail

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen Cours de DEUG Probabilités et Statistiques Avner Bar-Hen Université Aix-Marseille III 3 Table des matières Table des matières i Analyse combinatoire 1 1 Arrangements................................ 1 1.1

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3 CHAPITRE : LOIS DISCRÈTES Sommaire Variable aléatoire discrète................................... Rappels........................................... Exemple......................................... Couples

Plus en détail

Exercices : Analyse combinatoire et probabilité

Exercices : Analyse combinatoire et probabilité Exercices : Analyse combinatoire et probabilité 1. Le jeu de Cluedo consiste à retrouver l assassin du Dr. Lenoir, l arme et le lieu du crime. Sachant qu il y a six armes, neuf lieux et six suspects, de

Plus en détail

COURS DE LICENCE 2 SCIENCES ECONOMIQUES COURS D ANNIE CLARET

COURS DE LICENCE 2 SCIENCES ECONOMIQUES COURS D ANNIE CLARET COURS DE LICENCE 2 SCIENCES ECONOMIQUES COURS D ANNIE CLARET MATHEMATIQUES 3 PRISE DE NOTE PAR : PLASMAN SYLVAIN SERIE 7 ANNEE 2010-2011 1 Sommaire et accès aux chapitres/sous-chapitres Cliquez sur le

Plus en détail

E G = Définition : La probabilité d'un événement E peut être définie intuitivement par la formule suivante :

E G = Définition : La probabilité d'un événement E peut être définie intuitivement par la formule suivante : 8.1 Notations Notations: : vénement : vénement contraire à : ou (ou les deux), correspond à l union : et, correspond à l intersection U : L univers contient tous les événements possibles xercice 1 : Je

Plus en détail

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique Support du cours de Probabilités et Statistiques IUT d Orléans, Département informatique Pierre Andreoletti IUT d Orléans, Département Informatique Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences)

Plus en détail

THEORIE DU SONDAGE ALEATOIRE ET ETUDE D UN SONDAGE D OPINION AVANT LE 1ER TOUR D UNE ELECTION PRESIDENTIELLE. Martin KÖRNIG

THEORIE DU SONDAGE ALEATOIRE ET ETUDE D UN SONDAGE D OPINION AVANT LE 1ER TOUR D UNE ELECTION PRESIDENTIELLE. Martin KÖRNIG THEORIE DU SONDAGE ALEATOIRE ET ETUDE D UN SONDAGE D OPINION AVANT LE 1ER TOUR D UNE ELECTION PRESIDENTIELLE Martin KÖRNIG Résumé Après le dépouillement d un échantillon aléatoire, que sait-on sur l ensemble

Plus en détail

1) On appelle expérience aléatoire tout phénomène qui a plusieurs résultats possibles, la réalisation de chacun étant due au hasard.

1) On appelle expérience aléatoire tout phénomène qui a plusieurs résultats possibles, la réalisation de chacun étant due au hasard. PROBABILITÉS 1 1 Définitions 1) On appelle expérience aléatoire tout phénomène qui a plusieurs résultats possibles, la réalisation de chacun étant due au hasard. exemple : L'expérience qui consiste à lancer

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

indépendance, indépendance conditionnelle

indépendance, indépendance conditionnelle Plan du cours 1.2 RFIDEC cours 1 : Rappels de probas/stats (2/3) Christophe Gonzales LIP6 Université Paris 6, France 1 probabilités : événements, définition 2 probabilités conditionnelles 3 formule de

Plus en détail

Feuille d exercices 1

Feuille d exercices 1 Université Paris 7 - Denis Diderot L2 - Probabilités PS4 Année 2014-2015 Feuille d exercices 1 Exercice 1 Combien y a-t-il de paires d entiers non consécutifs compris entre 1 et n (n 1)? Exercice 2 1.

Plus en détail

Probabilité d un événement. Combinaisons d événements. Probabilité conditionnelle

Probabilité d un événement. Combinaisons d événements. Probabilité conditionnelle Probabilités classiques Mathématiques discrètes Théorie des probabilités Cours 31, MATH/COSC 1056F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne 7 novembre 00,

Plus en détail

PROBABILITÉS Variable aléatoire

PROBABILITÉS Variable aléatoire PROBABILITÉS Variable aléatoire I Langage des événements Lors d'un oral de mathématiques, quatre questions sont proposées : une question de probabilités (P) ; une question de statistiques (S) ; une question

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Exercices chapitre 8. Probabilités.

Exercices chapitre 8. Probabilités. Lycée Descartes PC 2014-15 M. Besbes Exercices chapitre 8. Probabilités. Exercice 1. Soit (Ω, B, P ) un espace probabilisé. Montrer que l ensemble : A = {A B; P (A) = 0 ou P (A) = 1} est une tribu. Exercice

Plus en détail

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni.

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni. MP 205/6 Feuille d exercices - Probabilités généralités). Univers, généralités Exercice.. Langage des probabilités. Soit Ω, A) un espace probabilisable. Soit A n ) n N une famille d événements et A, B,

Plus en détail

LES PROBABILITES. 1) Expérience aléatoire: Une expérience est dite aléatoire lorsqu on ne peut pas prévoir avec certitude le résultat.

LES PROBABILITES. 1) Expérience aléatoire: Une expérience est dite aléatoire lorsqu on ne peut pas prévoir avec certitude le résultat. LES PROBABILITES I) Définitions : 1) Expérience aléatoire: Une expérience est dite aléatoire lorsqu on ne peut pas prévoir avec certitude le résultat. Exemple : On lance une pièce de 1 et on observe le

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

LEÇON N 5 : 5.1 Probabilité conditionnelle. Pré-requis : Opérations sur les ensembles, cardinaux ; Espaces probabilisés ; Calcul de probabilités.

LEÇON N 5 : 5.1 Probabilité conditionnelle. Pré-requis : Opérations sur les ensembles, cardinaux ; Espaces probabilisés ; Calcul de probabilités. LEÇON N 5 : Probabilité conditionnelle, indépendance de deux événements (on se limitera au cas où l ensemble d épreuves des fini). Applications à des calculs de probabilité. Pré-requis : Opérations sur

Plus en détail

Les trois sortes de tirages

Les trois sortes de tirages DERNIÈRE IMPRESSION LE 29 juin 2015 à 19:20 Les trois sortes de tirages Introduction Comme nous l avons vu, dans une loi équirépartie, il est nécessaire de dénombrer les cas favorables et les cas possibles.

Plus en détail

Chapitre 8 : Probabilités-Indépendance

Chapitre 8 : Probabilités-Indépendance Cours de mathématiques Terminale S Chapitre 8 : Probabilités-Indépendance Année scolaire 008-009 mise à jour 6 janvier 009 Fig. Andreï Kolmogorov Un précurseur de la formalisation de la théorie des probabilités

Plus en détail

Répétition d expériences identiques et indépendantes

Répétition d expériences identiques et indépendantes Répétition d expériences identiques et indépendantes I) Situation étudiée On considère une expérience aléatoire possédant un ensemble fini d issues. On répète plusieurs fois cette expérience dans les mêmes

Plus en détail

Espaces de probabilités.

Espaces de probabilités. Université Pierre et Marie Curie 2010-2011 Probabilités et statistiques - LM345 Feuille 2 Espaces de probabilités. 1. Donner un exemple d'une famille de parties d'un ensemble qui ne soit pas une tribu.

Plus en détail

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016 Exos corrigés darithmétique...classe : TS-Spé Prof. MOWGLI Ahmed Année scolaire 2015-2016 1 Pour des cours particuliers par petits groupes de 3 ou 4 élèves en maths et/ou physique-chimie, veuillez me contacter.

Plus en détail

Chapitre 3 : Introduction aux probabilités

Chapitre 3 : Introduction aux probabilités IUT de Sceaux Département TC1 Mathématiques Chapitre 3 : Introduction aux probabilités 1. Évènements Les événements élémentaires sont les issues possibles d'une expérience aléatoire. Un événement est un

Plus en détail

en dimension finie Table des matières

en dimension finie Table des matières Maths PCSI Cours Algèbre linéaire en dimension finie Table des matières 1 Rappels d algèbre linéaire 2 1.1 Applications linéaires......................................... 2 1.2 Familles libres, génératrices

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

EXERCICES SUR LES PROBABILITÉS

EXERCICES SUR LES PROBABILITÉS EXERCICES SUR LES PROBABILITÉS Exercice 1 Dans un univers Ω, on donne deux événements A et B incompatibles tels que p(a) = 0,2 et p(b) = 0,7. Calculer p(a B), p(a B), p ( A ) et p ( B ). Exercice 2 Un

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Probabilités sur un univers ni

Probabilités sur un univers ni POIRET Aurélien TD n o 21 MPSI Probabilités sur un univers ni 1 Événements et probabilités Exercice N o 1 : Dans un centre de loisirs, une personne peut pratiquer trois activités. On considère les événements

Plus en détail

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes.

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes. Au menu Cours 7: Classes Probabilistes Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique Retours sur quelques algorithmes Quelques résultats INF561 Algorithmes et Complexité 1 2 Sous

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 1 / 50 1. Motivations et points de vue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 2 / 50 Deux

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles Probabilités conditionnelles Exercice Dans une usine, on utilise conjointement deux machines M et M 2 pour fabriquer des pièces cylindriques en série. Pour une période donnée, leurs probabilités de tomber

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Chapitre 3 : Probabilités conditionnelles - Indépendance

Chapitre 3 : Probabilités conditionnelles - Indépendance Chapitre 3 : Probabilités conditionnelles - Indépendance L2 Eco-Gestion, option AEM (L2 Eco-Gestion, option AEM) Chapitre 3 : Probabilités conditionnelles - Indépendance 1 / 18 Motivation de ce chapitre

Plus en détail

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne Séquence 3 1 ère partie : Second degré e partie : Probabilités (1) Séquence 3 MA1 1 1 ère partie Second degré Sommaire 1. Pré-requis. Forme canonique, étude d une fonction du second degré 3. Équation du

Plus en détail

TD7. ENS Cachan M1 Hadamard 2015-2016. Exercice 1 Sous-espaces fermés de C ([0,1]) formé de fonctions régulières.

TD7. ENS Cachan M1 Hadamard 2015-2016. Exercice 1 Sous-espaces fermés de C ([0,1]) formé de fonctions régulières. Analyse fonctionnelle A. Leclaire ENS Cachan M Hadamard 25-26 TD7 Exercice Sous-espaces fermés de C ([,] formé de fonctions régulières. Soit F un sous-espace vectoriel fermé de C ([,] muni de la convergence

Plus en détail

Initiation aux probabilités.

Initiation aux probabilités. Initiation aux probabilités. On place dans une boite trois boules identiques à l exception de leur couleur : une boule est noire, une est blanche, la troisième est grise. On tire une des boules sans regarder,

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

1 Définition, existence, unicité.

1 Définition, existence, unicité. Université Denis Diderot Paris 7 Espérance conditionnelle Ces rappels et compléments de cours sont inspirés de [1], [2], [3]. Il va de soi que pour une bonne connaissance des notions qui suivent, il est

Plus en détail

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure.

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure. Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Licence 3 Mathématiques-Informatique Daniel Li Construction de la mesure de Lebesgue 28 janvier 2008 Dans ce chapitre, nous allons

Plus en détail

Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT

Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT Chapitre 4 Machines de Turing Dans ce chapitre on présente un modèle de calcul introduit dans les années 3 par Turing, les machines de Turing. Ces machines formalisent la notion de calculabilité. La thèse

Plus en détail

Les espaces vectoriels

Les espaces vectoriels Agrégation interne UFR MATHÉMATIQUES 1. Généralités Les espaces vectoriels Dans tout le chapitre, K représente un corps commutatif. 1.1. Notion d espace vectoriel On considère un ensemble E sur lequel

Plus en détail

Chapitre 3. Eléments pour comprendre et écrire des démonstrations

Chapitre 3. Eléments pour comprendre et écrire des démonstrations Chapitre 3 Eléments pour comprendre et écrire des démonstrations Une des tâches essentielles en mathématique est de chercher à s assurer que telle ou telle proposition est vraie ou fausse. Il ne suffit

Plus en détail

Sommaire. Théorie de l information Cours 1 - Evénements et probabilités dans un espace probabilisé discret. Expérience aléatoire et épreuve.

Sommaire. Théorie de l information Cours 1 - Evénements et probabilités dans un espace probabilisé discret. Expérience aléatoire et épreuve. Sommaire Théorie de l information Cours 1 - Evénements et probabilités dans un espace probabilisé discret Laurent Oudre laurent.oudre@univ-paris13.fr Université Paris 13, Institut Galilée Master Ingénierie

Plus en détail

Feuille 1. L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009. A le chambre des députés d un pays composé de 100 départements, chaque

Feuille 1. L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009. A le chambre des députés d un pays composé de 100 départements, chaque Feuille 1 L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009 1 Combinatoire 1.1 Exercice 1 A le chambre des députés d un pays composé de 100 départements, chaque département est représenté par

Plus en détail

Terminale S-SI Probabilités conditionnelles

Terminale S-SI Probabilités conditionnelles robabilités conditionnelles Table des matières 1 Introduction 2 2 Définitions 2 3 Formule des probabilités totales 3 4 Indépendance et principe du produit 5 5 Exercices 5 1 1 Introduction Lorsque 7 élèves

Plus en détail

Thème. Contrôle de gestion et généralités. Exercice 1 Contrôle de gestion et stratégie. C orrigé. 1 Analyse systémique des organisations

Thème. Contrôle de gestion et généralités. Exercice 1 Contrôle de gestion et stratégie. C orrigé. 1 Analyse systémique des organisations Contrôle de gestion et généralités Thème 1 Exercice 1 Contrôle de gestion et stratégie La suppression de la norme française de fabrication des cuves ouvrira le marché français aux concurrents étrangers.

Plus en détail

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER

Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2. Guillaume CARLIER Université Paris IX Dauphine UFR Mathématiques de la décision Notes de cours ALGEBRE 2 Guillaume CARLIER L1, année 2006-2007 2 Ce support de cours est basé sur le poly de Tristan Tomala des années précédentes.

Plus en détail

Probabilités et statistiques

Probabilités et statistiques Probabilités et statistiques Denis Vekemans Table des matières 1 Combinatoire 5 1.1 Analyse combinatoire sans répétition..................................... 5 1.1.1 Cardinal de l ensemble des applications

Plus en détail

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes Chp. 9. Convexité Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction numérique partout définie sur C. 9.1 Fonctions affines, convexes, strictement convexes Définition

Plus en détail

Exercices. Version du 7 janvier 2016 16:37. UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées

Exercices. Version du 7 janvier 2016 16:37. UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées Exercices Version du 7 janvier 2016 16:37 UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées 1ère Bachelier en Informatique de Gestion Ludovic Kuty

Plus en détail

Probabilités et statistiques dans le traitement de données expérimentales

Probabilités et statistiques dans le traitement de données expérimentales Probabilités et statistiques dans le traitement de données expérimentales S. LESECQ, B. RAISON IUT1, GEII 1 Module MC-M1 2009-2010 1 Contenu de l enseignement Analyse combinatoire Probabilités Variables

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Activité 1 : Exercices : Probabilités Problème de Monty Hall Sur le plateau d un jeu télévisé, il y a trois portes dont une cache une voiture et les deux autres une chèvre. Il s agit de choisir une des

Plus en détail

Extraits de Concours

Extraits de Concours Pierre-Louis CAYREL 2008-2009 Prépa HEC 2 disponible sur www.cayrel.net Lycée Lavoisier Feuille d extraits de concours Extraits de Concours 1 HEC Exercice 1 (via HEC - Oral 1997) Écrire un programme qui

Plus en détail

Structures algébriques : groupes, anneaux et corps

Structures algébriques : groupes, anneaux et corps Maths PCSI Cours Structures algébriques : groupes, anneaux et corps Table des matières 1 Groupes 2 1.1 Lois de composition interne..................................... 2 1.2 Groupes................................................

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Mathématiques 4 Niv.1 Probabilités Exercices chapitre 3

Mathématiques 4 Niv.1 Probabilités Exercices chapitre 3 1. On tire une boule d'une urne qui contient 3 blanches, 4 rouges et 5 noires. Quelle est la probabilité a) qu'elle soit blanche b) qu'elle soit blanche ou rouge c) qu'elle ne soit pas rouge? 2. Un joueur

Plus en détail

Chapitre 3 : Combinatoire, Probabilités

Chapitre 3 : Combinatoire, Probabilités STAT03 : probabilités COURS Décembre 2000 Chapitre 3 : Combinatoire, Probabilités 1 Dénombrement 1.1 Introduction L étude statistique nous conduit à étudier une population finie et parfaitement déterminée

Plus en détail

CHAPITRE 2 SUITES RÉELLES ET COMPLEXES

CHAPITRE 2 SUITES RÉELLES ET COMPLEXES CHAPITRE SUITES RÉELLES ET COMPLEXES Les suites sont un objet fondamental à la fois en mathématiques et dans l application des mathématiques aux autres sciences. Nous verrons dans ce cours et les travaux

Plus en détail

Suites numériques. Sommaire :

Suites numériques. Sommaire : Suites numériques I Activité n o 2 page 295 Sommaire : II Généralités sur les suites numériques III Variations et bornes IV Suites arithmétiques V Suites géométriques VI Suites convergentes VII Représentation

Plus en détail

Complexité des algorithmes

Complexité des algorithmes Complexité des algorithmes par Robert Rolland R. Rolland, Aix Marseille Université, Institut de Mathématiques de Marseille I2M Luminy Case 930, F13288 Marseille CEDEX 9 e-mail : robert.rolland@acrypta.fr

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Préparation aux épreuves écrites du CAPES Conseils de rédaction

Préparation aux épreuves écrites du CAPES Conseils de rédaction Préparation aux épreuves écrites du CAPES Conseils de rédaction Claire Debord Le texte qui suit est une libre compilation de plusieurs textes sur le même thème, notamment ceux de Christophe Champetier

Plus en détail

Mathématiques et Philosophie en classe de seconde

Mathématiques et Philosophie en classe de seconde Mathématiques et Philosophie en classe de seconde Intervention du Professeur de mathématiques. Effectif de la classe : 34 élèves. Intervention : quinze heures en alternance avec le cours de Philosophie.

Plus en détail

Transparents Philippe Lambert. Faculté des Sciences Sociales Université de Liège

Transparents Philippe Lambert. Faculté des Sciences Sociales Université de Liège SOCI1241-1 Eléments du calcul des probabilités appliquées aux sciences sociales et exercices pratiques (en ce compris les bases de statistiques inférentielles) Transparents Philippe Lambert http : //www.statsoc.ulg.ac.be/proba.html

Plus en détail

11. Espaces vectoriels, homomorphismes, bases

11. Espaces vectoriels, homomorphismes, bases 11. Espaces vectoriels, homomorphismes, bases 11.1. Espaces vectoriels, algèbres 11.1.1. Structure d espace vectoriel et d algèbre 11.1.2. Combinaisons linéaires 11.1.3. Espaces vectoriels et algèbres

Plus en détail

Seconde 2 DS3 probabilités Sujet

Seconde 2 DS3 probabilités Sujet Seconde 2 DS3 probabilités Sujet 1 201-2015 Exercice 1: ( points) Dans une classe de 30 élèves, 20 étudient l anglais et 15 l espagnol. 8 étudient les deux langues. Pour un élève donné, on note A l événement

Plus en détail

PROBABILITÉS. I Vocabulaire des événements 2 I.1 Vocabulaire... 2 I.2 Intersection et réunion d événements... 2 I.3 Représentation des évenements...

PROBABILITÉS. I Vocabulaire des événements 2 I.1 Vocabulaire... 2 I.2 Intersection et réunion d événements... 2 I.3 Représentation des évenements... PROBABILITÉS Table des matières I Vocabulaire des événements 2 I.1 Vocabulaire.............................................. 2 I.2 Intersection et réunion d événements................................ 2

Plus en détail