Méthode de l Entropie Maximum (MEM)

Dimension: px
Commencer à balayer dès la page:

Download "Méthode de l Entropie Maximum (MEM)"

Transcription

1 Méthode de l Entropie Maximum (MEM) Pascal ROUSSEL Chargé de Recherches CNRS UCCS Equipe Chimie du Solide CNRS UMR 8181 ENSC Lille - UST Lille ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

2 Généralité sur la Méthode de l Entropie Maximum But expérience diffraction Fournir des informations sur la structure Classiquement, Ordre moyen (à longue distance): pics de Bragg Ordre local (à courte distance): diffusion diffuse entre Bragg Mais, pics de Bragg contiennent aussi de l info sur le désordre (Debye) Pb: phénomènes faibles nécessitant une imagerie élaborée Classiquement, visualisation, dans l espace réel, de la densitéélectronique 3D avec Transformée de Fourier calc à partir données de diffraction ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

3 Généralité sur la Méthode de l Entropie Maximum Mais, Carte de Fourier, pas la seule(ni la meilleure) représentation de ρ: C est une carte «particulière», parmi d autres, car le pbest «mal posé», C-a-d données existantes insuffisantes pour déterminer une solution unique Dans la plupart des cas, nb de solution, car: -On ne peut pas mesurer tout le signal (θ<θ max ) -Signal bruité(minimum statistique de Poisson) -Signal convolué par fonction appareil (résolution instrumentale) 1 critère supplémentaire (au -) est requis pour choisir, parmi l : Quelle est, parmi toutes les possibilités, la solution la + probable Réponse: la Méthode de l Entropie Maximum (MEM) Procédure d imagerie pour la résolutions de pb inverses mal posés Adaptée à la résolution de systèmes où nb inconnues >> nb équations Déjà appliquée avec succès en Astronomie et Imagerie Médicale ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

4 Généralité sur la Méthode de l Entropie Maximum Apport du MEM sur la transformée de Fourier différence -Prend en compte les barres d erreur expérimentales -Prend en compte l info a priori (par ex : positivité ρ) -Chevauchement de pics -Réduit effets de troncature «Critique»de l inversion de Fourier : : simplicité : carte particulière, pas la meilleure OKpour les cas simpleset sans ambigüités, Mais insuffisante pour l observation des détails fins(ordre partiel) ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

5 ρ «Critique» de l inversion de Fourier 1 V h k l Pourquoi? ( x, y, z) = F( h, k, l) 1) Jeu de données incomplet e 2iπ ( hx+ ky+ lz) Facteurs de structure = coeff de Fourier de la fonction périodique ρ(x,y,z) Relation entre ρ et F exacte seulement pour une infinité de points... Ce qui n est pas le cas: -On coupe à θ<θ max -Dans la sphère θ max, certaines refont des amplitudes trop faibles -On a des zones d ombres (puits, tige, glace, etc...) Densité électronique approchée (erreur de troncature de série) (mais pour la majorité des cas, pas un gros problème...) ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

6 ρ «Critique» de l inversion de Fourier 1 V 2) Erreurs expérimentales négligées Pourquoi? h k l ( x, y, z) = F( h, k, l) 2iπ ( hx+ ky+ lz) Facteurs de structure observés sont mesurés expérimentalement Incertitude de mesure inhérente à tout appareil e Dans la formule, un facteur de structure mesuré très précisément traité de la même façon que facteur de structure très imprécis Information «oubliée» dans une série de Fourier classique ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

7 «Critique» de l inversion de Fourier 3) Carte de Fourier=carte particulière, pas forcément la meilleure Carte de Fourier = modèle calc(dans espace réel) compatibleavec F obs On définit la probabilité χ 2 que le modèle soit possible par χ = 1 n 2 1 hkl σ 2 F cal ( hkl) F ( hkl) Habituellement, on considère reconstructions possibles si χ 2 ~1 ou χ 2 1 Dans le cas série de Fourier, on utilise quel que soit σ: F ( hkl) F ( hkl) Dans le cas série de Fourier, on utilise quel que soit σ: On choisitla carte telle que χ 2 =0 pour les réflexions mesurées et F calc =0 pour les réflexions non mesurées obs 2 cal = obs C est une carte bien particulière et pas forcément la plus probable ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

8 Alternative à la carte de Fourier: la MEM Approche Bayesienne(Rev. Thomas Bayes, ): calcul de la probabilité d'un événement complexe dont on sait qu'un de ses composants s'est produit Question: Considérant toutes les cartes possibles, quelle est la probabilité d une carte sachant que les facteurs de structure sont ceux qui ont étémesurés? Une telle probabilité conditionnelle peut s écrire p(carte data) Le théorème de Bayes (p(a B).p(B)=p(B A).p(A)) peut alors être appliqué pour en déduire la probabilitéa posterioric'est-à-dire: ( carte data) p = p ( data carte) p( carte) p( data) Avec: p(data carte) = probabilité du jeu de données expérimentales si on considère qu'une carte de densitédonnée est correcte, cadl accord entre Fo et Fc, cad χ 2 p(carte), représente la probabilité intrinsèque de la carte, sans aucune référence aux données p(data) représente une probabilité intrinsèque aux données, sans aucune référence àla carte. Cette probabilité=1 quand un jeu de données est obtenu ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

9 Alternative à la carte de Fourier: la MEM Finalement: p(carte data)=p(data carte). p(carte) χ 2 la probabilité d'une carte, connaissant un jeu de données mesurées, n'est pas seulement représentée par l'accord entre les Fobs et Fcalc, mais aussi par la probabilité intrinsèque de la carte Clairement, l'inversion de Fourier négligecomplètement ce dernier terme. => parmi toutes les configurations possibles, compatibles avec les données, la Méthode de Maximum Entropie permet de choisir celle qui correspond à la plus grande probabilité intrinsèque de la distribution. ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

10 Illustration du concept d entropie Gull et Skilling(1984): Le problème du Kangourou Sachant que 50% des kangourous d'une île déserte ont les yeux bleus (YB) et que 40% utilisent leur main gauche (MG) pour se gratter, quelle est, en l'absence de toute autre information, la proportion de kangourous gauchers aux yeux bleus? ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

11 Illustration du concept d entropie La solution n est pas unique: toutes les solutions entre 0 et 40% sont possibles, mais elles n ont pas toutes la même probabilité. Si l'on simplifiele problème à10 kangourous appelées A, B...I, J Représentons les répartitions possibles des 10 kangourous en question, toutes ces configurations respectant bien évidemment 50 % (YB) et 40 % (MG) (MG) Non (MG) (MG) Non (MG) (MG) Non (MG) (YB) A BCDE (YB) B AEHI (YB) AB EHI Non (YB) FGH IJ Non (YB) CDF GJ Non (YB) CD FGJ En utilisant un formalisme plus mathématique avec des matrices ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

12 Illustration du concept d entropie Si on généraliseet que l on utilise une approche statistiquecombinatoire, on peut calculer le nombre de complexions (c-a-d le nombre des différentes répartitions possibles des kangourous qui donne la même configuration) ! = ! 4! 1! ! = ! 3! 2! 1! ! = ! 3! 2! 2! ! = ! 3! 2! 1! ! = ! 4! 1! Maximumde complexions = configuration la plus probable En l'absence de toute autre information, la valeur qui maximisele nombre de complexion, ie 20 % de kangourous gauchers aux yeux bleus, est la plus probable ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

13 Illustration du concept d entropie On peut généraliser le nombre de répartitions à M mailles. Le nombre de complexions d'une configuration donnée est alors: W = N! ( N )! ( N )!...( N )! 1 2 M En appliquant la formule de Stirling pour les grands nombres: Soit, avec p i =N i /N W on arrive à W 1 = = N N1 N2 NM ( p1 ) ( p2 )...( pm ) ( p ) = N N1 N2 N ( N ) ( N )...( N ) M MaximiserW est équivalent àmaximiser logw, et on arrive donc à maximiser la fonction LogW=S B =NSavec S p Logp i i = i Du fait de sa ressemblance avec l entropie telle qu elle est définit par Boltzmann, cette fonction est appelée Entropie Donc, trouver la solution la plus probablerevient àtrouver la solution qui maximise l Entropie. CQFD i= i i 2 N M ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

14 Application en cristallographie Pour définir l'entropiede la densitéélectronique, cette fonction continue de l'espace est quantifiée en découpant la maille unité en sous mailles i (appelées pixels) dans laquelle la densitéest supposée constante: ρ i =ρ(r i ) On définit alors la densité normalisée par pi = 2 N L'entropie d'une distributionquelconque est alors définit par ρ j= 1 i ρ j S = i p i Logp i La carte de densitéélectronique la plus probable est celle qui àla foisadapte au mieux les données (χ 2 1, en tenant compte de la barre d'erreur dans le calcul) et qui a le maximum d'entropie. Carte de densitéde spin Série de Fourier M E M ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

15 Exemple en imagerie ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

16 Exemple en imagerie Mise au point ratée Image Floue Espoir pour les mauvais photographes Désespoir pour les mauvais conducteurs ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

17 Contexte de l étude Nouveaux matériaux de type pérovskite hexagonale avec du cobalt: Propriétés électroniques et magnétiques -nombreux états de valence dans le solide : Co 2+, Co 3+, Co 4+ - environnements oxygénés variés - différentes configurations de spin = f(t, P, composition chimique, ) Co 3+ Bas Spin Co 3+ Spin Intermédiaire Co 3+ Haut Spin Cobalt propice àformer de nouvelles phases aux propriétés physiques intéressantes ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

18 Contexte de l étude (Thèses M. Kauffmann & G. Ehora) Oxyhalogénures(F-Cl-Br) de Ba -Co: Co 3,33+ Co 3,4+ Co 3,33+ Co 3,4+ Ba 6 Co 3,33+ 6 ClO 15,5 Ba 5 Co 3,4+ 5 ClO 13 Ba 7 Co 3,33+ 6 BrO 16,5 Ba 6 Co 3,4+ BrO 5 14 Ba 6 Co 3,33+ 6 FO 15,5 Ba 5 Co 3,4+ 5 FO 13 Co 4+ sites tétraédriques et Co 3+ sites octaédriques ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

19 Structure de Ba 7 Co 6 BrO Reconstructed (h k 0) precession layer a=5.66 Å a = (1)? b=5.66 Å b = (1)? c = c= (8) Å? R-3m -4/3 11/3 0-2/3 10/3 0 Strate( 1/3 k l ) Trainéede diffusion= ordre local Pb : impossible d intégrer les intensités a = a= (1) Å? b = b= (1) Å? c = c= (8) Å? R-3m ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

20 Cas de Ba 7 Co 6 BrO 17 Site Ba Site Br Difference Fourier Maps Maximum Entropy Method Maps Site O => Propriétes Physiques Couches Ba 2 O 2 Br trèsdésordonnées ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

21 Cas de Ba 7 Co 6 BrO 17 Susceptibilité magnétique DC : Diffraction Neutron (D1B ILL) O. Isnard Mise en ordre antiferromagnétique à basse température peff=11,26 µb/u.f. + affinement structure magnétique configuration électronique des atomes de Co 4+ en SI ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

22 Cas de Ba 7 Co 6 BrO 17 Co 4+ Spin Intermediaire(e g3 t 2g2 ) Pour un cation d 5 (Co 4+ ) en environnement tétraédrique, seules les configurations électroniques Bas Spin et Haut Spin sont stables Pouchard C.R. Chim. 6 (2003) Tétraèdre idéal Co 4+ Haut Spin (e g2 t 2g3 ) ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

23 Cas de Ba 7 Co 6 BrO 17 Carte de densité électronique (Méthode de Maximum Entropie) Déformation du site tétraédrique (distorsion locale) Tétraèdre idéal Co 4+ Haut Spin (e g2 t 2g3 ) ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

24 Cas de Ba 7 Co 6 BrO 17 Carte de densité électronique (Méthode de Maximum Entropie) Déformation du site tétraédrique (distorsion locale) Levée de dégénérescence (E ) Tetraedre déformé Co 4+ Haut Spin (e g2 t 2g3 ) Co 4+ Spin Intermédiaire (e g3 t 2g2 ) ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

25 Conclusion MEM nous a permis de mettre en évidence un désordre oxygéné => Valider le modèle de structure magnétique que l on avait proposé Pas seulement un «jeu» de cristallographe Mais aussi, et surtout, une aide àla compréhension de phénomènes physiques complexes Méthode bien adaptée à l observation de structures désordonnées mais également àdes études de densitéde charge PS1: MEM permet de «voir»le désordre, ànous de le modéliser PS2: Ne jetez pas vos cartes de Fourier... ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

26 Merci de votre Attention ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

Initiation à la théorie de l information (Claude Shannon 1948)

Initiation à la théorie de l information (Claude Shannon 1948) Initiation à la théorie de l information (Claude Shannon 1948) Emergence Paris - Santacafé Philippe Picard, le 26/04/2006 Page 1 Avant propos La théorie de l information, sans faire appel - du moins dans

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Quelques clés pour approcher la théorie de l information selon Claude Shannon. Philippe Picard, le 26/04/2010 Page 1

Quelques clés pour approcher la théorie de l information selon Claude Shannon. Philippe Picard, le 26/04/2010 Page 1 Quelques clés pour approcher la théorie de l information selon Claude Shannon Philippe Picard, le 26/04/2010 Page 1 Avant propos La théorie de l information, sans faire appel - du moins dans ses théorèmes

Plus en détail

2 Probabilités conditionnelles. Événements indépendants

2 Probabilités conditionnelles. Événements indépendants 2 Probabilités conditionnelles. Événements indépendants 2.1 Probabilité conditionnelle Soient A et B deux événements tels que P(B) > 0. Soit alors P(A B), la probabilité que A se réalise, B étant réalisé.

Plus en détail

Détermination des structures moléculaires Structures et diffraction.

Détermination des structures moléculaires Structures et diffraction. Détermination des structures moléculaires Structures et diffraction. Pr. Richard Welter, Institut de Biologie Moléculaire des Plantes, welter@unitra.fr CONTENU DES ENSEIGNEMENTS 1) Discussion sur la notion

Plus en détail

Étude par microscopie électronique à haute

Étude par microscopie électronique à haute Sommaire Étude par microscopie électronique à haute résolution d agrégats de CoPt Nils Blanc - GDR Nano-alliages F. Tournus, T. Épicier (Laboratoire MATEIS - CLIME - INSA), V. Dupuis. Laboratoire de physique

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

La classification périodique

La classification périodique Chapitre 3 : UE1 : Chimie Chimie physique La classification périodique Pierre-Alexis GAUCHARD Agrégé de chimie, Docteur ès sciences Année universitaire 2010/2011 Université Joseph Fourier de Grenoble -

Plus en détail

Microscopies Électroniques

Microscopies Électroniques Microscopies Électroniques M2 Microscopie Électronique en Transmission Diffraction Nicolas Menguy Institut de Minéralogie et Physique des Milieux Condensés Plan Le microscope électronique en transmission

Plus en détail

THÉORIE DE L'INFORMATION : RAPPELS

THÉORIE DE L'INFORMATION : RAPPELS THÉORIE DE L'INFORMATION : RAPPELS 1920 : premières tentatives de définition de mesure de l'information à partir de 1948 : travaux de Shannon Théorie de l'information discipline fondamentale qui s'applique

Plus en détail

Corrigés du Thème 1 :

Corrigés du Thème 1 : Thème 1 : Corrigés des exercices Page 1 sur 9 Corrigés du Thème 1 : Création : juin 2 003 Dernière modification : juin 2005 Exercice T1_01 : Evaluation de la taille d une molécule d eau Dans 1g ( 1 cm

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

RAPPORT DE CRISTALLOGRAPHIE Étude de structures cristallines à l aide du logiciel CrystalMaker

RAPPORT DE CRISTALLOGRAPHIE Étude de structures cristallines à l aide du logiciel CrystalMaker RAPPORT DE CRISTALLOGRAPHIE Étude de structures cristallines à l aide du logiciel CrystalMaker Benjamin Frere 2ème candidature en sciences physique, Université de Liège Année académique 2003-2004 1 1 Le

Plus en détail

4- Méthodes physiques d analyse en métallurgie

4- Méthodes physiques d analyse en métallurgie 4- Méthodes physiques d analyse en métallurgie a) Classifications b) Microscope métallographique c) Microscope électronique à balayage d) Microscope électronique en transmission e) Diffraction des rayons

Plus en détail

Capacité Métal-Isolant-Semiconducteur (MIS)

Capacité Métal-Isolant-Semiconducteur (MIS) apacité Métal-solant-Semiconducteur (MS) 1-onstitution Une structure Métal-solant-Semiconducteur (MS) est constituée d'un empilement de trois couches : un substrat semiconducteur sur lequel on a déposé

Plus en détail

Du kev au GeV : La température à l assaut de la matière. E. Suraud, Univ. P. Sabatier, Toulouse

Du kev au GeV : La température à l assaut de la matière. E. Suraud, Univ. P. Sabatier, Toulouse Du kev au GeV : La température à l assaut de la matière E. Suraud, Univ. P. Sabatier, Toulouse La température, source de «désordre» ou source «d ordre»? Plan Température source de «désordre» Température

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

Application à l astrophysique ACTIVITE

Application à l astrophysique ACTIVITE Application à l astrophysique Seconde ACTIVITE I ) But : Le but de l activité est de donner quelques exemples d'utilisations pratiques de l analyse spectrale permettant de connaître un peu mieux les étoiles.

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Fête de la science Initiation au traitement des images

Fête de la science Initiation au traitement des images Fête de la science Initiation au traitement des images Détection automatique de plaques minéralogiques à partir d'un téléphone portable et atelier propose de créer un programme informatique pour un téléphone

Plus en détail

Plan du chapitre «Milieux magnétiques»

Plan du chapitre «Milieux magnétiques» Plan du chapitre «Milieux magnétiques» 1. Sources microscopiques de l aimantation en régime statique 2. Etude macroscopique de l aimantation en régime statique 3. Aimantation en régime variable 4. Les

Plus en détail

Complément - Chapitre 1 Notions fondamentales

Complément - Chapitre 1 Notions fondamentales Complément - Chapitre 1 Notions fondamentales Configurations électroniques 1.a Cases quantiques La configuration électronique des atomes consiste en la répartition des électrons au sein des différentes

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

Caractérisations des nanomatériaux par microscopies électroniques

Caractérisations des nanomatériaux par microscopies électroniques Caractérisations des nanomatériaux par microscopies électroniques Nicolas Menguy Institut de Minéralogie et Physique des Milieux Condensés Plan Partie 1 - Le microscope électronique en transmission (M.E.T.)

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Etude du comportement en mécanique de la rupture de l acier T91 en milieu sodium liquide

Etude du comportement en mécanique de la rupture de l acier T91 en milieu sodium liquide Etude du comportement en mécanique de la rupture de l acier T91 en milieu sodium liquide Samuel HEMERY (2 e année) Directeur de thèse: Thierry Auger (CNRS) Encadrant CEA: Jean Louis Courouau (DPC/SCCME/LECNA)

Plus en détail

Conditionneur pour les capteurs

Conditionneur pour les capteurs Conditionneur pour les capteurs Les éléments de la chaîne de mesure Grandeur Physique Grandeur électrique Capteur Conditionneur lecture/commande/controle Appareil mesure/ capteur par abus de langage Capteur

Plus en détail

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires Chapitre I Probabilités Bcpst 1 2 novembre 2015 I Exemples d expériences aléatoires Une expérience aléatoire est une expérience dont on ne peut pas prédire le résultat avant de l avoir réalisée... ce qui

Plus en détail

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : Analyse d images La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers

Plus en détail

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention

Plus en détail

Modèle réduit pour la DSC : Application aux solutions binaires

Modèle réduit pour la DSC : Application aux solutions binaires Modèle réduit pour la DSC : Application aux solutions binaires Stéphane GIBOUT 1, Erwin FRANQUET 1, William MARÉCHAL 1, Jean-Pierre BÉDÉCARRATS 1, Jean-Pierre DUMAS 1 1 Univ. Pau & Pays Adour, LaTEP-EA

Plus en détail

PJE : Analyse de comportements avec Twitter Classification supervisée

PJE : Analyse de comportements avec Twitter Classification supervisée PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe arnaud.liefooghe@univ-lille1.fr Master 1 Informatique PJE2 2015-16 B. Derbel L. Jourdan A. Liefooghe 1 2 Agenda Partie

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Analyse d images introduction

Analyse d images introduction L3, option Image Analyse d images introduction http ://perception.inrialpes.fr/people/boyer/teaching/l3/ Elise Arnaud - Edmond Boyer Université Joseph Fourier / INRIA Rhône-Alpes elise.arnaud@inrialpes.fr

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch 2. Probabilité 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance Probabilité et Statistiques I Chapître 2 1 2.1 Espaces de Probabilité Contenu Exemples élémentaires de probabilité,

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

1) Explications (Expert) :

1) Explications (Expert) : 1) Explications (Expert) : Mesures expérimentales : Dans nos conditions d expérience, nous avons obtenu les résultats suivants : Les dimensions des récipients sont : 1) bocal vide : épaisseur de verre

Plus en détail

RÉVISION DE CALCUL NUMÉRIQUE

RÉVISION DE CALCUL NUMÉRIQUE RÉVISION DE CALCUL NUMÉRIQUE. Les ensembles numériques. Propriétés des nombres réels. Ordre des opérations. Nombres premiers. Opérations sur les fractions 7. Puissances entières 0.7 Notation scientifique.8

Plus en détail

CHIMIE. À propos du chrome

CHIMIE. À propos du chrome CHIMIE Les calculatrices sont autorisées. À propos du chrome Du grec khrôma ou du latin chroma (couleur). Il a été découvert par Louis Vauquelin en 1797. Il est présent dans la croûte terrestre ( 003,

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Atomes polyélectroniques

Atomes polyélectroniques Chapitre 2 : UE1 : Chimie Chimie physique Atomes polyélectroniques Pierre-Alexis GAUCHARD Agrégé de chimie, Docteur ès sciences Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous

Plus en détail

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Exercice 1 : Exécutez un algorithme Considérez l algorithme suivant. Variables A, B, C en Entier; Début Lire A; Lire B; TantQue B 0 C A; TantQue

Plus en détail

Effets inductifs et mésomères

Effets inductifs et mésomères CHIMIE RGANIQUE (Stage de pré-rentrée UE1) Effets inductifs et mésomères bjectifs: Découvrir les effets électroniques inductifs et mésomères. Aborder l ordre de priorité des groupes fonctionnels donneurs

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

Approche inverse pour la restauration de l information cristallographique

Approche inverse pour la restauration de l information cristallographique Approche inverse pour la restauration de l information cristallographique Ferréol Soulez INSA CNDRI, Centre de Quantimétrie Lyon 1 1 / 19 Principe 2 / 19 Diffraction des rayon X Diffraction des rayons

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Bases du traitement des images. Transformée de Fourier Avancée - Numérisation

Bases du traitement des images. Transformée de Fourier Avancée - Numérisation Transformée de Fourier Avancée - Numérisation Nicolas Thome 6 octobre 2015 1 / 87 Outline 1 Numérisation Fenetrage Échantillonnage Quantification 2 2 / 87 Principe Du continu au discret Un signal continu

Plus en détail

Méthodes Monte Carlo Inverse RMC et EPSR

Méthodes Monte Carlo Inverse RMC et EPSR Méthodes Monte Carlo Inverse RMC et EPSR Laurent Cormier Institut de Minéralogie et Physique des Milieux Condensés Université Pierre et Marie Curie CNRS Paris, France Reverse Monte Carlo (RMC) = méthode

Plus en détail

Principes généraux de la biochimie

Principes généraux de la biochimie Principes généraux de la biochimie «La biochimie a pour but de décrire, expliquer et exploiter les structures et le comportement des molécules biologiques en se servant de la chimie, de la physique et

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

I - Quelques propriétés des étoiles à neutrons

I - Quelques propriétés des étoiles à neutrons Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est

Plus en détail

Chapitre 16. Particules identiques en physique quantique

Chapitre 16. Particules identiques en physique quantique Chapitre 16 Particules identiques en physique quantique Addition de N spins ½ Si vous avez changé de canal, tapez: [Ch]-[4]-[1]-[Ch] ou [Go]-[4]-[1]-[Go] Que peut-on dire du spin total d un ensemble de

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Éléments de chimie organique Résumé

Éléments de chimie organique Résumé Éléments de chimie organique Résumé Note : e résumé indique quelques éléments qui ont été étudiés en classe. Il est largement insuffisant pour compléter votre étude. Il vous permettra de mieux structurer

Plus en détail

Imagerie 3D et mathématiques

Imagerie 3D et mathématiques Imagerie 3D et mathématiques Jacques-Olivier Lachaud Laboratoire de Mathématiques CNRS / Université de Savoie Fête de la Science, 13/10/2013 Galerie Eurêka Image et perception Synthèse d image 3D Imagerie

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

De la difficulté de colorer : de Guthrie à Karp

De la difficulté de colorer : de Guthrie à Karp De la difficulté de colorer : de Guthrie à Karp Introduction à l optimisation combinatoire : Modélisation et complexité Marc Demange ESSEC Business School Paris, Singapore demange@essec.edu Plan de la

Plus en détail

Chapitre 4. Fondements économiques de la demande d'assurance

Chapitre 4. Fondements économiques de la demande d'assurance Chapitre 4. Fondements économiques de la demande d'assurance Laurent Denant Boemont octobre 2008 Chapitre 4. Fondements économiques de la demande d'assurance 2 J. Hamburg (2005) Along came Polly 1 Introduction

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Probabilités sur un univers ni

Probabilités sur un univers ni POIRET Aurélien TD n o 21 MPSI Probabilités sur un univers ni 1 Événements et probabilités Exercice N o 1 : Dans un centre de loisirs, une personne peut pratiquer trois activités. On considère les événements

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

CHAPITRE II : STATIQUE

CHAPITRE II : STATIQUE CHPITRE II : STTIQUE - Généralités : I. NTIN DE RCE : En mécanique, les forces sont utilisées pour modéliser des actions mécaniques diverses (actions de contact, poids, attraction magnétique, effort ).

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET Phase 4 : Modélisation non-supervisée - 5 : Règles d association

Plus en détail

Échantillonnage. Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014

Échantillonnage. Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014 Démarche Statistique 1 Échantillonnage Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014 Introduction Objectif statistique descriptive: sur l'échantillon statistique inférentielle:

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3 MTH1504 2011-2012 CALCUL SCIENTIFIQUE Table des matières 1 Erreur absolue et erreur relative 2 2 Représentation des nombres sur ordinateur 3 3 Arithmétique flottante 4 3.1 Absorption........................................

Plus en détail

Problème IPhO : Diode électroluminescente et lampe de poche

Problème IPhO : Diode électroluminescente et lampe de poche IPhO : Diode électroluminescente et lampe de poche Les diodes électroluminescentes (DEL ou LED en anglais) sont de plus en plus utilisées pour l éclairage : affichages colorés, lampes de poche, éclairage

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

La liaison chimique : formation des molécules

La liaison chimique : formation des molécules La liaison chimique : formation des molécules variation de l'énergie potentielle, lorsque l'on fait varier la distance entre 2 atomes d''hydrogène courtes distances : interaction répulsive grandes distances

Plus en détail

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le

Plus en détail

4. Microscopie électronique à balayage

4. Microscopie électronique à balayage 4. Microscopie électronique à balayage 4.1. Principe de formation des images en MEB 4.2. Mise en œuvre 4.3. Les différents modes d imagerie 4.4. Les différents types de contraste 4.5. Performances 4.5.1.

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz Master Modélisation Statistique M2 Finance - chapitre 1 Gestion optimale de portefeuille, l approche de Markowitz Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Modélisation des transports

Modélisation des transports Modélisation des transports Cinzia Cirillo, Eric Cornelis & Philippe TOINT D.E.S. interuniversitaire en gestion des transports Les Modèles de choix discrets Dr. CINZIA CIRILLO Facultés Universitaires Notre-Dame

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

prérequis 1. ÉLÉMENTS USUELS DE LA CHIMIE ORGANIQUE

prérequis 1. ÉLÉMENTS USUELS DE LA CHIMIE ORGANIQUE chapitre i prérequis 1. ÉLÉMENTS USUELS DE LA CHIMIE ORGANIQUE La chimie organique a pour objet l'étude des composés du carbone. Restreinte à l'origine aux composés du carbone que l'on pouvait extraire

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Quelques applications de la technologie XML dans le domaine de la Simulation Numérique

Quelques applications de la technologie XML dans le domaine de la Simulation Numérique Quelques applications de la technologie XML dans le domaine de la Simulation Numérique G. Dejonghe CEA /DAM Ile-de-France /DCS A Gerard.Dejonghe@cea.fr 1 Plan m Le Contexte DCSA () m Le langage XML comme

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Thermodynamique et gaz parfaits

Thermodynamique et gaz parfaits Université Paris 7 PCEM 1 Cours de Physique Thermodynamique et gaz parfaits Étienne Parizot (APC Université Paris 7) É. Parizot Physique PCEM 1 ère année page 1 Résumé du cours précédent : travail énergie

Plus en détail

Chapitre 3 : Introduction aux probabilités

Chapitre 3 : Introduction aux probabilités IUT de Sceaux Département TC1 Mathématiques Chapitre 3 : Introduction aux probabilités 1. Évènements Les événements élémentaires sont les issues possibles d'une expérience aléatoire. Un événement est un

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 2 : Électrostatique Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. II- Électrostatique Finalité du chapitre

Plus en détail