Méthode de l Entropie Maximum (MEM)

Dimension: px
Commencer à balayer dès la page:

Download "Méthode de l Entropie Maximum (MEM)"

Transcription

1 Méthode de l Entropie Maximum (MEM) Pascal ROUSSEL Chargé de Recherches CNRS UCCS Equipe Chimie du Solide CNRS UMR 8181 ENSC Lille - UST Lille ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

2 Généralité sur la Méthode de l Entropie Maximum But expérience diffraction Fournir des informations sur la structure Classiquement, Ordre moyen (à longue distance): pics de Bragg Ordre local (à courte distance): diffusion diffuse entre Bragg Mais, pics de Bragg contiennent aussi de l info sur le désordre (Debye) Pb: phénomènes faibles nécessitant une imagerie élaborée Classiquement, visualisation, dans l espace réel, de la densitéélectronique 3D avec Transformée de Fourier calc à partir données de diffraction ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

3 Généralité sur la Méthode de l Entropie Maximum Mais, Carte de Fourier, pas la seule(ni la meilleure) représentation de ρ: C est une carte «particulière», parmi d autres, car le pbest «mal posé», C-a-d données existantes insuffisantes pour déterminer une solution unique Dans la plupart des cas, nb de solution, car: -On ne peut pas mesurer tout le signal (θ<θ max ) -Signal bruité(minimum statistique de Poisson) -Signal convolué par fonction appareil (résolution instrumentale) 1 critère supplémentaire (au -) est requis pour choisir, parmi l : Quelle est, parmi toutes les possibilités, la solution la + probable Réponse: la Méthode de l Entropie Maximum (MEM) Procédure d imagerie pour la résolutions de pb inverses mal posés Adaptée à la résolution de systèmes où nb inconnues >> nb équations Déjà appliquée avec succès en Astronomie et Imagerie Médicale ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

4 Généralité sur la Méthode de l Entropie Maximum Apport du MEM sur la transformée de Fourier différence -Prend en compte les barres d erreur expérimentales -Prend en compte l info a priori (par ex : positivité ρ) -Chevauchement de pics -Réduit effets de troncature «Critique»de l inversion de Fourier : : simplicité : carte particulière, pas la meilleure OKpour les cas simpleset sans ambigüités, Mais insuffisante pour l observation des détails fins(ordre partiel) ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

5 ρ «Critique» de l inversion de Fourier 1 V h k l Pourquoi? ( x, y, z) = F( h, k, l) 1) Jeu de données incomplet e 2iπ ( hx+ ky+ lz) Facteurs de structure = coeff de Fourier de la fonction périodique ρ(x,y,z) Relation entre ρ et F exacte seulement pour une infinité de points... Ce qui n est pas le cas: -On coupe à θ<θ max -Dans la sphère θ max, certaines refont des amplitudes trop faibles -On a des zones d ombres (puits, tige, glace, etc...) Densité électronique approchée (erreur de troncature de série) (mais pour la majorité des cas, pas un gros problème...) ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

6 ρ «Critique» de l inversion de Fourier 1 V 2) Erreurs expérimentales négligées Pourquoi? h k l ( x, y, z) = F( h, k, l) 2iπ ( hx+ ky+ lz) Facteurs de structure observés sont mesurés expérimentalement Incertitude de mesure inhérente à tout appareil e Dans la formule, un facteur de structure mesuré très précisément traité de la même façon que facteur de structure très imprécis Information «oubliée» dans une série de Fourier classique ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

7 «Critique» de l inversion de Fourier 3) Carte de Fourier=carte particulière, pas forcément la meilleure Carte de Fourier = modèle calc(dans espace réel) compatibleavec F obs On définit la probabilité χ 2 que le modèle soit possible par χ = 1 n 2 1 hkl σ 2 F cal ( hkl) F ( hkl) Habituellement, on considère reconstructions possibles si χ 2 ~1 ou χ 2 1 Dans le cas série de Fourier, on utilise quel que soit σ: F ( hkl) F ( hkl) Dans le cas série de Fourier, on utilise quel que soit σ: On choisitla carte telle que χ 2 =0 pour les réflexions mesurées et F calc =0 pour les réflexions non mesurées obs 2 cal = obs C est une carte bien particulière et pas forcément la plus probable ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

8 Alternative à la carte de Fourier: la MEM Approche Bayesienne(Rev. Thomas Bayes, ): calcul de la probabilité d'un événement complexe dont on sait qu'un de ses composants s'est produit Question: Considérant toutes les cartes possibles, quelle est la probabilité d une carte sachant que les facteurs de structure sont ceux qui ont étémesurés? Une telle probabilité conditionnelle peut s écrire p(carte data) Le théorème de Bayes (p(a B).p(B)=p(B A).p(A)) peut alors être appliqué pour en déduire la probabilitéa posterioric'est-à-dire: ( carte data) p = p ( data carte) p( carte) p( data) Avec: p(data carte) = probabilité du jeu de données expérimentales si on considère qu'une carte de densitédonnée est correcte, cadl accord entre Fo et Fc, cad χ 2 p(carte), représente la probabilité intrinsèque de la carte, sans aucune référence aux données p(data) représente une probabilité intrinsèque aux données, sans aucune référence àla carte. Cette probabilité=1 quand un jeu de données est obtenu ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

9 Alternative à la carte de Fourier: la MEM Finalement: p(carte data)=p(data carte). p(carte) χ 2 la probabilité d'une carte, connaissant un jeu de données mesurées, n'est pas seulement représentée par l'accord entre les Fobs et Fcalc, mais aussi par la probabilité intrinsèque de la carte Clairement, l'inversion de Fourier négligecomplètement ce dernier terme. => parmi toutes les configurations possibles, compatibles avec les données, la Méthode de Maximum Entropie permet de choisir celle qui correspond à la plus grande probabilité intrinsèque de la distribution. ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

10 Illustration du concept d entropie Gull et Skilling(1984): Le problème du Kangourou Sachant que 50% des kangourous d'une île déserte ont les yeux bleus (YB) et que 40% utilisent leur main gauche (MG) pour se gratter, quelle est, en l'absence de toute autre information, la proportion de kangourous gauchers aux yeux bleus? ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

11 Illustration du concept d entropie La solution n est pas unique: toutes les solutions entre 0 et 40% sont possibles, mais elles n ont pas toutes la même probabilité. Si l'on simplifiele problème à10 kangourous appelées A, B...I, J Représentons les répartitions possibles des 10 kangourous en question, toutes ces configurations respectant bien évidemment 50 % (YB) et 40 % (MG) (MG) Non (MG) (MG) Non (MG) (MG) Non (MG) (YB) A BCDE (YB) B AEHI (YB) AB EHI Non (YB) FGH IJ Non (YB) CDF GJ Non (YB) CD FGJ En utilisant un formalisme plus mathématique avec des matrices ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

12 Illustration du concept d entropie Si on généraliseet que l on utilise une approche statistiquecombinatoire, on peut calculer le nombre de complexions (c-a-d le nombre des différentes répartitions possibles des kangourous qui donne la même configuration) ! = ! 4! 1! ! = ! 3! 2! 1! ! = ! 3! 2! 2! ! = ! 3! 2! 1! ! = ! 4! 1! Maximumde complexions = configuration la plus probable En l'absence de toute autre information, la valeur qui maximisele nombre de complexion, ie 20 % de kangourous gauchers aux yeux bleus, est la plus probable ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

13 Illustration du concept d entropie On peut généraliser le nombre de répartitions à M mailles. Le nombre de complexions d'une configuration donnée est alors: W = N! ( N )! ( N )!...( N )! 1 2 M En appliquant la formule de Stirling pour les grands nombres: Soit, avec p i =N i /N W on arrive à W 1 = = N N1 N2 NM ( p1 ) ( p2 )...( pm ) ( p ) = N N1 N2 N ( N ) ( N )...( N ) M MaximiserW est équivalent àmaximiser logw, et on arrive donc à maximiser la fonction LogW=S B =NSavec S p Logp i i = i Du fait de sa ressemblance avec l entropie telle qu elle est définit par Boltzmann, cette fonction est appelée Entropie Donc, trouver la solution la plus probablerevient àtrouver la solution qui maximise l Entropie. CQFD i= i i 2 N M ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

14 Application en cristallographie Pour définir l'entropiede la densitéélectronique, cette fonction continue de l'espace est quantifiée en découpant la maille unité en sous mailles i (appelées pixels) dans laquelle la densitéest supposée constante: ρ i =ρ(r i ) On définit alors la densité normalisée par pi = 2 N L'entropie d'une distributionquelconque est alors définit par ρ j= 1 i ρ j S = i p i Logp i La carte de densitéélectronique la plus probable est celle qui àla foisadapte au mieux les données (χ 2 1, en tenant compte de la barre d'erreur dans le calcul) et qui a le maximum d'entropie. Carte de densitéde spin Série de Fourier M E M ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

15 Exemple en imagerie ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

16 Exemple en imagerie Mise au point ratée Image Floue Espoir pour les mauvais photographes Désespoir pour les mauvais conducteurs ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

17 Contexte de l étude Nouveaux matériaux de type pérovskite hexagonale avec du cobalt: Propriétés électroniques et magnétiques -nombreux états de valence dans le solide : Co 2+, Co 3+, Co 4+ - environnements oxygénés variés - différentes configurations de spin = f(t, P, composition chimique, ) Co 3+ Bas Spin Co 3+ Spin Intermédiaire Co 3+ Haut Spin Cobalt propice àformer de nouvelles phases aux propriétés physiques intéressantes ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

18 Contexte de l étude (Thèses M. Kauffmann & G. Ehora) Oxyhalogénures(F-Cl-Br) de Ba -Co: Co 3,33+ Co 3,4+ Co 3,33+ Co 3,4+ Ba 6 Co 3,33+ 6 ClO 15,5 Ba 5 Co 3,4+ 5 ClO 13 Ba 7 Co 3,33+ 6 BrO 16,5 Ba 6 Co 3,4+ BrO 5 14 Ba 6 Co 3,33+ 6 FO 15,5 Ba 5 Co 3,4+ 5 FO 13 Co 4+ sites tétraédriques et Co 3+ sites octaédriques ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

19 Structure de Ba 7 Co 6 BrO Reconstructed (h k 0) precession layer a=5.66 Å a = (1)? b=5.66 Å b = (1)? c = c= (8) Å? R-3m -4/3 11/3 0-2/3 10/3 0 Strate( 1/3 k l ) Trainéede diffusion= ordre local Pb : impossible d intégrer les intensités a = a= (1) Å? b = b= (1) Å? c = c= (8) Å? R-3m ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

20 Cas de Ba 7 Co 6 BrO 17 Site Ba Site Br Difference Fourier Maps Maximum Entropy Method Maps Site O => Propriétes Physiques Couches Ba 2 O 2 Br trèsdésordonnées ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

21 Cas de Ba 7 Co 6 BrO 17 Susceptibilité magnétique DC : Diffraction Neutron (D1B ILL) O. Isnard Mise en ordre antiferromagnétique à basse température peff=11,26 µb/u.f. + affinement structure magnétique configuration électronique des atomes de Co 4+ en SI ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

22 Cas de Ba 7 Co 6 BrO 17 Co 4+ Spin Intermediaire(e g3 t 2g2 ) Pour un cation d 5 (Co 4+ ) en environnement tétraédrique, seules les configurations électroniques Bas Spin et Haut Spin sont stables Pouchard C.R. Chim. 6 (2003) Tétraèdre idéal Co 4+ Haut Spin (e g2 t 2g3 ) ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

23 Cas de Ba 7 Co 6 BrO 17 Carte de densité électronique (Méthode de Maximum Entropie) Déformation du site tétraédrique (distorsion locale) Tétraèdre idéal Co 4+ Haut Spin (e g2 t 2g3 ) ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

24 Cas de Ba 7 Co 6 BrO 17 Carte de densité électronique (Méthode de Maximum Entropie) Déformation du site tétraédrique (distorsion locale) Levée de dégénérescence (E ) Tetraedre déformé Co 4+ Haut Spin (e g2 t 2g3 ) Co 4+ Spin Intermédiaire (e g3 t 2g2 ) ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

25 Conclusion MEM nous a permis de mettre en évidence un désordre oxygéné => Valider le modèle de structure magnétique que l on avait proposé Pas seulement un «jeu» de cristallographe Mais aussi, et surtout, une aide àla compréhension de phénomènes physiques complexes Méthode bien adaptée à l observation de structures désordonnées mais également àdes études de densitéde charge PS1: MEM permet de «voir»le désordre, ànous de le modéliser PS2: Ne jetez pas vos cartes de Fourier... ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

26 Merci de votre Attention ANGD Reciprocs MEM Pascal ROUSSEL UCCS Mardi 7 juillet

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Microscopies Électroniques

Microscopies Électroniques Microscopies Électroniques M2 Microscopie Électronique en Transmission Diffraction Nicolas Menguy Institut de Minéralogie et Physique des Milieux Condensés Plan Le microscope électronique en transmission

Plus en détail

Fête de la science Initiation au traitement des images

Fête de la science Initiation au traitement des images Fête de la science Initiation au traitement des images Détection automatique de plaques minéralogiques à partir d'un téléphone portable et atelier propose de créer un programme informatique pour un téléphone

Plus en détail

THÉORIE DE L'INFORMATION : RAPPELS

THÉORIE DE L'INFORMATION : RAPPELS THÉORIE DE L'INFORMATION : RAPPELS 1920 : premières tentatives de définition de mesure de l'information à partir de 1948 : travaux de Shannon Théorie de l'information discipline fondamentale qui s'applique

Plus en détail

Caractérisations des nanomatériaux par microscopies électroniques

Caractérisations des nanomatériaux par microscopies électroniques Caractérisations des nanomatériaux par microscopies électroniques Nicolas Menguy Institut de Minéralogie et Physique des Milieux Condensés Plan Partie 1 - Le microscope électronique en transmission (M.E.T.)

Plus en détail

Application à l astrophysique ACTIVITE

Application à l astrophysique ACTIVITE Application à l astrophysique Seconde ACTIVITE I ) But : Le but de l activité est de donner quelques exemples d'utilisations pratiques de l analyse spectrale permettant de connaître un peu mieux les étoiles.

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

1) Explications (Expert) :

1) Explications (Expert) : 1) Explications (Expert) : Mesures expérimentales : Dans nos conditions d expérience, nous avons obtenu les résultats suivants : Les dimensions des récipients sont : 1) bocal vide : épaisseur de verre

Plus en détail

Capacité Métal-Isolant-Semiconducteur (MIS)

Capacité Métal-Isolant-Semiconducteur (MIS) apacité Métal-solant-Semiconducteur (MS) 1-onstitution Une structure Métal-solant-Semiconducteur (MS) est constituée d'un empilement de trois couches : un substrat semiconducteur sur lequel on a déposé

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

RÉVISION DE CALCUL NUMÉRIQUE

RÉVISION DE CALCUL NUMÉRIQUE RÉVISION DE CALCUL NUMÉRIQUE. Les ensembles numériques. Propriétés des nombres réels. Ordre des opérations. Nombres premiers. Opérations sur les fractions 7. Puissances entières 0.7 Notation scientifique.8

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch 2. Probabilité 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance Probabilité et Statistiques I Chapître 2 1 2.1 Espaces de Probabilité Contenu Exemples élémentaires de probabilité,

Plus en détail

I - Quelques propriétés des étoiles à neutrons

I - Quelques propriétés des étoiles à neutrons Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est

Plus en détail

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Introduction au maillage pour le calcul scientifique

Introduction au maillage pour le calcul scientifique Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel franck.ledoux@cea.fr Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET Phase 4 : Modélisation non-supervisée - 5 : Règles d association

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Chapitre 3 : Introduction aux probabilités

Chapitre 3 : Introduction aux probabilités IUT de Sceaux Département TC1 Mathématiques Chapitre 3 : Introduction aux probabilités 1. Évènements Les événements élémentaires sont les issues possibles d'une expérience aléatoire. Un événement est un

Plus en détail

Caractérisations des nanomatériaux par microscopies électroniques

Caractérisations des nanomatériaux par microscopies électroniques GDR Verres GDR 3338 Caractérisations des nanomatériaux par microscopies électroniques Nicolas Menguy Institut de Minéralogie et Physique des Milieux Condensés Plan Partie 1 - Le microscope électronique

Plus en détail

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques C est Niveau la représentation 4 ème 2. Document du professeur 1/6 Physique Chimie LES ATOMES POUR COMPRENDRE LA TRANSFORMATION CHIMIQUE Programme Cette séance expérimentale illustre la partie de programme

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Chapitre 4 - Spectroscopie rotationnelle

Chapitre 4 - Spectroscopie rotationnelle Chapitre 4 - Spectroscopie rotationnelle 5.1 Classification Déterminer à quelle catégorie (sphérique, symétrique, asymétrique) appartiennent ces molécules : a) CH 4, b) CH 3 F, c) CH 3 D, d) SF 6, e) HCN,

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

DEMARCHE ET MISE EN ŒUVRE

DEMARCHE ET MISE EN ŒUVRE Chapitre I : CONVENTIONS D ECRITURE 15 CHAPITRE I DEMARCHE ET MISE EN ŒUVRE Le développement de fonctions mathématiques peut répondre à plusieurs critères ou objectifs tels que la vitesse d exécution,

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE

Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE LAURENT Rémy laurent@clermont.in2p3.fr http://clrpcsv.in2p3.fr Journées des LARD Septembre 2007 M2R

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

NOTICE DOUBLE DIPLÔME

NOTICE DOUBLE DIPLÔME NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

Module Physico-chimie

Module Physico-chimie Université Paris XII-Val de Marne ENPC Université Paris 7 Module Physico-chimie chimie Chap. 2.4. Équilibres de complexation D. Thévenot & B. Aumont thevenot@cereve.enpc.fr aumont@lisa.univ-paris12.fr

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Caractéristiques des ondes

Caractéristiques des ondes Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace

Plus en détail

Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements

Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements Rapport LAAS-CNRS Numéro N o 13077 Quynh Anh DO HOANG, Jérémie GUIOCHET, Mohamed

Plus en détail

TEMP 1 : AI-JE LA FIEVRE?

TEMP 1 : AI-JE LA FIEVRE? Fiche professeur TEMP 1 : AI-JE LA FIEVRE? TI-82 STATS TI-83 Plus TI-84 Plus Mots-clés : température, unité, conversion, Celsius, Fahrenheit, représentation, régression, modèle. 1. Objectifs a. Aspects

Plus en détail

APPORT DES RESEAUX BAYESIENS DANS LA PREVENTION DE LA DELINQUANCE

APPORT DES RESEAUX BAYESIENS DANS LA PREVENTION DE LA DELINQUANCE SûretéGlobale.Org La Guitonnière 49770 La Meignanne Téléphone : +33 241 777 886 Télécopie : +33 241 200 987 Portable : +33 6 83 01 01 80 Adresse de messagerie : c.courtois@sureteglobale.org APPORT DES

Plus en détail

MESURE DE LA TEMPERATURE

MESURE DE LA TEMPERATURE 145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Formules d inclusion-exclusion

Formules d inclusion-exclusion Université de Rouen L1 M.I.EEA 2011 2012 Mathématiques discrètes Formules d inclusion-exclusion Je présente ici une correction détaillée de l Exercice 5 de la Feuille d exercices 1, en reprenant le problème

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Plan du chapitre «Milieux diélectriques»

Plan du chapitre «Milieux diélectriques» Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation

Plus en détail

choisir H 1 quand H 0 est vraie - fausse alarme

choisir H 1 quand H 0 est vraie - fausse alarme étection et Estimation GEL-64943 Hiver 5 Tests Neyman-Pearson Règles de Bayes: coûts connus min π R ( ) + ( π ) R ( ) { } Règles Minimax: coûts connus min max R ( ), R ( ) Règles Neyman Pearson: coûts

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Les arbres de décision

Les arbres de décision Les arbres de décision 25 Septembre 2007 Datamining 1 2007-2008 Plan 1 Le partitionnement récursif 2 C4.5 3 CART 4 Evaluation de performances 5 Bilan Datamining 2 2007-2008 Les données du Titanic Le partitionnement

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

TP fibres optiques. Laser, Matériaux, Milieux Biologiques. Sécurité laser. Précautions à prendre

TP fibres optiques. Laser, Matériaux, Milieux Biologiques. Sécurité laser. Précautions à prendre TP fibres optiques Laser, Matériaux, Milieux Biologiques Sécurité laser ATTENTION : la diode laser à 810 nm est puissante (50 mw). Pour des raisons de sécurité et de sauvegarde de la santé des yeux, vous

Plus en détail

Prévisions des eaux de drainage & programme d essai de lixiviation des métaux: pratiques actuelles

Prévisions des eaux de drainage & programme d essai de lixiviation des métaux: pratiques actuelles Février 2012 Prévisions des eaux de drainage & programme d essai de lixiviation des métaux: pratiques actuelles CONFIDENTIEL Sommaire Mise en contexte sur DMA / LM Objectifs du programme de DMA / LM Composantes

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

SDLV120 - Absorption d'une onde de compression dans un barreau élastique

SDLV120 - Absorption d'une onde de compression dans un barreau élastique Titre : SDLV120 - Absorption d'une onde de compression dan[...] Date : 09/11/2011 Page : 1/9 SDLV120 - Absorption d'une onde de compression dans un barreau élastique Résumé On teste les éléments paraxiaux

Plus en détail

Utilisation de l AFM pour l étude d échantillons Acquisition des données et traitement d image Stage de master 1

Utilisation de l AFM pour l étude d échantillons Acquisition des données et traitement d image Stage de master 1 Utilisation de l AFM pour l étude d échantillons Acquisition des données et traitement d image Stage de master 1 Farida Bendriaa, Virginie Hoel, Henri Happy Institut d'electronique et de Microélectronique

Plus en détail

Diagramme D équilibre Binaire

Diagramme D équilibre Binaire Chapitre 4 : Diagramme D équilibre Binaire Objectifs spécifiques : -Connaitre les phases d une composition chimique de deux éléments en différentes températures. - maitriser la lecture d un diagramme d

Plus en détail

LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES

LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES Compétences mises en jeu durant l'activité : Compétences générales : S'impliquer, être autonome. Compétence(s) spécifique(s) : Reconnaître des signaux de nature

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

MESURES DE DILATOMETRIE SUR DEUX NUANCES D ACIER INOX : 1.4542 ET 1.4057 le 04/01/00

MESURES DE DILATOMETRIE SUR DEUX NUANCES D ACIER INOX : 1.4542 ET 1.4057 le 04/01/00 1 EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE LAUSANNE POLITECNICO FEDERALE DI LOSANNA SWISS FEDERAL INSTITUTE OF TECHNOLOGY LAUSANNE DEPARTEMENT DE MICROTECHNIQUE INSTITUT DE PRODUCTION MICROTECHNIQUE CH - 1015

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

ÉQUILIBRES LIQUIDE - VAPEUR

ÉQUILIBRES LIQUIDE - VAPEUR 1 ÉQUILIBRES LIQUIDE - VAEUR I/ REAMBULES IMORTANTS distinction gaz et vapeur: les deux dénominations réfèrent strictement au même état physique, l'état gazeux. On nomme gaz un corps pur existant seulement

Plus en détail

Les rencontres scientifiques du vendredi

Les rencontres scientifiques du vendredi Les rencontres scientifiques du vendredi Un élément de l Animation Scientifique de l axe 2 Techniques & Méthodes : Mesurer la taille des Particules Natalia Nicole Rosa Doctorante de l Axe 2 UMR IATE 29

Plus en détail

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Manière heuristique d'introduire l'approximation de champ moyen : on néglige les termes de fluctuations

Plus en détail

Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette

Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette Compression et Transmission des Signaux Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette 1 De Shannon à Mac Donalds Mac Donalds 1955 Claude Elwood Shannon 1916 2001 Monsieur X 1951 2 Où

Plus en détail

Tutorat 2 de Mathématiques (1ère année)

Tutorat 2 de Mathématiques (1ère année) Tutorat 2 de Mathématiques (ère année) 9//200 Transformée de Radon et Tomographie par Rayons X Compte-rendu à déposer svp le casier de mon bureau. N hésitez pas à me contacter en cas de difficultés majeures

Plus en détail

TD 9 Problème à deux corps

TD 9 Problème à deux corps PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux

Plus en détail

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

Notion de fonction. Résolution graphique. Fonction affine.

Notion de fonction. Résolution graphique. Fonction affine. TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................

Plus en détail

MODELE DE PRESENTATION DU PROJET

MODELE DE PRESENTATION DU PROJET MODELE DE PRESENTATION DU PROJET SITUATION ACTUELLE DU PROJET: Intitulé du PNR Code du Projet (Réservé à l administration) SCIENCES FONDAMENTALES Nouveau projet : Projet reformule: 1.1. Domiciliation du

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

Différents types de matériaux magnétiques

Différents types de matériaux magnétiques Différents types de matériaux magnétiques Lien entre propriétés microscopiques et macroscopiques Dans un matériau magnétique, chaque atome porte un moment magnétique µ (équivalent microscopique de l aiguille

Plus en détail