Microscopies Électroniques

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "Microscopies Électroniques"

Transcription

1 Microscopies Électroniques M2 Microscopie Électronique en Transmission Diffraction Nicolas Menguy Institut de Minéralogie et Physique des Milieux Condensés Plan Le microscope électronique en transmission : - colonne, canon L'échantillon de MET - préparation, Focused Ion Beam La diffraction électronique - principe de formation de l'image, de la diffraction - particularités de la diffraction éléctronique!exemples d'application - identification d'axes de zone de structures cubiques simples

2 Plan Le microscope électronique en transmission : - colonne, canon L'échantillon de MET - préparation, Focused Ion Beam La diffraction électronique - principe de formation de l'image, de la diffraction - particularités de la diffraction éléctronique!exemples d'application - identification d'axes de zone de structures cubiques simples Description du Microscope Électronique en Transmission canon 200 kv porte-échantillon système condenseur lentille objectif système projecteur chambre d observation chambre à négatifs

3 Canon électronique Émission thermo-ionique Filament W Pointe LaB 6 La densité de courant à la sortie du filament est donnée par la relation de RichardsonDushman :! J 0 = A T 2 exp! "# -! ' W k $ %& B T! A : C te qui dépend du matériau! W : énergie d extraction kb : C te de Boltzmann Canon électronique Émission de champ La pointe est constituée d un monocristal de W (310) La forme de la pointe est telle (r " 0.1µm) qu un champ important existe au niveau de la pointe (10 7 V cm -1 ). Les e sont extraits par effet tunnel La densité de courant est donnée par la relation de FowlerNordheim!: J = k 1! E 2!! W! exp # #$ k - 2!! 3/2 "!!W!! E % &&' k 1 et k 2!: constantes La production d électrons se fait en deux temps!: extraction " à tension fixe accélération " à tension variable

4 Canon électronique Émission thermo-ionique assistée : effet Schottky La pointe est constituée d un monocristal de W recouvert de ZrO. L énergie d extraction est abaissée à 2.7 ev. La forme de la pointe est telle (r " 1µm) qu un champ important existe au niveau de la pointe (10 6 V cm -1 ). J = A T 2 exp " "#! -! ' W!-!"' W k $ %%& B T! avec "' W = e! e! E 4!#!(! 0 À partir d une valeur critique du champ E, l émission est similaire à celle d un canon à émission de champ. La production d électrons se fait également en deux temps!: extraction " à tension fixe accélération " à tension variable Canon électronique Comparaison des différents types de canon W LaB 6 W (FE) W-ZrO (SE) Énergie d extraction (ev)! Densité de courant [A cm -2 ] 1.3! Température de fonct nt [K] Brillance [A cm -2 sr -1 ] Diamètre du cross-over [µm] " Dispersion en énergie [ev] Durée de vie [h] > 1000 > 5000 Pression de fonct nt [Pa] < 10-6

5 Plan Le microscope électronique en transmission : - colonne, canon L'échantillon de MET - préparation, Focused Ion Beam La diffraction électronique - principe de formation de l'image, de la diffraction - particularités de la diffraction éléctronique!exemples d'application - identification d'axes de zone de structures cubiques simples Échantillon de MET transparent aux électrons de 200 kev épaisseur < 100 nm impératif!!! 20 nm : idéal Amincissement ionique Ar+ + ethanol

6 Préparation des échantillons par FIB Focused Ion Beam Problème posé : Défaillance d un circuit imprimé. Hypothèses ; il s agit d un défaut apparu lors de l élaboration du composant # il faudrait pouvoir analyser en profondeur tout en gardant une bonne résolution spatiale Faisceau d ions Ga+ Préparation des échantillons par FIB Focused Ion Beam Dépôt d une couche protectrice de platine Excavation de part et d autre de la lame Affinement de la lame " 50 nm Lame mince : 15 µm x 5 µm x 50 nm Découpage de la lame Prélèvement de la lame (micromanipulateur) Dépôt de la lame sur grille M.E.T.

7 Porte - Échantillon de MET Simple tilt double tilt Refroidi " N 2 liquide " He liquide Interactions Électrons - Matière Échantillon mince faisceau incident lumière rayons X e Auger e primaires rétrodiffusés e secondaires e absorbés e diffusés inélastiquement e diffusés élastiquement e transmis

8 Émission de rayons X Volume d émission - Cas d un échantillon mince faisceau incident Dans le cas d un échantillon mince, la poire d interaction est plus petite. Elle est limitée par la taille du faisceau < 100 nm # intérêt d avoir de fins faisceaux d e Avec les MET modernes : " 5 Å Interactions Électrons - Matière Diffusion élastique - Diffusion inélastique faisceau incident Si l échantillon est suffisamment mince (< 100 nm), des e peuvent le traverser : sans être déviés, sans perdre d énergie : e transmis e diffusés inélastiquement e diffusés élastiquement en étant déviés, sans perdre d énergie ; e diffractés # diffusion élastique " diffraction e transmis en étant déviés et en perdant de l énergie : # diffusion inélastique " spectroscopie de perte d énergie (EELS)

9 Plan Le microscope électronique en transmission : - colonne, canon L'échantillon de MET - préparation, Focused Ion Beam La diffraction électronique - principe de formation de l'image, de la diffraction - particularités de la diffraction éléctronique!exemples d'application - identification d'axes de zone de structures cubiques simples Diffraction des électrons comparaison avec les rayons X, les neutrons Interaction élastique rayons X - Matière : diffusion Thomson Les rayons X «!voient!» la densité électronique Interaction élastique neutrons - Matière : Interaction nucléaire Les neutrons «!voient!» le noyau " k 0 " r " k " k 0 " k 2$ f e b i sin! / " sin! / "

10 Diffraction des électrons V atomique # V Les e voient le potentiel cristallin Le cristal se comporte comme un réseau # possibilité d observer une diffraction du faisceau électronique par le réseau V moyen # V Diffraction des électrons Rappel : description d Ewald dans le cas des rayons X La condition de diffraction par des plans de la famille de plans (hkl) peut être décrite : dans l espace direct : dans l espace réciproque : % " k hkl $ d hkl " k 0 2$ " Q 000 Interférences constructives si la différence de chemin optique = n % 2 d hkl sin$ = n % Interférences constructives si!le vecteur de diffusion est égal à un vecteur du réseau réciproque Q! = k! k! 0 = G! *!! hkl!! G " *!!! hkl! =!!!!!!! k "!!k " 0 = 2 sin# $!!!!!! 1 d hkl = 2 sin" # 1 $ k " 0

11 Diffraction des rayons X description d Ewald Un faisceau de rayons X est diffusé à chaque fois qu un nœud du réseau réciproque du cristal intercepte la sphère d Ewald % # d hkl # k # 1/ dhkl # Un seul nœud à la fois est intercepté Diffraction des électrons description d Ewald dans le cas des électrons avec E # 200 kev Pour E = 200 kev, la longueur d onde associée est : % = Å = 2.51 pm # % << d hkl # k 0 >> G hkl Plusieurs nœuds peuvent intercepter simultanément la sphère d Ewald " k " k 0

12 Mode IMAGE et mode DIFFRACTION Comme les lentilles sont électromagnétiques, il est possible de faire varier continûment leur distance focale : - condenseur : focaliser le faisceau - lentille objectif : faire varier la mise au point - système projecteur : agrandir le plan image de la lentille objectif agrandir le plan focal de la lentille objectif 10 nm Magnétite Fe 3 O 4 Diffraction selon un axe de zone <110> Mode IMAGE et mode DIFFRACTION Principe : PO OBJ & 0 & i PF OBJ plan focal T.F.(& i ) PI OBJ T.F.(T.F.(& i ))

13 Mode IMAGE et mode DIFFRACTION A B PO OBJ PO OBJ lentille objectif PF OBJ PO PROJ PF OBJ B A PO PROJ PI OBJ POPROJ PI OBJ lentille projecteur PF PROJ A B PI PROJ PI PROJ Loi de Bragg Diffraction électronique dans le MET caractéristiques générales : conséquences de la longueur d onde des e À 200 kv, % = Å Pour le silicium, d 111 = 3.13 Å # On observera la diffraction des e par les plans (111) du Si pour $ # 0.22 # 4 mrad En diffraction électronique (e de haute énergie), les angles de diffraction sont petits :! 1 Description d Ewald Sphère d'ewald 1/% # 120 ' 1/d 111 " k " k 0 # Le rayon de la sphère d Ewald est >> la distance entre nœuds du réseau réciproque

14 Diffraction électronique dans le MET caractéristiques générales : conséquences de la morphologie de l échantillon de MET (1) Cas de la diffraction par un réseau N fentes d %/d 10 fentes 100 fentes Cas d une lame mince de MET a La largeur du pic de diffraction dépend du nombre de fentes " c* x! 1 "m y! 1 "m " a* " b* x! nm Le nœuds du réseau réciproque sont allongés dans la direction où le cristal est mince Diffraction électronique dans le MET caractéristiques générales : conséquences de la morphologie de l échantillon de MET (2) 1/! S.E. R.R. Selected Area Electron Diffraction (SAED)

15 Diffraction électronique dans le MET détermination des distances interéticulaires lentille objectif PO OBJ " k 0 " k Lentille PO PROJ PF OBJ! projecteur k 0 L = G! hkl L : longueur de caméra " G hkl r hkl PI PROJ 000 r hkl d hkl =! L r hkl La méthode est peu précise : +/ Å Diffraction électronique dans le MET Intérêt et Mise en œuvre Intérêt Étude cristallographique de nano-particules Étude cristallographique de composés multiphasés Étude des interfaces et multicouches Nature amorphe / cristalline d'un matériau Mise en œuvre Détermination de l'orientation cristallographique Indexation des pics Mesure des distances interéticulaires

16 Étude cristallographique de nano-particules Diffraction électronique d une assemblée de cristaux e 2$ 1 2$ 2 Analogue à la méthode de Debye et Scherrer d hkl (nm) Application Découverte de nouvelles phases En 1984, une phase ordonnée mais non périodique a été mise en évidence. Alliage Al 86 Mn 14 symétrie icosaédrique (m35) C C B A # QUASI-CRISTAUX B F E D F E D A Phase constituée de micro-cristaux # SAED indispensable!!!

17 Application évaluation du degré de cristallinité de nano-magnétites Fe3O4 Taille des cristallites : # 2 nm Taille des cristallites : # 10 nm Application 0 Cu K! XEDS 2 Cu K" Ca K" K K! Cl K! S K! P K! Si K! O K! Mg K! Na K! XEDS : C - Ca - O majoritaires Intensity (a.u) C K! Ca K! identification de composés kev Diffraction : compatible avec CaO Nécessité de connaître la composition! La précision de la diffraction électronique n est pas suffisante pour déterminer sans ambiguité la nature d une phase (# diffraction des rayons X)

18 Plan Le microscope électronique en transmission : - colonne, canon L'échantillon de MET - préparation, Focused Ion Beam La diffraction électronique - principe de formation de l'image, de la diffraction - particularités de la diffraction éléctronique!exemples d'application - identification d'axes de zone de structures cubiques simples Diffraction électronique dans le MET Étude d'une interface Étude de l'interface Silicium - Pyrex Quel est le plan d'interface entre le silicium et le pyrex?

19 Diffraction électronique dans le MET Intérêt et Mise en œuvre : exemple Étude de l'interface Silicium - Pyrex Nature cristalline de l'échantillon Nature amorphe du pyrex # pas de cristallisation Comment exploiter le diagramme de diffraction de manière qualitative? # 1. Identification de l'axe de zone 2. Vérification de l'indexation 3. Lien avec l'image Diffraction électronique dans le MET réseau réciproque d'une structure c.f.c. et diagrammes de diffraction Le réseau réciproque d'une structure c.f.c (cf) est un réseau cubique centré e // [001] e // [101] e // [111] Coupes correspondantes du réseau réciproque

20 Diffraction électronique dans le MET symétries des réseaux directs et réciproques : cas d'une structure c.f.c. 4mm mm2 3m Réseau réciproque Réseau direct 4mm mm2 6mm Les diagrammes de diffraction reflètent la symétrie du cristal Le réseau réciproque est centrosymétrique (Loi de Friedel) Diffraction électronique dans le MET Identification des diagrammes de diffraction Chaque diagramme a des caractéristiques géométriques propres <001> <011> A B C A 111 B C Symétrie 4mm B C = 8 4 = 2! A C = 4 4 = 1 Symétrie mm2 A C = 8 4! A B = 8 3! C B = 4 3! 1.155

21 Diffraction électronique dans le MET Identification des diagrammes de diffraction Chaque diagramme a des caractéristiques géométriques propres <111> 022 A B C <112> 220 A B C <123> A B C Symétrie 6mm Symétrie mm2 Symétrie 2 A C = B C = 4 4 = 1 A C = 8 3! B A = 11 8! A C = 27 3 = 3 B C = 19 3! B C = 11 3! Diffraction électronique dans le MET Identification des diagrammes de diffraction Les diagrammes de diffraction des systèmes cubique F (f.c.c.), Al, Cu, Ni, Sr, Rh, Pd, Ag, Ce, Tb, Ir, Pt, Au, Pb, Th, cubique I (b.c.c.), Na, K, V, Cr, Fe, Rb, Nb, Mo, Cs, Ba, Eu, Ta, cubique diamant, Si, Ge, Sn, C (diamant), hexagonal compact (h.c.p.), Be, Sc, Te, Co, Zn, Y, Zr, Tc, Ru, Gd, Tb, Py, Ho, Er, Tm, Lu, Hf, Re, Os, Tl, sont reportés dans des tables. Pour les autres structures, des logiciels permettent d identifier les axes de zones des structures connues. Il suffit d indiquer les caractéristiques géométriques du diagramme de diffraction étudié.

22 Diffraction électronique dans le MET Identification dans le cas de l'interface Si / Pyrex Symétrie : mm2 C A B A C! 1.44 A B! 1.65 C B! 1.15 Angle entre B et C! 55 # Il s'agit d'un axe de zone <110> # Indexation des réflexions d 111! nm 200 en accord avec le paramètre de maille du silicium ( nm) Diffraction électronique dans le MET Détermination des directions cristallographiques (111) - - (111) (100) (220) [110] [111] - - [111] [100] le plan d'interface entre le silicium et le pyrex est donc un plan {100}

23 Diffraction électronique dans le MET Double diffraction L'indexation du diagramme de diffraction du silicium est compatible avec celle d'une structure cubique F. Le groupe d'espace Fm3m impose des conditions d'existence des réflexions : h, k, l de même parité expérimental Or le silicium a une structure cubique diamant de groupe d'espace Fd3m. Les conditions d'extinction des réflexions sont : h + k + l = 4n + 2 # les réflexions 200, 222, sont interdites! théorique Diffraction électronique dans le MET Double diffraction Un faisceau diffracté peut à nouveau être diffracté : diffraction multiple " k " k " k' Le phénomène de diffraction / diffusion multiple est amplifié par l'épaisseur de l'échantillon La diffraction des électrons est difficilement quantitative

24 Diffraction électronique et Transformée de Fourier Analyse locale à partir d'images haute résolution & 0 F.F.T. PO OBJ & i 10 nm plan focal! PF OBJ T.F.(& i ) La diffraction électronique conventionnelle a une résolution spatiale! 100 nm SAED PI OBJ T.F.(T.F.(& i )) Analyse morphologique Analyse cristallographique par Transformée de Fourier [1 11] [022] [111] [200]

25 Analyse morphologique Application : morphologie de nano-magnétites Quelle est la morphologie des magnétites intracellulaires synthétisées par Magnetospirillum gryphiswaldense? Obtention d'images "haute résolution" Calcul des F.F.T. Orientation cristallographique Comparaison avec modèles possibles Alternative : electron tomography Buseck et al. PNAS 98, (2001). Application Étude de mise en ordre locale Cas de la pérovskite complexe Pb 2 (Sc;Nb)O 6 Pour T > 1300 K : la structure est désordonnée # répartition aléatoire des cations Sc 3+ et Nb 5+ sur les sites B (octaédriques) Pour T < 1300 K : la structure est ordonnée # répartition alternée des cations Sc 3+ et Nb 5+ sur les sites B dans les plans {111} Sc/Nb Sc Nb Refroidissement lent depuis 1300 K " phase ordonnée (stable thermodynamiquement) Refroidissement rapide (trempe) depuis 1300 K " phase désordonnée (métastable) température 1300 K 20 K temps

26 Étude de surstructures Étude du réseau réciproque selon différentes directions Étude d une structure pérovskite ferroélectrique <111> <100> <011> <110> <112> Étude des surstructures Mise en évidence par diffraction Phase désordonnée : les réflexions de surstructure sont de très faible intensité Phase ordonnée : les réflexions de surstructure sont intenses

27 Étude des surstructures Mise en évidence par diffraction Coexistence des phases ordonnée et désordonnée Région A # la mise en ordre Sc 3+ /Nb 5+ est une transition du premier ordre Région B 100 nm Differential Scanning Calorimetry (DSC) Étude de la mise en ordre à l échelle nanométrique Mise en évidence par Transformée de Fourier numérique totalement désordonné partiellement ordonné Origine du!t = 8 K? Présence de nano-domaines ordonnés dans une matrice désordonnée Ces nano-domaines induisent un abaissement de la température de transition # Nécessité d'étudier la structure à l'échelle locale pour comprendre les mécanismes à l'échelle macroscopique

28 Étude de nanotubes de carbone Science 300, 1419 (2003) Phys. Rev. B 73, (2006) C est actuellement une des seules techniques pour étudier la structure des nanotubes de carbone : - tailles - chiralité Étude de phases modulées % 1/% Intensité Q (nm -1 ) Des satellites sont présents de part et d'autre des pics de Bragg. Ils traduisent la présence d'une modulation de position des atomes

Caractérisations des nanomatériaux par microscopies électroniques

Caractérisations des nanomatériaux par microscopies électroniques Caractérisations des nanomatériaux par microscopies électroniques Nicolas Menguy Institut de Minéralogie et Physique des Milieux Condensés Plan Partie 1 - Le microscope électronique en transmission (M.E.T.)

Plus en détail

Caractérisations des nanomatériaux par microscopies électroniques

Caractérisations des nanomatériaux par microscopies électroniques GDR Verres GDR 3338 Caractérisations des nanomatériaux par microscopies électroniques Nicolas Menguy Institut de Minéralogie et Physique des Milieux Condensés Plan Partie 1 - Le microscope électronique

Plus en détail

M1 - MP057. Microscopie Électronique en Transmission Diffraction Imagerie

M1 - MP057. Microscopie Électronique en Transmission Diffraction Imagerie M1 - MP057 Microscopie Électronique en Transmission Diffraction Imagerie Nicolas Menguy Institut de Minéralogie et Physique des Milieux Condensés Plan Le microscope électronique en transmission : - colonne,

Plus en détail

Consignes pour les TP MASC et le projet MASC

Consignes pour les TP MASC et le projet MASC Consignes pour les TP MASC et le projet MASC Notation : note globale = 50%TP + 50 % Projet MASC Projet MASC Durée estimée : 12h de travail/groupe (binôme ou trinôme) Objectif : présenter un exemple d'analyse

Plus en détail

Dates partiel MASC : Mardi 29/04, 8h-9h30 Documents autorisés : 3 feuilles A4 recto-verso Programme limité au premier fascicule

Dates partiel MASC : Mardi 29/04, 8h-9h30 Documents autorisés : 3 feuilles A4 recto-verso Programme limité au premier fascicule Dates partiel MASC : Mardi 29/04, 8h-9h30 Documents autorisés : 3 feuilles A4 recto-verso Programme limité au premier fascicule Déplacement d un TD : ven 18/04, 14h-15h30 (groupe II) Créneau de remplacement

Plus en détail

4. Microscopie électronique à balayage

4. Microscopie électronique à balayage 4. Microscopie électronique à balayage 4.1. Principe de formation des images en MEB 4.2. Mise en œuvre 4.3. Les différents modes d imagerie 4.4. Les différents types de contraste 4.5. Performances 4.5.1.

Plus en détail

Tableau A. ANNEXE Seuils d exemption pour l application de l article R décembre 2006 Page 1

Tableau A. ANNEXE Seuils d exemption pour l application de l article R décembre 2006 Page 1 ANNEXE 13-8 - Seuils d exemption pour l application de l article R.1333-18 Tableau A Quantité Concentration Nucléide (Bq) (kbq/kg) H 3 10 9 10 6 Be 7 10 7 10 3 Be 10 10 6 10 4 C 11 10 6 10 C 11 monoxyde

Plus en détail

Détermination des structures moléculaires Structures et diffraction.

Détermination des structures moléculaires Structures et diffraction. Détermination des structures moléculaires Structures et diffraction. Pr. Richard Welter, Institut de Biologie Moléculaire des Plantes, welter@unitra.fr CONTENU DES ENSEIGNEMENTS 1) Discussion sur la notion

Plus en détail

L atome. Structure électronique et le tableau périodique

L atome. Structure électronique et le tableau périodique L atome Structure électronique et le tableau périodique Structure atomique Un atome contient un noyau central positif et une enveloppe d électrons négatifs. Un noyau est composé de protons (Z = nombre

Plus en détail

Le microscope optique ou photonique

Le microscope optique ou photonique Le microscope optique ou photonique I description : Le microscope est composé de deux systèmes optiques, l objectif et l oculaire, chacun pouvant être considéré comme une lentille mince convergente L objectif

Plus en détail

PHYSICO-CHIMIE (4 points)

PHYSICO-CHIMIE (4 points) La calculatrice est autorisée. Un document-réponse est à rendre avec la copie. Deux feuilles de papier millimétré sont nécessaires PHYSICO-CHIMIE (4 points) 1 ) Comment définit-on l'énergie de première

Plus en détail

4- Méthodes physiques d analyse en métallurgie

4- Méthodes physiques d analyse en métallurgie 4- Méthodes physiques d analyse en métallurgie a) Classifications b) Microscope métallographique c) Microscope électronique à balayage d) Microscope électronique en transmission e) Diffraction des rayons

Plus en détail

Structure de la matière condensée. Étude structurale d une batterie au LiFePO 4

Structure de la matière condensée. Étude structurale d une batterie au LiFePO 4 MASTER DE PHYSIQUE 2 e ANNÉE Janvier 2009 PARCOURS : PHYSIQUE DE LA MATIÈRE CONDENSÉE Structure de la matière condensée Durée 3 heures. Notes de cours autorisées. Introduction : Étude structurale d une

Plus en détail

Étude par microscopie électronique à haute

Étude par microscopie électronique à haute Sommaire Étude par microscopie électronique à haute résolution d agrégats de CoPt Nils Blanc - GDR Nano-alliages F. Tournus, T. Épicier (Laboratoire MATEIS - CLIME - INSA), V. Dupuis. Laboratoire de physique

Plus en détail

Application à l astrophysique ACTIVITE

Application à l astrophysique ACTIVITE Application à l astrophysique Seconde ACTIVITE I ) But : Le but de l activité est de donner quelques exemples d'utilisations pratiques de l analyse spectrale permettant de connaître un peu mieux les étoiles.

Plus en détail

Microscopies Électroniques

Microscopies Électroniques Microscopies Électroniques Polycopié A Interaction rayonnement - Matière Nicolas Menguy Institut de Minéralogie et Physique des Milieux Condensés Plan du cours A - Interaction rayonnement - Matière B -

Plus en détail

Chapitre IX: Propriétés des gaz IX.1 Etats de la matière

Chapitre IX: Propriétés des gaz IX.1 Etats de la matière Nature des gaz IX.1 Etats de la matière Solide : - volume et forme déterminée - empilements denses de molécules qui ne se déplacent pas Interactions décroissantes entre molécules Liquide : -volume déterminé

Plus en détail

Expression de la Concession et de l Opposition in. La photographie scientifique Par Gérard BETTON (PUF, 1975) 04/06/2015

Expression de la Concession et de l Opposition in. La photographie scientifique Par Gérard BETTON (PUF, 1975) 04/06/2015 1 Expression de la Concession et de l Opposition in La photographie scientifique Par Gérard BETTON (PUF, 1975) 2 Concession /Opposition Compléter avec un des mots ou expressions suivantes : au lieu de

Plus en détail

Structure de la matière Examen

Structure de la matière Examen Licence Physique et Applications Université Paris XI Année universitaire 2013-2014 Structure de la matière Examen Vendredi 20 décembre 2013 Durée 3h00 Sans documents Calculatrice personnelle autorisée

Plus en détail

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente Première S Chapitre mages formées par les systèmes optiques.. mage donnée par un miroir.. Lois de la réflexion Soit un rayon lumineux issu dun point lumineux S et qui rencontre en le miroir plan M. l donne,

Plus en détail

Code de la santé publique Legifrance

Code de la santé publique Legifrance Page 1 of 52 Chemin : Code de la santé publique Annexes ANNEXE DE LA PREMIERE PARTIE Seuils d'exemption pour l'application de l'article R. 1333-18 et niveaux d'activité définissant une source scellée de

Plus en détail

Exercices. Sirius 1 re S - Livre du professeur Chapitre 1. Œil, lentilles minces et images. Exercices d application. 5 minutes chrono!

Exercices. Sirius 1 re S - Livre du professeur Chapitre 1. Œil, lentilles minces et images. Exercices d application. 5 minutes chrono! Exercices Exercices d application 5 minutes chrono!. Mots manquants a. transparents ; rétine b. le centre optique c. à l'axe optique d. le foyer objet e. OF ' f. l'ensemble des milieux transparents; la

Plus en détail

QUEL FUTUR POUR LES METAUX? Raréfaction des métaux : Un nouveau défi pour la société. Dîner Débat, 28 octobre 2010

QUEL FUTUR POUR LES METAUX? Raréfaction des métaux : Un nouveau défi pour la société. Dîner Débat, 28 octobre 2010 QUEL FUTUR POUR LES METAUX? Raréfaction des métaux : Un nouveau défi pour la société Dîner Débat, 28 octobre 2010 Avant-propos «Les richesses naturelles sont inépuisables, car sans cela nous ne les obtiendrions

Plus en détail

Méthodes géophysiques et géochimiques

Méthodes géophysiques et géochimiques Méthodes géophysiques et géochimiques 1.3. TD Introduction Il y a 4.567 milliards d années (Ga), au moment où le nuage de gaz et de poussière qui va constituer le système solaire s effondre sur lui même,

Plus en détail

Document 1 : modélisation d un appareil photographique

Document 1 : modélisation d un appareil photographique PCSI1-Lycée Michelet 2014-2015 APPROCHE DOCUMENTAIRE : appareil photo numérique Extrait du programme : en comparant des images produites par un appareil photographique numérique, discuter l influence de

Plus en détail

RAPPORT DE CRISTALLOGRAPHIE Étude de structures cristallines à l aide du logiciel CrystalMaker

RAPPORT DE CRISTALLOGRAPHIE Étude de structures cristallines à l aide du logiciel CrystalMaker RAPPORT DE CRISTALLOGRAPHIE Étude de structures cristallines à l aide du logiciel CrystalMaker Benjamin Frere 2ème candidature en sciences physique, Université de Liège Année académique 2003-2004 1 1 Le

Plus en détail

Corrigés du Thème 1 :

Corrigés du Thème 1 : Thème 1 : Corrigés des exercices Page 1 sur 9 Corrigés du Thème 1 : Création : juin 2 003 Dernière modification : juin 2005 Exercice T1_01 : Evaluation de la taille d une molécule d eau Dans 1g ( 1 cm

Plus en détail

MICROSCOPIE ELECTRONIQUE EN TRANSMISSION (MET) TRANSMISSION ELECTRON MICROSCOPY (TEM)

MICROSCOPIE ELECTRONIQUE EN TRANSMISSION (MET) TRANSMISSION ELECTRON MICROSCOPY (TEM) MICROSCOPIE ELECTRONIQUE EN TRANSMISSION (MET) TRANSMISSION ELECTRON MICROSCOPY (TEM) La microscopie électronique en transmission est proche dans son principe de la microscopie optique. Cependant la longueur

Plus en détail

en première approximation: lentille mince optique géométrique (plus précisément lentille épaisse: plans principaux, distances focales asymétriques )

en première approximation: lentille mince optique géométrique (plus précisément lentille épaisse: plans principaux, distances focales asymétriques ) Lentilles (I) en première approximation: lentille mince optique géométrique (plus précisément lentille épaisse: plans principaux, distances focales asymétriques ) En particulier une image de la source

Plus en détail

Chapitre 2 : Les mécanismes optiques de l œil (p. 19)

Chapitre 2 : Les mécanismes optiques de l œil (p. 19) THÈME 1 : REPRÉSENTATION VISUELLE Chapitre 2 : Les mécanismes optiques de l œil (p. 19) Savoir-faire : Reconnaître la nature convergente ou divergente d une lentille. Représenter symboliquement une lentille

Plus en détail

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique

Plus en détail

Le modèle des lentilles minces convergentes

Le modèle des lentilles minces convergentes 1 Le modèle des lentilles minces convergentes LES LENTILLES MINCES CNVERGENTES résumés de cours Définition Une lentille est un milieu transparent limité par deux faces dont l'une au moins est sphérique.

Plus en détail

Type de ressources : aide à la prise en main de logiciels permettant le traitement numérique des calculs d incertitudes

Type de ressources : aide à la prise en main de logiciels permettant le traitement numérique des calculs d incertitudes Niveau : terminale S. Thème : Calcul d incertitudes à l aide d outils numériques Type de ressources : aide à la prise en main de logiciels permettant le traitement numérique des calculs d incertitudes

Plus en détail

Examen MASC STM1 ISIM, Juin 2002 Durée : 3h

Examen MASC STM1 ISIM, Juin 2002 Durée : 3h Examen MASC STM1 ISIM, Juin 2002 Durée : 3h Les calculatrices ainsi que tous les documents manuscrits ou distribués en cours sont autorisés. Les livres ou copies de livres sont interdits. Chaque partie

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

09 LES LENTILLES ET L ŒIL

09 LES LENTILLES ET L ŒIL CH I- 09 LES LENTILLES ET L ŒIL PRESENTATION DES LENTILLES 11- Qu est ce qu une lentille?. Une lentille est formée d une matière transparente (verre ou plastique) délimitée par deux surfaces lisses dont

Plus en détail

Microscopie Electronique en Transmission

Microscopie Electronique en Transmission Microscopie Electronique en Transmission Le principe de la microscopie électronique en transmission (MET) utilise le caractère ondulatoire des électrons en mouvement : un faisceau électronique est une

Plus en détail

Méthodes expérimentales de la physique. Microscopie électronique

Méthodes expérimentales de la physique. Microscopie électronique Méthodes expérimentales de la physique Microscopie électronique 2. Sources et lentilles Jean-Marc Bonard jean-marc.bonard@epfl.ch Année académique 07-08 Introduction! Canon à électrons! Lentilles (+ diaphragmes)!

Plus en détail

1 ) Composants de base permettant de modifier les caractéristiques géométriques d'un faisceau lumineux : miroirs, fibres optiques, lentilles

1 ) Composants de base permettant de modifier les caractéristiques géométriques d'un faisceau lumineux : miroirs, fibres optiques, lentilles II.2 ptique 1 ) Composants de base permettant de modifier les caractéristiques géométriques d'un faisceau lumineux : miroirs, fibres optiques, lentilles 1.1) Définitions 1.1.1) Rayons et faisceaux lumineux

Plus en détail

Equilibre solide-liquide des systèmes binaires

Equilibre solide-liquide des systèmes binaires Equilibre solide-liquide des systèmes binaires I. Introduction La matière présente généralement trois états: solide, liquide et gazeux. Les phases et les structures sous lesquelles peuvent exister les

Plus en détail

TP spécialité N 3 La Lunette Astronomique 1 / 7

TP spécialité N 3 La Lunette Astronomique 1 / 7 TP spécialité N 3 La Lunette Astronomique / 7 I- Matériel disponible. - Un banc d optique avec accessoires : Une lanterne avec la lettre «F», deux supports pour lentille, un porte écran, un miroir plan,

Plus en détail

Physique 51421. Module 3 Lumière et optique géométrique. Rappel : les ondes. Caractéristiques des ondes. Vitesse de la lumière

Physique 51421. Module 3 Lumière et optique géométrique. Rappel : les ondes. Caractéristiques des ondes. Vitesse de la lumière Physique 51421 Module 3 Lumière et optique géométrique Rappel : les ondes Il existe deux types d ondes : Ondes transversale : les déformations sont perpendiculaire au déplacement de l onde. (ex : lumière)

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

Son et Lumière. L optique géométrique

Son et Lumière. L optique géométrique Son et Lumière Leçon N 3 L optique géométrique Introdution Nous allons au cours de cette leçon poser les bases de l optique géométrique en en rappelant les principes fondamentaux pour ensuite nous concentrer

Plus en détail

Table des matières. Chapitre 1. Introduction à l optique géométrique...1. Chapitre 2. Formation des images... 13. Chapitre 3

Table des matières. Chapitre 1. Introduction à l optique géométrique...1. Chapitre 2. Formation des images... 13. Chapitre 3 Cours d'optique non linéaire Table des matières Chapitre 1 Introduction à l optique géométrique...1 Chapitre 2 Formation des images... 13 Chapitre 3 Lentilles minces sphériques... 21 1. Propagation de

Plus en détail

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules

Plus en détail

TP HF Manipulation 3 ANALYSEUR DE RESEAUX VECTORIELS

TP HF Manipulation 3 ANALYSEUR DE RESEAUX VECTORIELS TP HF Manipulation 3 ANALYSEUR DE RESEAUX VECTORIELS I. Introduction En hyperfréquence, la caractérisation des dispositifs passifs ou actifs est assez différentes des techniques utilisées en basse fréquence.

Plus en détail

1. Historique 2. Structure de l atome: - spectres atomiques 3. Configuration électronique 4. Classification périodique 5. Stabilité électronique

1. Historique 2. Structure de l atome: - spectres atomiques 3. Configuration électronique 4. Classification périodique 5. Stabilité électronique 1. Historique 2. Structure de l atome: - particules élémentaires - spectres atomiques 3. Configuration électronique 4. Classification périodique 5. Stabilité électronique 1. Historique DIAPO 14 Année de

Plus en détail

Page 1 C04 Ecriture des Réactions Chimiques.odt. Classification des atomes. 27 Co. 28 Ni. 29 Cu. 45 Rh. 46 Pd. 47 Ag. 77 Ir. 78 Pt.

Page 1 C04 Ecriture des Réactions Chimiques.odt. Classification des atomes. 27 Co. 28 Ni. 29 Cu. 45 Rh. 46 Pd. 47 Ag. 77 Ir. 78 Pt. 2005-2006 Page 1 C04 Ecriture des Réactions Chimiques.odt C4 ECRITURE DES RÉACTIONS CHIMIQUES Je dois savoir Ce qu est un atome et une molécule Les formules de quelques molécules et atomes La masse est

Plus en détail

2. Le biologiste désire observer la cellule sans fatigue, c'est à dire sans accommoder.

2. Le biologiste désire observer la cellule sans fatigue, c'est à dire sans accommoder. P a g e 1 TS Spécialité Physique Exercice résolu Enoncé Depuis une vingtaine dannées la microscopie confocale a connu un développement considérable. Ces microscopes équipent maintenant un grand nombre

Plus en détail

- PROBLEME D OPTIQUE 1 -

- PROBLEME D OPTIQUE 1 - - 1 - ENONCE : «Appareil photographique» I. OBJECTIF STANAR On assimile l objectif d un appareil photographique à une lentille mince convergente () de centre O et de distance focale image f. a distance

Plus en détail

Approche documentaire n 1 : autour de l appareil photographique numérique

Approche documentaire n 1 : autour de l appareil photographique numérique Approche documentaire n 1 : autour de l appareil photographique numérique But : «En comparant des images produites par un appareil photographique numérique, discuter l influence de la focale, de la durée

Plus en détail

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention:

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention: TP Physique n 1 Spécialité TS Convention: Dans cet exposé, la lumière est supposée se déplacer de la gauche vers la droite. I. Généralités sur les lentilles minces: Une lentille est un milieu transparent

Plus en détail

Microscopie à Force atomique et Spectroscopies Enseignant : James Sturgis

Microscopie à Force atomique et Spectroscopies Enseignant : James Sturgis Session de rattrapage Master 1 BBSG Méthodes d Analyse Structurale 1 Responsable : Garron Marie- Line Durée : 2 heures Microscopie à Force atomique et Spectroscopies Enseignant : James Sturgis - Question

Plus en détail

Thème : Modèle et modélisation. Problématique : Comment fonction les lentilles optiques et à quoi servent-elles?

Thème : Modèle et modélisation. Problématique : Comment fonction les lentilles optiques et à quoi servent-elles? PENET François LAMARCQ Simon DELAHAYE Nicolas Les lentilles optiques Thème : Modèle et modélisation. Problématique : Comment fonction les lentilles optiques et à quoi servent-elles? Sommaire : Introduction

Plus en détail

A chaque couleur dans l'air correspond une longueur d'onde.

A chaque couleur dans l'air correspond une longueur d'onde. CC4 LA SPECTROPHOTOMÉTRIE I) POURQUOI UNE SUBSTANCE EST -ELLE COLORÉE? 1 ) La lumière blanche 2 ) Solutions colorées II)LE SPECTROPHOTOMÈTRE 1 ) Le spectrophotomètre 2 ) Facteurs dont dépend l'absorbance

Plus en détail

Grenats «change couleur» avec le spectre d absorption et les cations 3d responsables de leur particularité

Grenats «change couleur» avec le spectre d absorption et les cations 3d responsables de leur particularité GRENATS «CHANGE COULEUR» Quelques exemples Grenats «change couleur» avec le spectre d absorption et les cations 3d responsables de leur particularité Mécanisme Les grenats «change couleur» sont des grenats

Plus en détail

Travaux Pratiques. Microscopie. Microscopie Électronique à Transmission Prise en main

Travaux Pratiques. Microscopie. Microscopie Électronique à Transmission Prise en main Travaux Pratiques Microscopie Microscopie Électronique à Transmission Prise en main Élisabeth Nienaltowska Alexis Brenes Adrien Vincent M2 Nanosciences parcours Nanodispositifs et nanotechnologies Université

Plus en détail

UNE LENTILLE MINCE CONVERGENTE

UNE LENTILLE MINCE CONVERGENTE TS Spécialité-ptique 1-formation d une image T.P-cours de Physique n 1 : IMGE RMEE PR UNE LENTILLE MINCE CNVERGENTE Partie : Produire des Il faudra être capable de : images et observer Positionner sur

Plus en détail

La classification périodique

La classification périodique Chapitre 3 : UE1 : Chimie Chimie physique La classification périodique Pierre-Alexis GAUCHARD Agrégé de chimie, Docteur ès sciences Année universitaire 2010/2011 Université Joseph Fourier de Grenoble -

Plus en détail

Les lentilles additionnelles

Les lentilles additionnelles Les lentilles additionnelles Il existe deux méthodes pour réaliser des photographies rapprochées : ) l augmentation de tirage 2) les lentilles additionnelles C est la seconde méthode qui va être étudié

Plus en détail

Scanner X. Intervenant : E. Baudrier baudrier@unistra.fr

Scanner X. Intervenant : E. Baudrier baudrier@unistra.fr Scanner X Intervenant : E. Baudrier baudrier@unistra.fr Les rayons X Production des rayons X Interaction avec la matière Détection des rayons X Les scanners X Reconstruction de l image L image Ondes électromagnétiques

Plus en détail

Optique : applications Introduction

Optique : applications Introduction Optique : applications Introduction I. Introduction Au premier semestre nous avons abordés l'optique géométrique, nous avons vu les lois de Snell Descartes qui décrivent comment la lumière est réfléchie

Plus en détail

Le Monde Quantique L3 PHYTEM Bases de la Mécanique Quantique Cours d introduction

Le Monde Quantique L3 PHYTEM Bases de la Mécanique Quantique Cours d introduction Le Monde Quantique L3 PHYTEM Bases de la Mécanique Quantique Cours d introduction C. Fabre fabre@spectro.jussieu.fr rdres de grandeur - échelle terrestre : d 7 10 m 25 10 Kg - échelle terrestre : d 7 10

Plus en détail

L INTERFEROMETRE DE MICHELSON

L INTERFEROMETRE DE MICHELSON L INTERFEROMETRE DE MICHELSON Chappuis Emilie (chappue0@etu.unige.ch) Fournier Coralie (fournic0@etu.unige.ch) . Introduction.. But de la manipulation. INTERFEROMETRE DE MICHELSON Lors de ce laboratoire,

Plus en détail

LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION

LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION 1. Le but du travail 1.1. Mise en evidence du phénomène de dispersion de la lumière par l observation des spectres d émission et

Plus en détail

TS II.3 Spectroscopie infrarouge Synthèse

TS II.3 Spectroscopie infrarouge Synthèse Spectroscopie infrarouge Sommaiire -I- Comment se présente un spectre IR? -----------------------------------2 -II- Quelles sont les informations apportées par un spectre IR? -----------------4 1. Spectre

Plus en détail

Projet TE 307 (nouvel exemple n 1E)

Projet TE 307 (nouvel exemple n 1E) Annex 21, page 1 Projet TE 307 (nouvel exemple n 1E) Niveau/catégories CL 1a, 2a1, 2b4 AL 1a, 1b, 2a1, 2b4 Documents (le est fondé sur US 2003 0 112 221 A1) US 2003 0 112 221 A1 DE 201 20 335 U1 FR 2 834

Plus en détail

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident OPTIQUE Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident AIR rayon réfléchi EAU rayon réfracté A l'interface entre les deux milieux, une partie

Plus en détail

Chimie Générale-CH101 Tableau de classification périodique de Mendeleïev

Chimie Générale-CH101 Tableau de classification périodique de Mendeleïev Tableau de classification périodique de Mendeleïev 1 2 Tableau de classification périodique de Mendeleïev s p H Li Na Be Mg Non métal (ou métalloïde) Métal He B C N O F Ne Al Si P S Cl Ar K Rb Cs Ca Sr

Plus en détail

Atomes polyélectroniques : Structure électronique et propriétés

Atomes polyélectroniques : Structure électronique et propriétés Atomes polyélectroniques : Structure électronique et propriétés Observation Contrairement à l atome d hydrogène, l énergie totale (E) d un électron appartenant à un atome à plusieurs électrons ne peut

Plus en détail

Les lentilles minces

Les lentilles minces / Rappel : Point objet, point image Les lentilles minces Pour un système optique, un point est objet s il se trouve à l intersection des rayons incidents sur le ou de leurs prolongements Pour un système

Plus en détail

TP Cours Focométrie des lentilles minces divergentes

TP Cours Focométrie des lentilles minces divergentes Noms des étudiants composant le binôme : TP Cours ocométrie des lentilles minces divergentes Estimer la distance focale image d une lentille divergente est moins aisé que de déterminer celle d une lentille

Plus en détail

Chapitre II: lentilles

Chapitre II: lentilles Chapitre II: lentilles II.1) Système optique idéal II.2) Les lentilles et les miroirs II.1) Système optique idéal Surface d onde (1) Surface d onde S: Tous les points de S sont en phase Dans ce cas, S

Plus en détail

Puits quantiques et super-réseaux semi-conducteurs 1

Puits quantiques et super-réseaux semi-conducteurs 1 1 Mines Deuxième année Physique de la matière condensée et des nano-objets TD8-2011 Puits quantiques et super-réseaux semi-conducteurs 1 Résumé Dans ce TD nous allons aborder la physique des puits quantiques

Plus en détail

Le tableau périodique

Le tableau périodique Le tableau périodique Le développement du tableau périodique à l époque de Mendeleïev, on n avait même pas encore découvert l électron Mendeleïev était convaincu que les propriétés des éléments avaient

Plus en détail

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique.

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique. OPTIQUE GEOMETRIQUE Définitions : L optique est la science qui décrit les propriétés de la propagation de la lumière. La lumière est un concept extrêmement compliqué et dont la réalité physique n est pas

Plus en détail

Chapitre 3 : Le système périodique et le modèle de Bohr

Chapitre 3 : Le système périodique et le modèle de Bohr Chapitre 3 : Le système périodique et le modèle de Bohr Le système périodique Dans la liste ci-dessous, les éléments sont classés par numéro atomique croissant. Liste des éléments dans l'ordre croissant

Plus en détail

Corrigés de la séance 16 Chap 27: Optique ondulatoire

Corrigés de la séance 16 Chap 27: Optique ondulatoire Corrigés de la séance 16 Chap 27: Optique ondulatoire Questions pour réfléchir : Q. p.10. Une onde de lumière naturelle tombe sur une vitre plate sous un angle de 5 o. Décrivez l état de polarisation du

Plus en détail

Couleur, vision et image

Couleur, vision et image 2 novembre 2012 Couleur, vision et image Table des matières 1 Œil réel et œil réduit 2 2 Lentille mince convergente 2 3 Grandeurs caractéristiques d une lentille convergente 2 4 Construction de l image

Plus en détail

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé.

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé. TP focométrie Ce TP est évalué à l'aide du compte-rendu pré-imprimé. Objectifs : déterminer la distance focale de divers lentilles minces par plusieurs méthodes. 1 Rappels 1.1 Lentilles... Une lentille

Plus en détail

Optique géométrique Chapitre 2 : Les lentilles sphériques minces Document de cours

Optique géométrique Chapitre 2 : Les lentilles sphériques minces Document de cours Optique géométrique Chapitre 2 : Les lentilles sphériques minces Document de cours Plan du chapitre : I. Présentation et conditions d utilisation 1. Définitions 2. Types de lentilles minces 3. Conditions

Plus en détail

Note du chapitre 5 : Les modèles et les composés atomiques

Note du chapitre 5 : Les modèles et les composés atomiques 1 Note du chapitre 5 : Les modèles et les composés atomiques 5.1 À la recherche d une certaine tendance dans la réactivité chimique Équation chimique équilibrée : Nombre de masse (somme des protons et

Plus en détail

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Objectifs : Exploiter un spectre infrarouge pour déterminer des groupes caractéristiques Relier un spectre

Plus en détail

Vision industrielle Dispositif optique

Vision industrielle Dispositif optique Vision industrielle Dispositif optique Plan du cours L objectif La focale L ouverture La mise au point Qualité d image Choix de l objectif Cours de Vision Industrielle Nicolas Vandenbroucke 2 Constitution

Plus en détail

La Classification Périodique des éléments

La Classification Périodique des éléments La Classification Périodique des éléments I - Notion d'élément chimique. Atome : noyau (protons + neutrons) entouré d'électrons Numéro atomique Z : protons (id. électrons) Nombre de masse A : protons +

Plus en détail

Technique de l image, finalité photographie, première et deuxième année Optique photo : questions d examen

Technique de l image, finalité photographie, première et deuxième année Optique photo : questions d examen Technique de l image, finalité photographie, première et deuxième année Optique photo : questions d examen Les questions sont présentées par chapitre et en deux colonnes. La première colonne est relative

Plus en détail

Les mécanismes optiques de la vision I : les lentilles optiques

Les mécanismes optiques de la vision I : les lentilles optiques Chapitre 1 Les mécanismes optiques de la vision I : les lentilles optiques 1.1 La vision au fil du temps Lisez l activité p.27 et réalisez un résumé pertinent de l évolution du concept de la vision au

Plus en détail

Introduction aux aberrations optiques

Introduction aux aberrations optiques Introduction aux aberrations optiques 1 Aberrations Les aberrations sont les défauts d'un système optique simple qui font que l'image d'un point ou d'un objet étendu obtenu par l'intermédiaire de ce système

Plus en détail

Sciences Physiques 1ES S. Zayyani. Fiche de Cours

Sciences Physiques 1ES S. Zayyani. Fiche de Cours Sciences Physiques 1ES S. Zayyani Fiche de Cours Unité : Représentation visuelle Chapitre: Chapitre 1 L œil Voir un objet Pour que l on puisse «voir un objet», il faut certaines conditions. Il faut surtout

Plus en détail

Durée 2 heures Une feuille de formulaire autorisée. Les exercices doivent être obligatoirement rédigés sur des feuilles séparées.

Durée 2 heures Une feuille de formulaire autorisée. Les exercices doivent être obligatoirement rédigés sur des feuilles séparées. Durée 2 heures Une feuille de formulaire autorisée Les exercices doivent être obligatoirement rédigés sur des feuilles séparées. Exercic (7 points) : (les 3 parties sont relativement indépendantes) De

Plus en détail

Chapitre 6 : LES LENTILLES MINCES S 3 F

Chapitre 6 : LES LENTILLES MINCES S 3 F Chapitre 6 : LES LENTILLES MINCES S 3 F I) Généralité sur l optique géométrique : 1) Rappel sur les faisceaux lumineux : A partir d'une source de lumière, nous observons un faisceau lumineux qui peut être

Plus en détail

G.P. DNS05 Octobre 2012

G.P. DNS05 Octobre 2012 DNS Sujet Impédance d'une ligne électrique...1 I.Préliminaires...1 II.Champ électromagnétique dans une ligne électrique à rubans...2 III.Modélisation par une ligne à constantes réparties...3 IV.Réalisation

Plus en détail

TP Diffraction et Interférence DIFFRACTIONS ET INTERFERENCES

TP Diffraction et Interférence DIFFRACTIONS ET INTERFERENCES OBJECTIFS Observation de la diffraction. Observation des interférences. I ) DIFFRACTION D ONDES A LA SURFACE DE L EAU Sur la photographie ci-dessous, on observe que les vagues, initialement rectilignes,

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

Tournez la page S.V.P.

Tournez la page S.V.P. Tournez la page S.V.P. Tournez la page S.V.P. Tournez la page S.V.P. IN CHOISY 13 1069 D après documents fournis 068 Epreuve de Physique C - Chimie Durée 2 h Si, au cours de l épreuve, un candidat

Plus en détail

Cours de révision MASC

Cours de révision MASC Cours de révision MASC 1) Décrire les rayonnements émis par un matériau irradié par un faisceau de rayons X. Diffusion élastique Nom et nature du rayonnement diffusés élastiquement Caractéristiques (énergie,

Plus en détail

PHYSIQUE DES MATÉRIAUX (PARTIE MATÉRIAUX MÉTALLIQUES) A. Mertens et A.M. Habraken

PHYSIQUE DES MATÉRIAUX (PARTIE MATÉRIAUX MÉTALLIQUES) A. Mertens et A.M. Habraken PHYSIQUE DES MATÉRIAUX (PARTIE MATÉRIAUX MÉTALLIQUES) A. Mertens et A.M. Habraken PHYSIQUE DES MATÉRIAUX Dr. Anne Mertens Département A&M, Service de Sciences de Matériaux Métalliques Bat. B52/3 +2/513

Plus en détail

PHYSIQUE DES MATÉRIAUX (PARTIE MATÉRIAUX MÉTALLIQUES) Pr. J. Lecomte-Beckers

PHYSIQUE DES MATÉRIAUX (PARTIE MATÉRIAUX MÉTALLIQUES) Pr. J. Lecomte-Beckers PHYSIQUE DES MATÉRIAUX (PARTIE MATÉRIAUX MÉTALLIQUES) Pr. J. Lecomte-Beckers INFORMATIONS GÉNÉRALES Contacts : J. Lecomte-Beckers (Jacqueline.Lecomte@ulg.ac.be) - Professeur HM. Montrieux (hmmontrieux@ulg.ac.be)

Plus en détail

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20 Sources de lumière Sources naturelles Soleil Étoiles Sources artificielles Bougie Ampoule MR, 2007 Optique 1/20 Origine de la lumière Incandescence La lumière provient d un corps chauffé à température

Plus en détail