BACCALAURÉATS PROFESSIONNELS EN 3 ANS
|
|
|
- Monique Sauvé
- il y a 10 ans
- Total affichages :
Transcription
1 BACCALAURÉATS PROFESSIONNELS EN ANS Électrotechnique énergie équipements communicants Exemple de progression pédagogique Programmes : BOEN n 11 du 1/06/199 / A 8/07/99 modifié A 19/07/0 Mathématiques : I : Activités numériques et graphiques II : Fonctions numériques III : Activités géométriques V : Calcul différentiel et intégral VI : Trigonométrie, géométrie, vecteurs VII : Mathématiques pour les métiers de l électricité Sciences physiques E7 : Principes de fonctionnement des transducteurs M1 : Cinématique M : Dynamique M : Énergie mécanique A1 : Acoustique O : Lumière et couleur C8 : Alcanes C9 : Matériaux organiques : polyaddition Préambule : Les activités numériques et algébriques du programme de BEP nécessaires au traitement du programme de bac pro ne seront pas abordées de manière isolée mais intégrées aux autres chapitres. Ces activités sont : Calcul littéral, numérique et algébrique a) Calcul sur les puissances et les racines carrées : Mettre en œuvre les règles de calcul sur les puissances de 10 Lire et écrire un nombre en notation scientifique, évaluer un ordre de grandeur Calculer la puissance ou la racine carrée d un nombre Appliquer les formules relatives aux puissances et aux racines carrées b) Valeur absolue, intervalle, approximation : Interpréter la notion de valeur absolue (distance) Déterminer une valeur approchée Utiliser et représenter les intervalles c) Consolidation du calcul algébrique : Développer et réduire une expression algébrique Factoriser une expression algébrique d) Calculs fractionnaires Exemple de progression pédagogique Bac Pro ans ELEEC 1 / 8
2 nde professionnelle Bac Pro ans ELEEC Mathématiques - Contenus Suites arithmétiques et géométriques Identifier une suite arithmétique ou géométrique. Calculer la raison d une suite arithmétique ou géométrique. Donner l expression du terme de rang n d une suite arithmétique ou géométrique. Calculer la somme des k premiers termes d une suite arithmétique ou géométrique. Polynômes du second degré Résoudre algébriquement une équation du second degré. Factoriser un polynôme du second degré. Résoudre graphiquement une équation du second degré. FONCTIONS NUMÉRIQUES 1. Génération et description des fonctions Lire ou choisir un repère sur une droite ou un repère orthonormal ou orthogonal dans un plan Déterminer des images et des antécédents d une fonction Calculer la valeur d une fonction à la calculatrice Représenter graphiquement une fonction Indiquer, à partir de la représentation graphique, les particularités d une fonction (extremums) et/ou ses propriétés (parité, périodicité) Étudier le sens de variation d une fonction sur un intervalle et construire le tableau de variation Reconnaître graphiquement une situation de proportionnalité - Propriétés des fonctions Savoir représenter graphiquement les fonctions usuelles : x 1, x, x,, x 0, x ax + b, Savoir représenter graphiquement une fonction de la forme : f + g, f Soit point par point. Soit à partir des représentations de f et (ou) de g. Rechercher graphiquement une solution. Retrouver la solution par le calcul (résoudre l équation f ( x) = a ). Interpréter graphiquement f 0 et f g. Équations, inéquations, systèmes d équations Reconnaître une situation conduisant à une mise en équation ou en inéquation du 1 er degré, à un système de équations linéaires à inconnues et à coefficient numériques Résoudre algébriquement un système linéaire de deux équations à deux inconnues. Résoudre graphiquement un système linéaire de deux équations à deux inconnues. Résoudre graphiquement f(x) = g(x). Déterminer l équation d une droite passant par deux points. ACTIVITÉS GÉOMÉTRIQUES 1. Exemples de tracés de figures planes usuelles. Utiliser le théorème de Pythagore et sa réciproque Calculer des longueurs et des angles en utilisant les relations métriques dans le triangle rectangle (formulaire). Énoncé de Thalès relatif au triangle. Utiliser le théorème de Thalès et sa réciproque Calculer des aires de figures planes ou de solides. Calculer le volume d un solide usuel. Calculer la mesure d un angle, une distance. Effectuer des constructions utilisant des symétries/ des translations. Identifier un solide usuel par ses sections planes Exemple de progression pédagogique Bac Pro ans ELEEC / 8
3 Géométrie vectorielle plane. Choisir ou exploiter un repère orthonormal ou orthogonal dans un plan Représenter un vecteur, déterminer ses caractéristiques (direction, sens, norme) Lire ou calculer les coordonnées d un vecteur, d une somme de vecteurs, du vecteur λ u Construire un vecteur somme de vecteurs au maximum, un vecteur λ u ACTIVITÉS STATISTIQUES Série statistique à une variable Comprendre et utiliser le vocabulaire de la statistique Calculer la moyenne x d une série statistique Calculer l écart-type σ Exploiter l écart type dans l analyse d une dispersion 8 Contenus utiles pour le Bep mais pas nécessaires en bac Pro. Exemple de progression pédagogique Bac Pro ans ELEEC / 8
4 1 ère professionnelle Bac Pro ans ELEEC Mathématiques - Contenus Polynômes du second degré Résoudre graphiquement une inéquation du second degré. Résoudre une inéquation du second degré à l aide d un tableau de signes. Inéquations Résoudre graphiquement un système linéaire de deux inéquations à deux inconnues (régionnement du plan). Dérivation a) Dérivation en un point Déterminer le nombre dérivé en un point d abscisse donnée. Tracer la tangente en un point d abscisse donnée. b) Fonction dérivée Calculer la dérivée d une fonction sur un intervalle :, a x, x, x, 1, x x 0 Calculer la dérivée d une somme de fonctions sur un intervalle. Calculer la dérivée du produit d une fonction par une constante sur un intervalle. Calculer la dérivée du produit de fonctions, de l inverse d une fonction, du quotient de fonctions (formulaire) c) Application à l étude du sens de variation d une fonction Déterminer le sens de variation d une fonction sur un intervalle. Calculer la valeur prise par une fonction f lorsque : f (x) = 0 Compléter un tableau de variation. Introduction des fonctions exponentielle et logarithme Pour une valeur donnée de x : - Calculer ln x ou log x. x x - Calculer e ou a. Utiliser les propriétés opératoires de : x x ln x ou log x et e ou a. x x Représenter graphiquement ln x ou log x et e ou a Utiliser le formulaire pour calculer les dérivée des fonctions f(x)= sin x, f(x)= cos x, f(x)= ln x, f(x)= e x, f(x)= e ax+b TRIGONOMÉTRIE, GÉOMÉTRIE, VECTEURS 1 - Géométrie dans le plan Calculer le produit scalaire de vecteurs Exploiter les résultats d un produit scalaire (Calculs de distances, d angles ) Utiliser les propriétés du produit scalaire Utiliser les relations trigonométriques dans un triangle quelconque - Géométrie dans l espace Lire les coordonnées cartésiennes d un point dans l espace Placer dans l espace un point dont les coordonnées cartésiennes sont données Déterminer les coordonnées d un vecteur Utiliser l expression analytique du produit scalaire de deux vecteurs Calculer la norme d un vecteur Exemple de progression pédagogique Bac Pro ans ELEEC / 8
5 T erm professionnelle Bac Pro ans ELEEC Mathématiques - Contenus CALCUL DIFFÉRENTIEL Notions de calcul intégral Déterminer les primitives d une fonction usuelle (utilisation du tableau des dérivées du formulaire) Calculer l intégrale d une fonction sur un intervalle [a ; b], connaissant une primitive F Interpréter géométriquement une intégrale ou utiliser le calcul intégral pour calculer une aire plane, dans le cas d une fonction positive Utiliser la relation de Chasles (formulaire) Équations différentielles du 1er et second ordre Déterminer une solution d une équation différentielle du type y ay = 0 (a réel fixé), satisfaisant à une condition initiale donnée Savoir résoudre l équation différentielle du second ordre. Savoir utiliser les conditions initiales pour déterminer les constantes MATHÉMATIQUES POUR LES MÉTIERS DE L ÉLECTRICITÉ Étude de fonctions périodiques usuelles Savoir étudier une fonction de la forme : f : t a a sin( ω t + ϕ) Étudier une fonction définie par morceaux à partir de fonctions : constantes, affines, sinusoïdales. Trigonométrie Écrire la mesure d un angle orienté Calculer le sinus, le cosinus et la tangente d un angle, en déduire la valeur de l angle en radians ou en degrés Utiliser les formules de trigonométrie principalement dans le triangle rectangle et les relations dans un triangle quelconque pour effectuer des calculs de longueurs ou d angles. Utiliser les relations trigonométriques dans un triangle quelconque Savoir utiliser les formules d addition :, sin( a + b) et de duplication : cos( a ), sin( a). Savoir résoudre les équations de la forme : cos x = a, sin x = b, tan x = c Représentation de Fresnel d une grandeur sinusoïdale Savoir reconnaître l amplitude, la phase à l'origine. Savoir représenter le vecteur associé à une grandeur sinusoïdale. Nombres complexes Savoir reconnaître la partie réelle a et la partie imaginaire b dans l'écriture : z = a + bj Savoir reconnaitre que deux nombres complexes sont égaux 1 z Savoir calculer : z + z', zz', z,, z z' Représenter géométriquement un nombre complexe Déterminer l'affixe d'un point, d'un vecteur Savoir reconnaître le module et l argument du complexe : z = ρ (cos θ + j sin θ) Savoir calculer le module et l'argument d'un nombre complexe. Savoir déterminer le conjugué d un nombre complexe. Savoir calculer le module du produit de deux nombres complexes. Savoir calculer l'argument du produit de deux nombres complexes Étude de signaux périodiques Savoir déterminer les coefficients de Fourier (Cas où la fonction est paire et cas où la fonction est impaire). Savoir approximer un signal périodique par un polynôme. Savoir calculer l énergie transportée par un signal. Formule de Parseval. 7 Exemple de progression pédagogique Bac Pro ans ELEEC / 8
6 nde professionnelle Bac Pro ans ELEEC Sciences Physiques - Contenus ÉNERGIE ET PUISSANCE ÉLECTRIQUES. Tension, intensité en courant continu et en courant alternatif. Énergie et puissance électriques : Dipôle résistif ; modèle linéaire. Puissance consommée. Application à l effet Joule. Puissance totale consommée dans un ensemble de dipôles montés en dérivation. Production de l énergie électrique. Transformateur. Distribution monophasée. Distribution triphasée. Sécurité électrique : coupe-circuits, fusibles. Rôle de la prise de terre. Disjoncteurs. LA REACTION CHIMIQUE Notion d élément chimique. Classification périodique des éléments. Atomes, molécules, ions. La réaction chimique : aspects qualitatif et quantitatif. REPOS ET MOUVEMENT Conditions d équilibre d un solide soumis à trois forces non parallèles. Cas du solide mobile autour d un axe fixe : - couple de forces : couple moteur, couple résistant, - moment d une force, d un couple. Forces pressantes et pression en un point d un fluide au repos. Unités S.I. et usuelles. Théorème de Pascal. Applications. LES TRANSFERTS D ÉNERGIE Chaînes énergétiques. Différentes formes de l énergie. Modes de transfert de l énergie. Conservation de l énergie et chaîne énergétique. Rendement. Puissance. Unité S.I. Étude d un mode de transfert de l énergie : la chaleur. Quantité de chaleur. Modes de transferts de chaleur. 9 FMB Électricité I (Courant continu) tension et intensité caractéristique courant - tension d'un dipôle passif et d'un dipôle actif FMB Chimie I (Solutions aqueuses) espèces ioniques en solution concentration FMB Mécanique conditions générales d'équilibre d'un solide Électricité II (Courant alternatif sinusoïdal) période, fréquence, valeurs efficace et maximale d'une tension sinusoïdale Exemple de progression pédagogique Bac Pro ans ELEEC 6 / 8
7 1 ère professionnelle Bac Pro ans ELEEC L ELECTROCHIMIE Sciences Physiques - Contenus Réaction d oxydo-réduction en solution aqueuse. Classification électrochimique des métaux. Place du couple H/H+ dans la classification. Phénomènes d électrolyse ; migration des ions. Principe d une pile. Force électromotrice. Principe de l accumulateur. LE MAGNÉTISME DES AIMANTS ET DES COURANTS. Forces magnétiques mettant en jeu des aimants et des bobines. Propriétés des aimants. Expérience d Oersted. Haut-parleur. Moteur. Vecteur champ magnétique Rôle du fer Force de Laplace. Flux d induction magnétique. Induction électromagnétique. Loi de Faraday. Loi de Lenz. Courants de Foucault. M1 : CINEMATIQUE Notion de référentiel et repère Mouvements uniformes d'un point (rectiligne et circulaire) Mouvement d'un solide en rotation uniforme autour d'un axe fixe Transformation de mouvements uniformes Mouvements uniformément variés O : LUMIERE ET COULEUR Dispersion de la lumière. Fréquence et longueur d'onde d'un rayonnement monochromatique. Synthèses additive et soustractive de la lumière. Couleur des corps éclairés 6 FMB Chimie I (Solutions aqueuses) espèces ioniques en solution concentration FMB Électricité I (Courant continu) tension et intensité caractéristique courant - tension d'un dipôle passif et d'un dipôle actif Analyse de séquences vidéos FMB Optique réflexion réfraction, angle limite Exemple de progression pédagogique Bac Pro ans ELEEC 7 / 8
8 T erm professionnelle Bac Pro ans ELEEC C8 : ALCANES Sciences Physiques - Contenus Constitution des alcanes Éléments de nomenclature Réactions de combustions complète et incomplète C9 : MATERIAUX ORGANIQUES : POLYADDITION Alcènes Polyaddition Isolants, conducteurs, semi-conducteurs M : DYNAMIQUE Dynamique d'un solide en translation Dynamique d'un solide en rotation autour d'un axe fixe M : ENERGIE MECANIQUE Différentes formes d'énergie mécanique Transfert d'énergie par travail mécanique Théorème de l'énergie cinétique E7 : PRINCIPES DE FONCTIONNEMENT DES TRANSDUCTEURS Transducteurs électromécaniques Transducteurs magnétoélectriques Transducteurs thermoélectriques Transducteurs optoélectroniques A1 : ACOUSTIQUE Nature et production d'un son Propagation d'un son Chimie I (Solutions aqueuses) espèces ioniques en solution concentration FMB Chimie II (Chimie organique) comportement des matières plastiques FMB Mécanique conditions générales d'équilibre d'un solide FMB Electricité II (Courant alternatif sinusoïdal) période, fréquence, valeurs efficace et maximale d'une tension sinusoïdale FMB Acoustique hauteur et fréquence niveau d'intensité acoustique Révisons Exemple de progression pédagogique Bac Pro ans ELEEC 8 / 8
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
NOTICE DOUBLE DIPLÔME
NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.
Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée
EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen
MATIE RE DU COURS DE PHYSIQUE
MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
34018 MONITEUR BELGE 27.05.2013 BELGISCH STAATSBLAD
34018 MONITEUR BELGE 27.05.2013 BELGISCH STAATSBLAD COMMUNAUTE FRANÇAISE FRANSE GEMEENSCHAP MINISTERE DE LA COMMUNAUTE FRANÇAISE [2013/29334] 2 MAI 2013. Arrêté du Gouvernement de la Communauté française
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Nathalie Barbary SANSTABOO. Excel 2010. expert. Fonctions, simulations, Groupe Eyrolles, 2011, ISBN : 978-2-212-12761-4
Nathalie Barbary Nathalie Barbary SANSTABOO Excel 2010 Fonctions, simulations, bases bases de de données expert Groupe Eyrolles, 2011, ISBN : 978-2-212-12761-4 Du côté des mathématiciens 14 Il n est pas
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Développements limités usuels en 0
Développements limités usuels en 0 e x sh x ch x sin x cos x = + x! + x! + + xn n! + O ( x n+) = x + x3 3! + + xn+ (n + )! + O ( x n+3) = + x! + x4 4! + + xn (n)! + O ( x n+) = x x3 3! + + ( )n xn+ (n
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Mais comment on fait pour...
Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
PHYSIQUE Discipline fondamentale
Examen suisse de maturité Directives 2003-2006 DS.11 Physique DF PHYSIQUE Discipline fondamentale Par l'étude de la physique en discipline fondamentale, le candidat comprend des phénomènes naturels et
Du Premier au Second Degré
Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse
Fonction réciproque. Christelle MELODELIMA. Chapitre 2 :
UE4 : Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Analyse Chapitre 2 : Fonction réciproque Christelle MELODELIMA Année universitaire 2011/2012 Université Joseph
Michel Henry Nicolas Delorme
Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .
MESURE ET PRECISIO La détermination de la valeur d une grandeur G à partir des mesures expérimentales de grandeurs a et b dont elle dépend n a vraiment de sens que si elle est accompagnée de la précision
Chapitre 2 Les ondes progressives périodiques
DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
PHYSIQUE 2 - Épreuve écrite
PHYSIQUE - Épreuve écrite WARIN André I. Remarques générales Le sujet de physique de la session 010 comprenait une partie A sur l optique et une partie B sur l électromagnétisme. - La partie A, à caractère
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) Discipline : Mathématiques Première année Classe préparatoire
TP 7 : oscillateur de torsion
TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au
1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme
Chapitre 5 : Le travail d une force :
Classe de 1èreS Chapitre 5 Physique Chapitre 5 : Le travail d une force : Introduction : fiche élève Considérons des objets qui subissent des forces dont le point d application se déplace : Par exemple
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)
BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES
Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
I. RACINE CARREE D UN NOMBRE POSITIF : La racine carrée d un nombre positif a est le nombre positif noté a dont le carré est a.
OURS 3 EME RINES RREES PGE 1/1 ONTENUS OMPETENES EXIGILES OMMENTIRES alculs élémentaires sur les radicaux Racine carrée d un nombre positif Savoir que si a désigne un nombre positif, a est le nombre positif
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Représentation des Nombres
Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau
PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative
ANALYSE SPECTRALE. monochromateur
ht ANALYSE SPECTRALE Une espèce chimique est susceptible d interagir avec un rayonnement électromagnétique. L étude de l intensité du rayonnement (absorbé ou réémis) en fonction des longueurs d ode s appelle
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
Utiliser des fonctions complexes
Chapitre 5 Utiliser des fonctions complexes Construire une formule conditionnelle avec la fonction SI Calculer un remboursement avec la fonction VPN Utiliser des fonctions mathématiques Utiliser la fonction
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Traceur de courbes planes
Traceur de courbes planes Version 2.5 Manuel d utilisation Patrice Rabiller Lycée Notre Dame Fontenay le Comte Mise à jour de Janvier 2008 Téléchargement : http://perso.orange.fr/patrice.rabiller/sinequanon/menusqn.htm
Sujet. calculatrice: autorisée durée: 4 heures
DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Spectrophotomètre à réseau...2 I.Loi de Beer et Lambert... 2 II.Diffraction par une, puis par deux fentes rectangulaires... 3
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Programme de la classe de première année MPSI
Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire
Lecture graphique. Table des matières
Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................
MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME
Notre cadre de réflexion MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME La proposition de programme qui suit est bien sûr issue d une demande du Premier Cycle : demande de rénovation des contenus
Equations différentielles linéaires à coefficients constants
Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Etude de fonctions: procédure et exemple
Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
CONCOURS COMMUN 2010 PHYSIQUE
CONCOUS COMMUN SUJET A DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES Épreuve de Physique-Chimie (toutes filières) Corrigé Barème total points : Physique points - Chimie 68 points PHYSIQUE Partie A :
Cours de tracés de Charpente, Le TRAIT
Page 1/5 Cours de tracés de Charpente, Le TRAIT Recherches de vraies grandeurs, angles de coupes, surfaces. Les Méthodes : Le tracé et les calculs Chaque chapitre ou fichier comportent une explication
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
Une fréquence peut-elle être instantanée?
Fréquence? Variable? Instantané vs. local? Conclure? Une fréquence peut-elle être instantanée? Patrick Flandrin CNRS & École Normale Supérieure de Lyon, France Produire le temps, IRCAM, Paris, juin 2012
Mesure de la dépense énergétique
Mesure de la dépense énergétique Bioénergétique L énergie existe sous différentes formes : calorifique, mécanique, électrique, chimique, rayonnante, nucléaire. La bioénergétique est la branche de la biologie
CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.
XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
Cercle trigonométrique et mesures d angles
Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE 2. L EFFET GYROSCOPIQUE Les lois physiques qui régissent le mouvement des véhicules terrestres sont des lois universelles qui s appliquent
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
SOUS TITRAGE DE LA WEBÉMISSION DU PROGRAMME DE MATHÉMATIQUES 11 e ET 12 e ANNÉE
SOUS TITRAGE DE LA WEBÉMISSION DU PROGRAMME DE MATHÉMATIQUES 11 e ET 12 e ANNÉE Table de matières INTRODUCTION 2 ITINÉRAIRE MEL3E/MEL4E 6 ITINÉRAIRE MBF3C/MAP4C 9 ITINÉRAIRE MCF3M/MCT4C 12 ITINÉRAIRE MCR3U/MHF4U
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
Introduction. Mathématiques Quantiques Discrètes
Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.
Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts)
SNC1D test d électricité Nom : Connaissance et Habiletés de la pensée compréhension (CC) (HP) Communication (Com) Mise en application (MA) 35 % 30 % 15 % 20 % /42 /31 grille /19 Dans tout le test, les
