HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES

Dimension: px
Commencer à balayer dès la page:

Download "HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES"

Transcription

1 105 HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES 1. Introduction En statistiques il arrive fréquemment que les individus soient décrits par un grand nombre de caractères. : voitures décrites par leur prix, leur taille, puissance, finition etc, rendement d une réaction chimique en fonction de la température, pression, concentrations, nature du catalyseur etc, propriété physique d une substance chimique en fonction de données structurales. L analyse en composantes principales permet de répondre aux questions : En ce qui concernent les variables : quelles sont celles qui sont associées, lesquelles agissent dans le même sens lesquelles s opposent? Quelles sont les variables qui expliquent efficacement l une d entre elles (par exemple quels sont les paramètres qui définissent le prix d une voiture)? En ce qui concerne les individus : quels sont ceux qui se ressemblent, quelles sont celles qui sont dissemblables?. Principe de l ACP Lorsqu il y a plus de trois variables explicatives, il n est plus possible de représenter les individus dans l espace géométrique. S il y a p variables indépendantes, chaque individu est un point dans un espace à p dimensions. Il faut donc projeter les individus dans un espace de dimension plus petite, en pratique on utilise un ou plusieurs plans de projection. Mathématiquement, une projection n est jamais une bijection, elle fait toujours perdre de l information, mais parmi toutes les projections possibles il en existe qui font perdre moins d information que d autres. Fig 41 : Information transmise par une image

2 106 Dans l exemple ci-dessus, suivant l angle sous lequel le photographe a pris cette photo, on peut reconnaître l animal ou non. Notons que la photo sur laquelle l animal est le plus reconnaissable est cette où il occupe le plus d espace (à facteur d agrandissement constant évidemment). Si l image est représentée par des points, la projection qui transmet le maximum d information est celle qui se caractérise par le plus grand étalement des variables x et y, en d autre termes celle qui présente les variances maximales de x et y. Dans l exemple suivant, les points semblent alignés suivant une droite dans le plan xoz. Une rotation adéquate du système de référence montre que ces points se distribuent autour d un cercle. Or un changement de référentiel revient à écrire de nouvelles variables qui sont des combinaisons linéaires des anciennes variables. Fig 4 : Perte d information lors d une projection L ACP procède exactement de cette manière, elle consiste à calculer des indices synthétiques (variables transformées) qui sont des combinaisons linéaires des variables initiales de manière à rendre leur variance maximale. L ACP recherche d abord la combinaison linéaire des variables de variance maximale. Cette nouvelle variable (ou indice) est la première composante principale, elle définit le premier axe principal, ensuite on cherche un axe orthogonal, donc une nouvelle variable n ayant aucune corrélation avec la première et qui montre également la plus grande variance possible et ainsi de suite, donc l ACP transforme un ensemble de caractères plus ou moins corrélés en un nouvel ensemble de caractères non corrélés et d importance décroissante appelés composantes principales. Mathématiquement le procédé consiste à rechercher les valeurs propres et les vecteurs propres d une matrice carrée. Pour que la transformation des coordonnées puisse s appliquer correctement, il faut que tous les caractères soient centrés. On admet implicitement que tous les x i,j sont remplacés par x i,j m j c'està-dire que l origine des axes est centré sur le barycentre des caractères.

3 L espace des individus Chaque individu est défini par p caractères, donc est considéré comme un vecteur (ou un point) dans un espace de dimension p (x 1,i, x,i, x 3,i, x p,i ). L ensemble des individus est représenté par une matrice n*p : x1,1 x,1 L xp,1 x1, x, xp, X L = L L L L x1,n x,n x L p,n Exemple : Caractéristique des voitures (chaque individu est une voiture) Marque prix ( ) cylindrée puissance longueur largeur poids vitesse finition A B B TB C M D M E B F TB G B H B I TB J M K TB L B M TB N B O TB P M Q B R M Dans ce cas n=18 (nombre d individus) et p=8 (nombre de caractères). Observer que les ordres de grandeurs des caractères sont très différents et que la finition est un caractère qualitatif. Il faut donc préalablement associer une valeur numérique à la finition et centrer les caractères. Le vecteur Voiture H est la ligne correspondante (vecteur à 8 composantes), le vecteur puissance correspond à la colonne puissance, il est de dimension 18.

4 108 Les relations entre individus sont représentées par la matrice de variance covariance. (p*p) s 1 s1, L s 1,p s1, s s,p V L = L L L L s1,p s,p s L p De même, l ensemble des coefficients de corrélations est regroupé dans la matrice de corrélation : 1 r1, L r1,p r1, 1 r,p R L = L L L L r1,p r,p 1 L La distance entre individus se calcule habituellement par le théorème de Pytagore,, = p dik ( xji, x jk, ) (105) j= 1 Habituellement, dans un espace géométrique, toutes les coordonnées sont de même nature et exprimées dans les mêmes unités, c est une condition pour que la distance ait un sens physique. Dans le cas des caractères statistiques, chaque caractère est physiquement différent et exprimé dans des unités différentes. (pour une voiture les caractères sont le prix, la puissance, le poids, la finition ). Dans la matrice de variance covariance, un caractère exprimé par une très petite unité donnera un variance et une covariance très grande et l élément matriciel correspondant écrasera tous les autres, il faut donc diviser chaque caractère par son écart-type ce qui fournit des grandeurs sans dimension. Dans cette opération, la matrice de variance covariance est remplacée par la matrice de corrélation. C est donc sur cette matrice que nous travaillerons ultérieurement. 4. L espace des caractères n Chaque caractère est un vecteur dans un espace de dimension n (p vecteurs dans un espace ) La proximité (ou l identité) de deux caractères ne se mesure pas comme une distance mais comme un angle. Des caractères non corrélés sont orthogonaux, des caractères identiques vont dans la même direction, des caractères qui s opposent vont dans des directions contraires). L angle entre deux vecteurs V 1 et V s exprime par leur produit scalaire : rr VV s cos( θ ) = r r = = (106) j k j, k jk, rjk, Vj V ss k j k Comme les caractères sont centrés, le cosinus de l angle θ n est autre que le coefficient de corrélation entre les deux caractères.

5 La recherche des composantes principales La recherche des composantes principales revient à calculer les valeurs propres et les vecteurs propres de la matrice de corrélation. 1 r1, L r1,p r1, 1 r,p R L = L L L L r1,p r,p 1 L matrice des vecteurs propres Matrice des valeurs propres (diagonale) λ 1 0 O 0 λ p Fig 43 Principe de la recherche des valeurs propres d une matrice carrée Cette opération fournit deux matrices : La matrice des vecteurs propres qui sont les coefficients des combinaisons linéaires fournissant les composantes principales. La matrice des valeurs propres qui sont les variances des individus suivant les axes principaux correspondants. 6. Contribution des axes principaux à la variance totale Dans la recherche des valeurs propres, la variance totale est distribuée suivant les nouvelles variables explicatives. Cette distribution se fait proportionnellement aux valeurs propres. On peut donc estimer l importance de chaque facteur par la contribution de sa variance à la variance totale (en %). On peut ainsi choisir un nombre limité de facteurs qui expliquent par exemple 80% de la variabilité des individus. Dans l exemple des voitures on a effectué une ACP sur toutes les variables excepté le prix (note fin est une note attribuée à la variable qualitative finition): Matrice de corrélation (les corrélations des variables avec elles-mêmes sont omises) cylindrée puissance longueur largeur poids vitesse puissance 0,797 longueur 0,701 0,641 largeur 0,630 0,51 0,849 poids 0,789 0,765 0,868 0,717 vitesse 0,665 0,844 0,476 0,473 0,478 note fin 0,48 0,653 0,546 0,515 0,613 0,439

6 110 Il est totalement logique de trouver des corrélations élevées. En effet, une voiture longue est également large et son poids est élevé. Une grosse voiture (longue, large et lourde) est également puissante. (on ne met pas de petit moteur dans une grosse voiture), quand à la relation entre cylindrée, puissance et vitesse, elle est évidente. Analyse des valeurs et vecteurs propres de la matrice de corrélation Valeur propre 4,864 0,856 0,6193 0,379 0,171 0,0779 Proportion 0,695 0,1 0,088 0,053 0,04 0,011 Cumulatif 0,695 0,817 0,906 0,959 0,983 0,995 Valeur propre 0,038 Proportion 0,005 Cumulatif 1,000 Variable CP1 CP CP3 cylindré -0,394-0,13 0,395 puissanc -0,406-0,416-0,081 longueur -0,399 0,408 0,133 largeur -0,367 0,443 0,143 poids -0,411 0,41 0,03 vitesse -0,338-0,63 0,137 note fin -0,31 0,0-0,883 On observe que les trois premières composantes principales expliquent 90% de la variabilité des individus, il n est donc pas nécessaire d utiliser 7 variables. Cela signifie aussi que les individus sont bien représentés dans un sous-espace vectoriel de dimension 3 à condition que les axes soient bien choisis. Le tableau suivant donne les coefficients des variables initiales dans le calcul des composantes principales. Si on appelle c i,j les coefficients de la matrice des vecteurs propres, les composantes principales sont une combinaison linéaire des variables de départ avec les coefficients c i,j p CP = c x (107) i i, j j i= 1 par exemple CP1=-0,394 cylindrée -0,406 puissance -0,399 longueur etc 7. Régression en fonction des composantes principales L analyse de la matrice de corrélation montre qu il est inadéquat de calculer une régression multi linéaire du prix par rapport aux 7 autres variables explicatives. Une régression pas à pas permet d éliminer brutalement les facteurs les plus corrélés, mais on ne tient pas compte du fait qu une combinaison linéaire de variables très corrélés peut être plus significative qu un nombre limité de ces variables. L ACP permet de faire un calcul de régression sur un nombre limité de nouvelles variables (les premières composantes principales) qui sont indépendantes par construction, par contre la signification physique de ces nouvelles variables est souvent délicate à interpréter

7 111 ANALYSE EN COMPOSANTES PRINCIPALES CE QU IL FAUT ABSOLUMENT SAVOIR Calculer et interpréter une matrice de corrélation à l aide d un tableur ou d un logiciel statistique. Comprendre le principe et l utilité de l ACP Calculer les composantes principales à l aide d un tableur ou d un logiciel statistique et interpréter les résultats.

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité Introduction à l analyse des données Analyse des Données () Le but de l analyse de données est de synthétiser, structurer l information contenue dans des données multidimensionnelles Deux groupes de méthodes

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Analyse en Composantes. Principales

Analyse en Composantes. Principales AgroParisTech Analyse en Composantes Principales C Duby, S Robin Table des matières Introduction 3 2 Tableau de données 4 3 Choix d une distance 6 4 Choix de l origine 7 5 Moments d inertie 9 5 Inertie

Plus en détail

Analyse de Données. Analyse en Composantes Principales (ACP)

Analyse de Données. Analyse en Composantes Principales (ACP) Analyse de Données Analyse en Composantes Principales (ACP) Analyse en composantes principales (ACP) ** Sur toute la fiche, on notera M' la transposée de M. Cadre de travail : On a des données statistiques

Plus en détail

Cours 2-3 Analyse des données multivariées

Cours 2-3 Analyse des données multivariées Cours 2-3 des données s Ismaël Castillo École des Ponts, 13 Novembre 2012 Plan 1 2 3 4 1. On s intéresse à un jeu de données multi-dimensionel, avec n individus observés et p variables d intérêt ( variables

Plus en détail

Partie I. Les données quantitatives

Partie I. Les données quantitatives Variables quantitatives : analyse en composantes principales Jean-Marc Lasgouttes https://whorocqinriafr/jean-marclasgouttes/ana-donnees/ Partie I Les données quantitatives Description de données quantitatives

Plus en détail

Partie I. Les données quantitatives

Partie I. Les données quantitatives Variables quantitatives : analyse en composantes principales Jean-Marc Lasgouttes https://whorocqinriafr/jean-marclasgouttes/ana-donnees/ Partie I Les données quantitatives Description de données quantitatives

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Plan du cours Analyse en Composantes Principales Introduction Les données Leurs représentations La méthode Modèle Interprétation statistique Espace principal Composantes Principales Représentations Graphiques

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali LUISS, Libera Università Internazionale degli Studi Sociali Université Paris 13 Laboratoire Analyse, Géométrie et Applications UMR 7539 GOUTTE Analyse Statistique des Données Cours 4 Master 2 EID goutte@math.univ-paris13.fr

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

1 Diagonalisation des endomorphismes auto-adjoints, en dimension finie

1 Diagonalisation des endomorphismes auto-adjoints, en dimension finie Annette Paugam Diagonalisation des auto-adjoints Applications aux formes quadratiques : Directions principales Applications en Géométrie, en Statistique et en Mécanique Les paragraphes, 2, 3 donnent un

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f Université Lyon 1 Algèbre générale S.P. Groupes III I. Groupe symétrique et géométrie. On se donne un ensemble E (souvent un espace euclidien ou une partie de cet espace) et une bijection f : E E (souvent

Plus en détail

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES 2011 2012 ANALYSE DE DONNEES 2011 2012 LICENCE 3 SCIENCES ECONOMIQUES COURS DE M. THIERRY BLAYAC Analyse de données [Tapez le sous-titre du document] ANALYSE DE DONNEES Page 1 H34VEN Cours pour Licence

Plus en détail

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Chapitre 6 Méthodes de Krylov 611 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Dans le cas où la matrice A n est pas symétrique, comment peut-on retrouver une matrice de corrélation

Plus en détail

Analyse en composantes principales

Analyse en composantes principales Université de Rennes 2 Statistiques des données M1-GEO Ouvrages recommandés Analyse en composantes principales Ces livres sont à la BU. Pour les acheter, venir au bureau A-240 ou envoyer un mail : nicolas.jegou@uhb.fr

Plus en détail

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 29/01/2007 Stéphane Tufféry - Data Mining - http://data.mining.free.fr

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 29/01/2007 Stéphane Tufféry - Data Mining - http://data.mining.free.fr 1 Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE Plan du cours Qu est-ce que le data mining? À quoi sert le data mining? Les 2 grandes familles de techniques Le déroulement d un projet de data

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

L'analyse des données à l usage des non mathématiciens

L'analyse des données à l usage des non mathématiciens Montpellier L'analyse des données à l usage des non mathématiciens 2 ème Partie: L'analyse en composantes principales AGRO.M - INRA - Formation Permanente Janvier 2006 André Bouchier Analyses multivariés.

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Exercice : la frontière des portefeuilles optimaux sans actif certain

Exercice : la frontière des portefeuilles optimaux sans actif certain Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Géométrie et Infographie. J-L.Maltret

Géométrie et Infographie. J-L.Maltret L2 Mathématiques-Informatique 2006-2007 Géométrie et Infographie J-L.Maltret Jean-Louis.Maltret@lumimath.univ-mrs.fr Géométrie et Infographie 2006-2007 J-L.Maltret 2 Table des matières 1 Introduction 4

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

ACP Voitures 1- Méthode

ACP Voitures 1- Méthode acp=princomp(voit,cor=t) ACP Voitures 1- Méthode Call: princomp(x = voit, cor = T) Standard deviations: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 2.1577815 0.9566721 0.4903373 0.3204833 0.2542759 0.1447788

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Analyses statistiques multivariées. Béatrice de Tilière

Analyses statistiques multivariées. Béatrice de Tilière Analyses statistiques multivariées Béatrice de Tilière 23 novembre 2009 ii Table des matières 1 La Statistique 1 1.1 Généralités.................................. 1 1.2 Un peu de vocabulaire............................

Plus en détail

Synthèse d'image avancée

Synthèse d'image avancée Plan Snthèse d'image avancée Cours 2: Transformations, perspective et caméras Motivation Rappels d algèbre linéaire Transformations Caméra sténopé, projection Sources: Xavier Granier, Nicolas Holzschuch

Plus en détail

Il y a 24 individus en ligne (les modèles de voitures) et 6 variables en colonnes (paramètres mécaniques). Valeurs propres

Il y a 24 individus en ligne (les modèles de voitures) et 6 variables en colonnes (paramètres mécaniques). Valeurs propres VOITURE: On étudie 6 différents paramètres mécaniques (les variables), exprimées dans des unités différentes, de 24 modèles de voitures (les individus). Modèle Cylindre Puissance Vitesse Poids Longueur

Plus en détail

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT Table analytique des matières 1. La structure d'espace vectoriel 1. Espaces

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Chapitre 17 Matrices et applications linéaires Sommaire 171 Matrices et applications

Plus en détail

Actions de groupes. Exemples et applications

Actions de groupes. Exemples et applications 4 Actions de groupes. Exemples et applications G, ) est un groupe multiplicatif et on note ou G si nécessaire) l élément neutre. E est un ensemble non vide et S E) est le groupe des permutations de E.

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Cours 7 ANALYSE EN COMPOSANTES PRINCIPALES (ACP) Master 2 2005/2006

Cours 7 ANALYSE EN COMPOSANTES PRINCIPALES (ACP) Master 2 2005/2006 Cours 7 ANALYSE EN COMPOSANTES PRINCIPALES (ACP) Master 2 2005/2006 . Les données NOMS PUISS CYLI Co uple Ma xi LONG LARG H AUT COFFRE RESE POIDS VITE CONS ALF 47,9 JTD Distinctive 5 90 28 4,7,73,44 280

Plus en détail

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Analyse en Composantes Principales (ACP)

Analyse en Composantes Principales (ACP) 1 Analyse en Composantes Principales (ACP) Analyse en Composantes Principales (ACP) Résumé Méthode factorielle de réduction de dimension pour l exploration statistique de données quantitatives complexes

Plus en détail

Algèbre 2, Cours de deuxième année de l Université de Bordeaux. Jean-Jacques Ruch 1

Algèbre 2, Cours de deuxième année de l Université de Bordeaux. Jean-Jacques Ruch 1 Algèbre 2, Cours de deuxième année de l Université de Bordeaux 1 1 Institut de Mathématiques Bordeaux, UMR 5251 du CNRS, Université de Bordeaux, 351 cours de la Libération, F33405 Talence Cedex, France

Plus en détail

Groupe orthogonal en petite dimension

Groupe orthogonal en petite dimension Maths PCSI Cours Groupe orthogonal en petite dimension Table des matières 1 Généralités 1.1 Rappels et définitions........................................ 1. Premières propriétés.........................................

Plus en détail

Définition et caractérisations des applications affines, en particulier par le barycentre, et si possible en coordonnées.

Définition et caractérisations des applications affines, en particulier par le barycentre, et si possible en coordonnées. Université Claude Bernard Lyon I Agrégation de Mathématiques : Algèbre & géométrie Année 2006 2007 Applications affines A ne pas rater Définition et caractérisations des applications affines, en particulier

Plus en détail

Université de Thessalie Département d Aménagement, D Urbanisme et Développement Régional

Université de Thessalie Département d Aménagement, D Urbanisme et Développement Régional Université de Thessalie Département d Aménagement, D Urbanisme et Développement Régional Enseignant : As. Pr. Marie-Noelle Duquenne I. Les Méthodes factorielles La question traitée dans ce document porte

Plus en détail

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U CHAPITRE V FIBRÉS VECTORIELS 1. Fibrés vectoriels 1. Cartes et atlas vectoriels Soit B une variété différentielle. Considérons un B -ensemble, c est à-dire un ensemble M muni d une application p : M B.

Plus en détail

Modèle d une automobile.

Modèle d une automobile. Modèle d une automobile. On modélise une automobile par deux disques homogènes identiques de masse m de rayon a, de moment d inertie J = (1/) m a par rapport à leurs axes respectifs, de centre C, en contact

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

en utilisant un point-virgule.

en utilisant un point-virgule. 6 Chapitre Chapitre 6. Géométrie analytique Ce chapitre présente les possibilités de votre calculatrice dans le domaine de la géométrie analytique, tout particulièrement pour les problèmes liés aux espaces

Plus en détail

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie 133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie Pierre Lissy March 8, 2010 On considère un espace vectoriel euclidien de dimension nie n, le produit scalaire sera noté

Plus en détail

Statistique Descriptive Multidimensionnelle. (pour les nuls)

Statistique Descriptive Multidimensionnelle. (pour les nuls) Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Multidimensionnelle (pour les nuls) (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

Cours 5: Exemples d application www.enseeiht.fr/~gergaud/teaching

Cours 5: Exemples d application www.enseeiht.fr/~gergaud/teaching Cours 5: Exemples d application www.enseeiht.fr/~gergaud/teaching Joseph Gergaud 30 novembre 5 Exemples d application 1/ 25 1 Inertie Variables Individus Calculs 2 ACP Variables nominales supplémentaires

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : économique et commerciale Option : Scientifique (ECS) Discipline : Mathématiques- Informatique Seconde année Ministère de l enseignement

Plus en détail

Chapitre 9 ANALYSE MULTIDIMENSIONNELLE

Chapitre 9 ANALYSE MULTIDIMENSIONNELLE Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 9 ANALYSE MULTIDIMENSIONNELLE L analyse des données multidimensionnelles regroupe un ensemble de méthodes

Plus en détail

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Chaînes de Markov. Mireille de Granrut

Chaînes de Markov. Mireille de Granrut Chaînes de Markov Mireille de Granrut Quelques précisions à propos de ce cours : Préambule 1. Tel que je l ai conçu, le cours sur les chaînes de Markov interviendra dès la rentrée, pour faire un peu de

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités PC* Devoir 6: Corrigé 20 202 Partie I : Généralités I.A - Questions préliminaires a b c I.A.) M S M = b l m avec (a, b, c, l, m, t) R 6. c m t Les éléments de S sont les matrices de la forme : M = ae +

Plus en détail

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation )

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Introduction : On se place dans plan affine euclidien muni

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

NOUVELLES MESURES DE DÉPENDANCE POUR

NOUVELLES MESURES DE DÉPENDANCE POUR NOUVELLES MESURES DE DÉPENDANCE POUR UNE MODÉLISATION ALPHA-STABLE. Bernard GAREL & Bernédy KODIA Institut de Mathématiques de Toulouse et INPT-ENSEEIHT Xèmmes Journées de Méthodologie Statistique de l

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Analyse simultanée de variables quantitatives et qualitatives. à l aide de l analyse factorielle multiple

Analyse simultanée de variables quantitatives et qualitatives. à l aide de l analyse factorielle multiple Analyse simultanée de variables quantitatives et qualitatives à l aide de l analyse factorielle multiple Jérôme Pagès Laboratoire de mathématiques appliquées Agrocampus France Analyse Factorielle Multiple

Plus en détail

Programmation dynamique

Programmation dynamique A. Principe général B. Application Triangle de Pascal Série mondiale Multiplication chaînée de matrices Les plus courts chemins Principe général Souvent, pour résoudre un problème de taille n, on s'aperçoit

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries Chapitre 4 Adjoints Opérateurs auto-adjoints et isométries I. Adjoint : Cas général d une forme { bilinéaire symétrique sesquilinéaire hermitienne On suppose dans tout I que E est un espace vectoriel de

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

Déclassement d'actifs et stock brut de capital

Déclassement d'actifs et stock brut de capital Extrait de : La mesure du capital - Manuel de l'ocde 2009 Deuxième édition Accéder à cette publication : http://dx.doi.org/10.1787/9789264067752-fr Déclassement d'actifs et stock brut de capital Merci

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits.

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits. Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits 1 La qualité de la rédaction est un facteur important dans l appréciation

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs.

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion

Plus en détail

Introduction générale

Introduction générale Chapitre 1 Introduction générale Ce chapitre est consacré à une présentation rapide des méthodes numériques qui sont étudiées en détail dans ce cours Nous y donnons une approche très simplifiée des quatre

Plus en détail

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud Cours de mathématiques ECS 1 ère année BÉGYN Arnaud 12/11/2012 2 Introduction Ce manuscrit regroupe des notes de cours de mathématiques pour une classe d ECS première année. J ai écris ces notes lors de

Plus en détail

Feuilles de TD du cours d Algèbre S4

Feuilles de TD du cours d Algèbre S4 Université Paris I, Panthéon - Sorbonne Licence M.A.S.S. 203-204 Feuilles de TD du cours d Algèbre S4 Jean-Marc Bardet (Université Paris, SAMM) Email: bardet@univ-paris.fr Page oueb: http://samm.univ-paris.fr/-jean-marc-bardet-

Plus en détail

Travaux dirigés avec SAGE (partie III)

Travaux dirigés avec SAGE (partie III) Math 3 Année 2010-2011 Sommaire 1 Vecteurs et matrices 2 1.1 Construction, opérations élémentaires............................. 2 1.1.1 Vecteurs.......................................... 2 1.1.2 Matrices..........................................

Plus en détail

Document 1 : modélisation d un appareil photographique

Document 1 : modélisation d un appareil photographique PCSI1-Lycée Michelet 2014-2015 APPROCHE DOCUMENTAIRE : appareil photo numérique Extrait du programme : en comparant des images produites par un appareil photographique numérique, discuter l influence de

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail