Analyse de FOURIER +[ ( ) + ( )]

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Analyse de FOURIER +[ ( ) + ( )]"

Transcription

1 Analyse de FOURIER I. Analyse de Fourier : Décomposition harmonique : toute fonction périodique (son musical) peut être décomposé en une somme (infinie) de fonctions sinus et cosinus. Un signal est la somme de plusieurs sinusoïdes d amplitude différentes, et décalées en phase, appelées : harmoniques ( ); la fréquence de chaque fonction est un multiple de la fondamentale ( ) = + [ ( ) + ( )] + [ ( ) + ( )] + +[ ( ) + ( )] Intérêt : il est plus facile de connaître les propriétés de la fonction résultante en analysant les propriétés de chacune des composantes ; de plus, connaître un nombre limité de composantes suffit à bien représenter (voire «reconstruire» : synthétiseur) le signal Analyse spectrale : il est utile de présenter les résultats de l Analyse de Fourier d une fonction périodique f(t) au moyen de son spectre ( ) qui est soit : un diagramme Fréquence-Amplitude : pour le spectre en amplitude (en abscisse les fréquences des différentes harmoniques, en ordonnée leur amplitude) 1

2 un diagramme Phase-Amplitude : pour le spectre de phase (en abscisse les fréquences des différentes harmoniques, en ordonnée leur phase à l origine décalage initial-) «Une fonction du temps peut être entièrement décrite par son spectre de fréquence et son spectre de phase (et son amplitude)» Intérêt : la conversion du signal dans le domaine des fréquences peut rendre l'interprétation des informations qu'il contient beaucoup plus aisée audition, spectrométrie RMN, -) 2

3 Timbre : pour un signal périodique, le spectre est discontinu (spectre discret), il est formé de «raies spectrales» ; l analyse spectrale permet de rendre compte immédiatement de la richesse en harmoniques d un son : notion de timbre. (Remarque : un son pur ne contient qu une seule raie : la fondamentale, et aucune harmonique ; sinon c est un son complexe) exemple : la fonction créneau/carré : Plus il y a d harmoniques impaires, plus ça ressemble à une fonction crêneau/carrée. Plus précisément, plus on met de fonctions cosinus avec des coefficients impairs, ou plus il y a de fonctions sinus avec des coefficients impairs, plus ça ressemble à une fonction créneau : Notons que l amplitude des harmoniques d une fonction carré décroît avec la fréquence : 3

4 II. Transformation de Fourier : La transformation de Fourier généralise la théorie des séries de Fourier aux fonctions non-périodiques (signaux non-musicaux, ex : bruits ). Elle permet alors également d associer à toute fonction son spectre en fréquences. En fait, une fonction non-périodique est assimilée à une fonction périodique de période infinie ( ) ; or, si T est très grande, l ensemble des fréquences est un ensemble qui couvre presque tout le spectre des fréquences le spectre discret passe en spectre continu : il faut passer à l intégrale : ( ) = ( ). La fonction f(t) est en général réelle sa T.F ( ) est en général complexe la fréquence fondamentale est nulle (alors qu un son «musical» est caractérisé par sa fondamentale ) le spectre est continu (alors qu un son «musical» a un spectre discret de fréquences) ; écart nulle entre les harmoniques a) La fonction porte : (modélise l apparition d un signal sur une durée finie ) La fonction porte dont l amplitude est définie sur ; vaut (attention ne représente pas une période) vaut : ( ) = La Transformée de Fourier d une fonction porte est une fonction sinus cardinal : ( ) ( ) = = ( ) 4

5 la fonction sinus cardinal est paire la fonction sinus cardinal s annule pour les valeurs entières de car : = ± l amplitude de ( ) est nulle lorsque ± : ( ) est maximale pour =0 ; sin (0) =1 ( ) = ( ) est nulle lorsque ± convolue de la fonction porte : la fonction sinus cardinal Relation entre largeur temporelle d une fonction et la largeur de son spectre : Largeur de la porte : Largeur à mi-hauteur du lobe central : 2/ (Rem : la largeur à mi-hauteur sert à rendre compte du plus ou moins grand étalement de la fonction ; caractérise le profil d une gaussienne ou une lorentzienne) Si la porte ( ) est très large (fonction qui dure «longtemps»), sera grand, et 2 sera petite : la largeur du spectre sera étroit «une fonction qui dure longtemps a un spectre étroit» 5

6 corollaire : si la porte ( ) est étroite (bruit bref), la largeur du lobe central sera grande, et le specte large «plus le son est bref, sec, plus il y a de fréquences excitées» Spectre bruit sec «la largeur de la bande de fréquences varie en sens inverse de la durée du son» Bruit blanc : à la limite, le son contient toutes les fréquences spectre continu, fondamentale nulle 6

7 b) La fonction impulsion exponentielle : La fonction exponentielle décroissante de constante de temps vaut : ( ) = <0 ( )=. La T.F d une fonction exponentielle est une distribution de Lorentz (lorentzienne). On ne peut représenter ( ) qui est complexe, mais pour le physicien, l étude la partie réelle de cette fonction [ ( )] - autrement appelée Intensité spectrale - suffira : [ ( )] est la graphe de l amplitude A selon la fréquence, et est un nombre réel : [ ( )] = + ( )² La largeur à mi-hauteur de la fonction lorentzienne vaut et varie donc en sens inverse la constante de temps 7

8 Relation entre et largeur à mi-hauteur : Si faible (décroissance rapide), est grande, et la largeur à mi-hauteur est grande fonction très étalée, grand nombre de fréquences excitées Si élevée (lente décroissance), est faible, et la largeur à mi-hauteur est étroite pic étroit, courbe peu étalée, faible nombre de fréquences dans le spectre III. Filtrage d un signal : Il existe donc deux représentations complémentaires d un signal : amplitude-temps f(t) et amplitudefréquence ( ). Il apparaît souvent que, dans les signaux issus du phénomène étudié, se soient greffés nombre d informations inutiles : les bruits. On cherchera donc à augmenter le rapport signal / bruit soit : en faisant un filtrage temporel permettant de ne prendre en compte que les instants où le signal utile existe en faisant un filtrage fréquentiel grâce à la TF permettant de sélectionner les bandes de fréquence occupées par le signal utile, et d en éliminer les bruits parasites. 8

Analyse spectrale du signal

Analyse spectrale du signal Analyse spectrale du signal Principe de l analyse spectrale (ou harmonique) La réponse en fréquence des circuits est un élément caractéristique du comportement dynamique des circuits R, L et C. L autre

Plus en détail

Chapitre 3 : (Cours) Ondes sonores : analyse spectrale et effet Doppler

Chapitre 3 : (Cours) Ondes sonores : analyse spectrale et effet Doppler Chapitre 3 : (Cours) Ondes sonores : analyse spectrale et effet Doppler Les ondes sonores (sons musicaux, ondes sismiques, ) et les ondes électromagnétiques (lumière visible et invisible) ont pour propriété

Plus en détail

Équations différentielles en physique

Équations différentielles en physique Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des

Plus en détail

Audio Numérique Notes de cours année 2006/2007. 1 Complément sur la TFD, illustration sous Pure Data

Audio Numérique Notes de cours année 2006/2007. 1 Complément sur la TFD, illustration sous Pure Data Audio Numérique Notes de cours année 2006/2007 Marc Ferràs - Thomas Pellegrini LIMSI-CNRS Pour cette séance, vous devez rédiger un compte-rendu de TP à rendre à la fin de la séance. 1 Complément sur la

Plus en détail

2. analyse au moyen d'un circuit RLC 2.1 rappel sur la résonance

2. analyse au moyen d'un circuit RLC 2.1 rappel sur la résonance filtrage d'une tension créneau par un circuit RLC. rappels sur les séries de Fourier. décomposition en séries de Fourier une fonction périodique f(t) peut être décomposée en série de Fourier : a 0 f (t)

Plus en détail

1- Son / Signal sonore

1- Son / Signal sonore SOMMAIRE 1. Son / Signal sonore 2. Critères d appréciations du son 3. Caractéristiques physiques du signal sonore 4. Représentations visuelles du signal sonore 5. Les différentes familles du son. 1- Son

Plus en détail

Fonctions circulaires et applications réciproques

Fonctions circulaires et applications réciproques Chapitre II Fonctions circulaires et applications réciproques A Fonctions circulaires A Rappels de trigonométrie Radians et cercle trigonométrique Le radian est une unité de mesure d angle (orienté) définie

Plus en détail

Suites numériques. Sommaire :

Suites numériques. Sommaire : Suites numériques I Activité n o 2 page 295 Sommaire : II Généralités sur les suites numériques III Variations et bornes IV Suites arithmétiques V Suites géométriques VI Suites convergentes VII Représentation

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - fonctions de références, représentations graphiques, dérivées, tableau de variations : toutes sections - opérations sur les limites, asymptotes : STI2D,

Plus en détail

Chapitre 3: Analyse des signaux non périodiques

Chapitre 3: Analyse des signaux non périodiques Chapitre 3: Analyse des signaux non périodiques Mahjoub DRIDI Contents 1 Transformation de Fourier 1.1 PassagedelasérieàlatransformationdeFourier..................... 1. DéfinitiondelatransforméedeFourier...........................

Plus en détail

Systèmes de communications numériques 2

Systèmes de communications numériques 2 Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 91192 Gif-sur-Yvette ciuciu@lss.supelec.fr Université

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures SESSION 2013 PCP1003 EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1 Durée : 4 heures N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si

Plus en détail

TD de Physique n o 10 : Interférences et cohérences

TD de Physique n o 10 : Interférences et cohérences E.N.S. de Cachan Département E.E.A. M2 FE 3 e année Physique appliquée 2011-2012 TD de Physique n o 10 : Interférences et cohérences Exercice n o 1 : Interférences à deux ondes, conditions de cohérence

Plus en détail

Modification des valeurs d une image

Modification des valeurs d une image Modification des valeurs d une image Pour l instant, nous avons vu surtout des transformations ponctuelles des pixels d une image Lire la valeur d un pixel la remplacer par une autre Il existe aussi des

Plus en détail

Les fonctions sinus et cosinus

Les fonctions sinus et cosinus DERNIÈRE IMPRESSION LE 6 juin 03 à 5:06 Les fonctions sinus et cosinus Table des matières Rappels. Mesure principale.............................. Résolution d équations...........................3 Signe

Plus en détail

Introduction au Traitement Numérique du Signal

Introduction au Traitement Numérique du Signal Introduction au Traitement Numérique du Signal bjectifs : présenter sans développement calculatoire lourd (pas de TF, pas de TZ) on donne des résultats on illustre. n donne des exemples sous Matlab en

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/200 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 6 : PRIMITIVES ET INTEGRATION - COURS + ENONCE EXERCICE - 39 . Tableau

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

( ) et orienté dans le

( ) et orienté dans le FONCTIONS COSINUS ET SINUS I. Rappels ) Définitions : Dans le plan muni d un repère!! ortonormé O ; i ; j ( ) et orienté dans le sens direct, on considère un cercle trigonométrique de centre O. Pour tout

Plus en détail

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système,

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système, Université Paris 7 Denis Diderot UFR de Mathématiques Licence L3 Equations différentielles 2006-2007 P. Perrin (Un) Corrigé du partiel Lundi 9 mars 2007 Eercice. On considère le système différentiel linéaire

Plus en détail

Travaux Dirigés Traitement Numérique du Signal Digital Signal Processing

Travaux Dirigés Traitement Numérique du Signal Digital Signal Processing 1ère Année Informatique 2011-2012 Travaux Dirigés Traitement Numérique du Signal Digital Signal Processing M. Frikel - J. Fadili GREYC, UMR 6072 CNRS, 6, Boulevard Maréchal Juin, 14050 Caen Cedex Table

Plus en détail

Présentation simplifiée de la transformée de Fourier et ses applications en analyse chimique

Présentation simplifiée de la transformée de Fourier et ses applications en analyse chimique Présentation simplifiée de la transformée de Fourier et ses applications en analyse chimique Cette présentation n'est pas terminée!!! Pour déboucher les sinus de manière intégrale 1 Elle reprend le contenu

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

Chapitre 2. Caractéristiques des distributions à une variable quantitative

Chapitre 2. Caractéristiques des distributions à une variable quantitative Chapitre 2. Caractéristiques des distributions à une variable quantitative Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University

Plus en détail

HPLC : CRITERES DE CONFORMITE

HPLC : CRITERES DE CONFORMITE Substances apparentées HPLC : CRITERES DE CONFORMITE Facteur de symétrie du pic principal compris entre,8 et 1,5 si monographie pharmacopée (voir document "HPLC : FACTEUR DE SYMETRIE") Taux de recouvrement

Plus en détail

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier Responsable : J.Roussel Objectif Ce TP est une initiation à l analyse de Fourier. Nous verrons notamment comment une analyse spectrale permet de remonter à la courbe de réponse d un filtre électrique.

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

Le traitement du signal

Le traitement du signal FICHE N 47 Le traitement du signal FFT, DFT ET IFT Jean-aptiste Joseph Fourier (1768-1830), né à uxerre, mathématicien et physicien français, auteur de la Théorie analytique de la chaleur (1822) : la transformée

Plus en détail

L'analyse chronologique au sein de l'entreprise industrielle

L'analyse chronologique au sein de l'entreprise industrielle François S. Chaghaghi L'analyse chronologique au sein de l'entreprise industrielle Berne PETER LANG Francfort-s. Main New York TABLE DES MATIERES INTRODUCTION: La planification de la production au sein

Plus en détail

Théorème de Rolle et égalité des accroissements finis. Applications

Théorème de Rolle et égalité des accroissements finis. Applications 0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Mesures à la limite quantique

Mesures à la limite quantique Mesures à la limite quantique ~ 3 ème ème cours ~ A. Heidmann Laboratoire Kastler Brossel Plan du troisième cours Mesures en continu, mesure de position Mesures en continu théorie de la photodétection

Plus en détail

Michel.Campillo@ujf-grenoble.fr. Documents: http://isterre.fr/annuaire/pages-web-du-personnel/michel-campillo/ TUE415 1

Michel.Campillo@ujf-grenoble.fr. Documents: http://isterre.fr/annuaire/pages-web-du-personnel/michel-campillo/ TUE415 1 Michel.Campillo@ujf-grenoble.fr Documents: http://isterre.fr/annuaire/pages-web-du-personnel/michel-campillo/ TUE415 1 Ondes de surface: observations Figures de: Stein and Wysession TUE415 2 Pourquoi étudier

Plus en détail

Spectrométrie de masse

Spectrométrie de masse 1 Principe Technique fondée sur la mesure du rapport masse sur charge d ions en phase gazeuse obtenus à partir d un analyte. m z (avec z 1) Les ions (+ ou -) formés dans la source de l appareil sont accélérés,

Plus en détail

Chapitre 3. Filtrage Linéaire. Voisinage d un point. Fondamentaux du traitement d image

Chapitre 3. Filtrage Linéaire. Voisinage d un point. Fondamentaux du traitement d image Chapitre 3 Fondamentaux du traitement d image Filtrage Linéaire Voisinage d un point Point P d affixe p = (m, n) Notion de voisinage d un pixel Son voisinage : V(P) = {P connectés à P} n N - m P V (P)

Plus en détail

PSF et traitement de déconvolution sur les images 3D

PSF et traitement de déconvolution sur les images 3D PSF et traitement de déconvolution sur les images 3D Acquisition d une image 3D De l objet à l image visible L acquisition Émission de Fluorescence Z hv 2 hv 1 hv 2 Y X hv 2 Fluorescence dans un corps

Plus en détail

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes Chp. 9. Convexité Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction numérique partout définie sur C. 9.1 Fonctions affines, convexes, strictement convexes Définition

Plus en détail

208 - Espaces vectoriels normés, applications linéaires continues. Exemples

208 - Espaces vectoriels normés, applications linéaires continues. Exemples 208 - Espaces vectoriels normés, applications linéaires continues. Exemples On se xe un corps K = R ou C. Tous les espaces vectoriels considérés auront K comme corps de base. 1 Généralités Remarque. Tout

Plus en détail

Fibre optique. Kit EducOptic. Soudeuse à fibre optique X X Kit de clivage. Oscilloscope numérique X X Jarretières de fibre optique

Fibre optique. Kit EducOptic. Soudeuse à fibre optique X X Kit de clivage. Oscilloscope numérique X X Jarretières de fibre optique CARTOGRAPHIE D UN SYSTÈME À FIBRE OPTIQUE RÉFLECTOMÈTRE - SOUDEUSE U52. MISE EN ŒUVRE DU SYSTÈME 2.1. Éléments à votre disposition 2.1.1. Matériel Voir cadre 1 2.1.2. Documentation Liste du matériel U51

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Propriétés fréquentielles du signal

Propriétés fréquentielles du signal Fiche de référence Thème II : ANALYSE DU SIGNAL Propriétés fréquentielles du signal 1- Insuffisance de la représentation temporelle du signal Reprenons l exemple utilisé précédemment : Enregistrement du

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Bases du traitement des images. Transformée de Fourier

Bases du traitement des images. Transformée de Fourier Transformée de Fourier Nicolas Thome 29 septembre 2015 1 / 60 Contexte et objectif Transformée de Fourier Transformée de Fourier (TF) : outil fondamental en traitement d images Concept abordé durant les

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

Comment Utiliser Supra Math 4

Comment Utiliser Supra Math 4 Comment Utiliser Supra Math 4 1- Dérivation Tableau de Variations* : Calcule la dérivée et construit le tableau à partir de f(x), f (x) et les xo. Note : Quand vous entrez la fonction, vous pouvez taper

Plus en détail

Chapitre I La fonction transmission

Chapitre I La fonction transmission Chapitre I La fonction transmission 1. Terminologies 1.1 Mode guidé / non guidé Le signal est le vecteur de l information à transmettre. La transmission s effectue entre un émetteur et un récepteur reliés

Plus en détail

MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU TABLEAU DE CORRESPONDANCE DU CURRICULUM À : MATHÉMATIQUES 11 NO P-0-257

MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU TABLEAU DE CORRESPONDANCE DU CURRICULUM À : MATHÉMATIQUES 11 NO P-0-257 MATÉRIEL D APPRENTISSAGE SERVANT D APPUI AU NOUVEAU CURRICULUM DE L ONTARIO : MATHÉMATIQUES, FONCTIONS, 11 e année, COURS PRÉUNIVERSITAIRE/PRÉCOLLÉGIAL (MCF3M) TABLEAU DE CORRESPONDANCE DU CURRICULUM À

Plus en détail

GENERALITES SUR LA TRANSMISSION DES DONNEES. Document réalisé par : M.MEZARI Rezak Email : mezabdrezak@yahoo.fr

GENERALITES SUR LA TRANSMISSION DES DONNEES. Document réalisé par : M.MEZARI Rezak Email : mezabdrezak@yahoo.fr GENERALITES SUR LA TRANSMISSION DES DONNEES Document réalisé par : M.MEZARI Rezak Email : mezabdrezak@yahoo.fr Août 006 TABLE DES MATIERES 1 Rappels de théorie du signal 3 1.1. Notion du signal 3 1.. Rappels

Plus en détail

2 Correspondance des Points de Contrôle Spline - Bézier

2 Correspondance des Points de Contrôle Spline - Bézier COURBES B-SPLINES 1 Introduction Une courbe de Bézier est totalement modifiée dès qu on déplace un point de contrôle : on dit que la méthode de Bézier est une méthode globale. Les courbes B-Splines Uniformes,

Plus en détail

PHYSIQUE-CHIMIE Terminale Scientifique

PHYSIQUE-CHIMIE Terminale Scientifique PHYSIQUE-CHIMIE Terminale Scientifique Fiches PROGRAMME 2012 (v2.4) Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique Cours Pi e-mail : lescourspi@cours-pi.com site : http://www.cours-pi.com

Plus en détail

Éléments de correction du TD

Éléments de correction du TD Septembre 011 Éléments de correction du TD Stéphane Blin Introduction Je donne ici les éléments de correction de la question - de la marche de potentiel, ainsi que les éléments de corrections pour les

Plus en détail

Formulaire de maths - Analyse dans R n

Formulaire de maths - Analyse dans R n Formulaire de maths - Analyse dans R n Nom Théorème ou formule Espaces vectoriels normés Norme sur E Application qui vérifie les propriétés de : séparation : homogénéité : inégalité triangulaire : Normes

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

COMMENT OBTENIR UN SPECTRE SATISFAISANT D UN SIGNAL ENREGISTRE PAR ORDINATEUR?

COMMENT OBTENIR UN SPECTRE SATISFAISANT D UN SIGNAL ENREGISTRE PAR ORDINATEUR? NOM: Coéquipier : COMMENT OBTENIR UN SPECTRE SATISFAISANT D UN SIGNAL ENREGISTRE PAR ORDINATEUR? Soit une fonction G(t) périodique, de fréquence f. D'après Fourier, cette fonction peut se décomposer en

Plus en détail

MASTER de Génie Civil, Lyon Année scolaire 2006-2007 DYNAMIQUE DES SOLS ET DES STRUCTURES. Sujet No 1, durée : 2 heures

MASTER de Génie Civil, Lyon Année scolaire 2006-2007 DYNAMIQUE DES SOLS ET DES STRUCTURES. Sujet No 1, durée : 2 heures MASTER de Génie Civil, Lyon Année scolaire 6-7 Epreuve du 6 mars 7 DYNAMIQUE DES SOLS ET DES STRUCTURES GENIE PARASISMIQUE Sujet No, durée : heures Les copies doivent être rédigées en français et écrites

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

3) modulations numériques.

3) modulations numériques. Chapitre 2 : communications numériques. 3) modulations numériques. A) Rappels sur les modulations analogiques : Signal modulant analogique s(t) Modulateur porteuse analogique p(t) = P. cos(ω0.t) Signal

Plus en détail

GELE2511 Chapitre 7 : Transformée de Fourier discrète

GELE2511 Chapitre 7 : Transformée de Fourier discrète GELE2511 Chapitre 7 : Transformée de Fourier discrète Gabriel Cormier, Ph.D., ing. Université de Moncton Hiver 2013 Gabriel Cormier (UdeM) GELE2511 Chapitre 7 Hiver 2013 1 / 79 Introduction Contenu Contenu

Plus en détail

Exercices de rentrée MPSI-PCSI

Exercices de rentrée MPSI-PCSI Exercices de rentrée MPSI-PCSI Lycée Saint-Louis 015-016 Introduction Cette feuille d exercices s adresse aux élèves rentrant en MPSI ou en PCSI au lycée Saint- Louis Il s agit d exercices qui sont entièrement

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations. Serge Iovleff

Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations. Serge Iovleff Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations Serge Iovleff 13 septembre 2004 Quelques références Ma Page http ://www.iut-info.univ-lille1.fr/ iovleff Un Cours réalisé par des

Plus en détail

Analyse fréquentielle : le signal carré

Analyse fréquentielle : le signal carré Analyse fréquenielle : le signal carré 1. V() Domaine emporel 1. Domaine fréqueniel composane coninue (moyenne).5.5 1 2 T 1 2 3 4 5 6 7 8 9 111 Tracés pour E = 1V. V() = E 2 Analyse fréquenielle : le signal

Plus en détail

Variations des fonctions

Variations des fonctions CH2-1er S Variations des fonctions Rédacteur : Yann BANC Le mot du prof : Ce chapitre vous permet de revoir les fonctions usuelles et de découvrir de nouvelles fonctions usuelles : valeur absolue et racine

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

Problème de l'agrégation de chimie 1976

Problème de l'agrégation de chimie 1976 Problème de l'agrégation de chimie 1976 COMPOSITION DE CHIMIE (Durée : 6 heures) Cette épreuve comporte deux parties. La première étudie le modèle des solutions strictement régulières qui permet l'évaluation

Plus en détail

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent

PHYSIQUE. Lampe à incandescence et bilans thermiques. Partie I - Lampe à incandescence en régime permanent PHYSIQUE Lampe à incandescence et bilans thermiques Partie I - Lampe à incandescence en régime permanent IA - Détermination de la température du filament Le filament d une ampoule à incandescence est constitué

Plus en détail

Eléments de correction des exercices de BTS

Eléments de correction des exercices de BTS Eléments de correction des exercices de BTS 1 Echantillonnage Maurice Charbit Exercice 1 Comme 300 > F e /2 = 250, il y a du repliement et le signal reconstruit contient 3 raies : 50, 100 et 200 Exercice

Plus en détail

Fonctions de référence

Fonctions de référence Première STMG Fonctions de référence sguhel ... 0 Chapitre 5 : Fonctions de référence... 2 1 Fonctions affines... 2 1.1 Exemple... 2 1.2 Définition et vocabulaire... 3 1.3 Représentation graphique... 4

Plus en détail

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier Responsable : J.Roussel Objectif Ce TP est une initiation à l analyse de Fourier. Nous verrons notamment comment une analyse spectrale permet de remonter à la courbe de réponse d un filtre électrique.

Plus en détail

ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL

ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL ET - FONCTIONS D ONDE DANS LES ETATS LIES D UN PUITS DE POTENTIEL Dans ce qui suit on adopte les notations suivantes : désigne une constante universelle h = π = 6,60 34 Joules par seconde est la constante

Plus en détail

Devoir 9 - Le 1er décembre - 4 heures

Devoir 9 - Le 1er décembre - 4 heures Devoir 9 - Le 1er décembre - 4 heures Le barème est sur 70 points dont 2 points pour la présentation Les questions Q13, Q14, Q17, Q33 et Q34 peuvent être laissées de coté dans un premier temps. Calculatrice

Plus en détail

Chapitre 01 : Intégrales généralisées. Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle

Chapitre 01 : Intégrales généralisées. Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle Chapitre 01 : Intégrales généralisées Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle fermé borné de Dans ce chapitre, on va étudier le cas d

Plus en détail

1 Activité documentaire : l isolation phonique (30 minutes)

1 Activité documentaire : l isolation phonique (30 minutes) Séance de Spécialité n o 10 Isolation & filtrage Mots-clefs «instruments électroniques», «traitement du son» et «isolation phonique». 1 Activité documentaire : l isolation phonique (30 minutes) Un logement

Plus en détail

Devoir de Sciences Physiques n 1 pour le 09-09-2015

Devoir de Sciences Physiques n 1 pour le 09-09-2015 1 DM1 Sciences Physiques MP 20152016 Devoir de Sciences Physiques n 1 pour le 09092015 Problème n o 1 Capteurs de proximité E3A PSI 2013 Les capteurs de proximité sont caractérisés par l absence de liaison

Plus en détail

Traitement d images. Chapitre I Prétraitements

Traitement d images. Chapitre I Prétraitements Traitement d images Chapitre I Prétraitements 1 2 Introduction Les prétraitements d une image consiste à effectuer des opérations visant à : améliorer sa qualité visuelle restaurer l image en éliminant

Plus en détail

Poly d UE4 Mathématiques et Biostatistiques

Poly d UE4 Mathématiques et Biostatistiques PACES Poly d UE4 Mathématiques et Biostatistiques Association des Carabins de Nancy 2011/2012 1/36 AVANT-PROPOS Attention, ce poly n a pas la prétention de se substituer aux cours des professeurs, nous

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

BACCALAURÉATS PROFESSIONNELS EN 3 ANS

BACCALAURÉATS PROFESSIONNELS EN 3 ANS BACCALAURÉATS PROFESSIONNELS EN ANS Électrotechnique énergie équipements communicants Exemple de progression pédagogique Programmes : BOEN n 11 du 1/06/199 / A 8/07/99 modifié A 19/07/0 Mathématiques :

Plus en détail

Chapitre 7. Les fonctions de références

Chapitre 7. Les fonctions de références Chapitre 7 Les fonctions de références I Rappels sur les fonctions I1 Domaine de définition I2 Les variations I3 Parité II Les fonctions de référence II1 Fonctions affines II2 Fonction carré II3 Fonction

Plus en détail

Révisions de Mathématique

Révisions de Mathématique Révisions de Mathématique Chapitre I Chapitre II Chapitre III Algèbre Trigonométrie Analyse Chapitre I Algèbre 1 Opérations élémentaires sur les nombres réels................ I 3 1.1 Les ensembles IN,

Plus en détail

Sujet Centrale 2012 Physique Option MP

Sujet Centrale 2012 Physique Option MP I Le Satellite Jason 2 IA1) IA - Etude l orbite Sujet Centrale 2012 Physique Option MP Cf cours : IA2) a) Le référentiel géocentrique est le référentiel de centre Terre en translation par rapport au référentiel

Plus en détail

UE SI350 :Travaux Pratiques sur l indexation audio

UE SI350 :Travaux Pratiques sur l indexation audio UE SI35 :Travaux Pratiques sur l indexation audio Gaël RICHARD - Miguel ALONSO Détection du tempo et Mixage audio avec ajustement rythmique Introduction Signal Extraction du tempo Modification du tempo

Plus en détail

Traitement du signal pour la reconnaissance vocale. Cours 5: Traitement du signal et reconnaissance de forme

Traitement du signal pour la reconnaissance vocale. Cours 5: Traitement du signal et reconnaissance de forme Traitement du signal pour la reconnaissance vocale Cours 5: Traitement du signal et reconnaissance de forme Chaîne de Reconnaissance vocale Acquisition microphone Numérisation du signal Pré-traitement

Plus en détail

Les espaces vectoriels

Les espaces vectoriels Agrégation interne UFR MATHÉMATIQUES 1. Généralités Les espaces vectoriels Dans tout le chapitre, K représente un corps commutatif. 1.1. Notion d espace vectoriel On considère un ensemble E sur lequel

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS 2010-2011 Centre de Préparation aux Concours Paramédicaux - Sections : LS-1 / LS-0 - Olivier CAUDRELIER oc.polyprepas@orange.fr 1 Chapitre 1 - Analyse de FOURIER Ce chapitre 1 n est pas indispensable

Plus en détail

Modélisation AR et prédiction

Modélisation AR et prédiction T.P. 7 Modélisation AR et prédiction 1 Introduction au traitement de la parole 1.1 Généralités Un premier point concerne le choix de la fréquence d échantillonnage. Dans le domaine de la téléphonie cela

Plus en détail

Etude des fonctions trigonométriques

Etude des fonctions trigonométriques Chapitre Dans ce chapitre, nous continuons le travail sur les fonctions usuelles en introduisant les fonctions trigonométriques. Si celles sont définies à partir de la géométrie euclidienne, elles permettent

Plus en détail

ISOPHASES http://www.isophases.com

ISOPHASES http://www.isophases.com ISOPHASES http://www.isophases.com LE PROCESSEUR D IMAGE STEREOPHONIQUE ISO-B12 par Claude Carpentier v :3.1 - Juin 2004 OFF 160 320 630 ISOPHASE 1250 2500 5000 80 160 320 640 1250 2500 ON LEVEL BALANCE

Plus en détail

La dérivation dans R

La dérivation dans R S La dérivation dans R Introduction Activité sur la cute libre d un corps. 2 Nombre dérivé Définition du nombre dérivé Soit f une fonction définie sur un intervalle I de R et soit a un réel de l intervalle

Plus en détail

Ondes sonores et ultrasonores - Corrigé. D après l oscillogramme, B reçoit le signal avec un décalage de 6,0 divisions par rapport à A.

Ondes sonores et ultrasonores - Corrigé. D après l oscillogramme, B reçoit le signal avec un décalage de 6,0 divisions par rapport à A. Ondes sonores et ultrasonores - Corrigé Partie A : Ondes ultrasonores. I. Mesure de la célérité des ultrasons dans l air. A. Première méthode : émetteur en mode «salves» 1. Détermination du retard τ avec

Plus en détail

1 Acquisition d un signal avec l oscilloscope numérique LeCroy 9310 : Théorème de Shannon :

1 Acquisition d un signal avec l oscilloscope numérique LeCroy 9310 : Théorème de Shannon : Jeanniard Sébastien Lemaître Guillaume TP n 1 : Théorème de Shannon Modulation de fréquence 1 Acquisition d un signal avec l oscilloscope numérique LeCroy 9310 : Théorème de Shannon : 1.3 Etude de la fréquence

Plus en détail

Transformée de Fourier. Grégoire Henning 1/10

Transformée de Fourier. Grégoire Henning 1/10 Transformée de Fourier. Grégoire Henning 1/10 Table des matières 1. Transformée de Fourier 1.1. Rappel : série de Fourier 1.2. Analyse continue 1.2.1. Formules de transformées de Fourier 1.2.2. Intensité

Plus en détail

Systèmes dynamiques. Chapitre 1

Systèmes dynamiques. Chapitre 1 Chapitre 1 Systèmes dynamiques 1) Placement financier On dépose une quantité d argent u 0 à la banque à l instant t 0 = 0 et on place cet argent à un taux r > 0. On sait qu en vertu de la loi des intérêts

Plus en détail

Mesure de la température dans un puits géothermique

Mesure de la température dans un puits géothermique (correcteur : Jean Gasc http://jeaga.voila.net/) Mesure de la température dans un puits géothermique 1 Étude du capteur de température : Sonde au platine: 1.1 unité du coefficient a : Dans la relation

Plus en détail

analyse spectrale des séries temporelles Jacques Beau Rythmes biologiques et cancer, Inserm U 776

analyse spectrale des séries temporelles Jacques Beau Rythmes biologiques et cancer, Inserm U 776 analyse spectrale des séries temporelles Jacques Beau Rythmes biologiques et cancer, Inserm U 776 déroulement de la présentation saisie des données numériques : échantillonnage et fenêtrage composantes

Plus en détail

TUTORAT UE 3 2015-2016 Biophysique Séance n 2 Semaine du 21/09 au 25/09

TUTORAT UE 3 2015-2016 Biophysique Séance n 2 Semaine du 21/09 au 25/09 TUTORAT UE 3 2015-2016 Biophysique Séance n 2 Semaine du 21/09 au 25/09 Optique 1 Pr. Mariano-Goulart Séance préparée par Lélio VANLAER et Alicia BAUDOUY (ATM 2 ) Données : Champ de pesanteur terrestre

Plus en détail

La fonction d appareil en spectrométrie par transformation de Fourier: de la modélisation à l algorithmique

La fonction d appareil en spectrométrie par transformation de Fourier: de la modélisation à l algorithmique La fonction d appareil en spectrométrie par transformation de Fourier: de la modélisation à l algorithmique Raphaël Desbiens To cite this version: Raphaël Desbiens. La fonction d appareil en spectrométrie

Plus en détail

Devoir commun de Mathématiques 18 janvier 2014. Problème 1

Devoir commun de Mathématiques 18 janvier 2014. Problème 1 Lycée Jean Bart MPSI & PCSI Année 213-214 Devoir commun de Mathématiques 18 janvier 214 La clarté des raisonnements, la précision de la rédaction et la présentation entreront pour une part non négligeable

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0)

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0) NOMBRES COMPLEXES 1 Corps C des nombres complexes 1.1 Construction de C Construction de C On munit R de deux lois internes + et de la manière suivante. Pour (a, b, c, d) R 4, on pose (a, b) + (c, d) =

Plus en détail