Chapitre II: Notions de base de la RDM
|
|
|
- Élodie Dubois
- il y a 9 ans
- Total affichages :
Transcription
1 Chapitre II: Notions de base de la RDM Objet de la RDM: La résistance des matériaux est l étude de la résistance et de la déformation des solides (arbres de transmission, bâtiments, diverses pièces mécaniques ) dans le but de déterminer ou vérifier leurs dimensions afin qu ils supportent les charges qu ils subissent, dans des conditions de sécurité satisfaisantes et au meilleur coût (optimisation des formes, des dimensions, des matériaux ). Son domaine d application étant très large et les situations rencontrées nombreuses et variées, il est nécessaire de mettre en place des hypothèses simplificatrices dans le but de standardiser les cas d étude. La résistance des matériaux n étudie que des solides de formes simples : les «poutres» par exemple. Bien souvent, il est possible de modéliser des solides par une poutre, à la condition que ceux-ci respectent certaines hypothèses (hypothèses de la RDM)
2
3 Notion de poutre On appelle poutre un solide engendré par la translation d une surface plane S dont le centre de gravité décrit une ligne plane (ligne contenue dans un plan) Section droite n 0 i Ligne moyenne (P) - La surface plane est en général appelée section droite (S) (son plan (P) est normal à la ligne plane passant par son centre de gravité i ) - La ligne plane est appelée ligne moyenne et constituée de l ensemble des centres de gravité des sections droites.
4 Exemples de poutres: Poutre Droite R Poutre droite creuse Anneau Poutre de ligne moyenne fermée R: rayon de courbure Poutre courbe
5 Exemple de sections droites: (P) (P) (P) (P) (P) (P) (P) Pour tous les profilés (P) est plan de symétrie
6 Torseur des efforts intérieurs s exerçant sur une section droite de la poutre: C- R ext M ext Ligne moyenne d une poutre Coupure en R ext C+ M ext Le calcul des éléments de réduction du torseur des efforts intérieurs se fait en deux étapes: 1- détermination du torseur des efforts extérieurs: Le calcul des actions aux liaisons se fait en posant les équations d équilibre de la poutre 2- calcul des éléments de réduction du torseur des efforts intérieurs: Soit (P) un plan fictif coupant la poutre en deux parties C- et C+ suivant une section droite (, x, y, z): trièdre orthonormé direct x: axe tangent en à la ligne moyenne C- Partie auche isolée (y, z): plan de coupe contenant la section de coupe z y R m x
7 R M R M R m Bilan des efforts sur C- et C+: ext ext ext ext R m Actions des efforts extérieurs qui s appliquent sur C+ Actions des efforts extérieurs qui s appliquent sur C- Actions de la partie C+ sur la partie C- R M ext ext Equilibre R M ext ext R M R M ext Equilibre de la poutre ext ext ext R M ext R m ext Equilibre du tronçon C L équilibre du tronçon C- permet de calculer les efforts intérieurs à partir des efforts extérieurs sur les tronçon C- ou C+: Ici on calcule l effort intérieur de la partie C+ sur C- L effort intérieur de C- sur C+ est l opposé du premier
8 Exemple: y Charge A F B C A R A F B R C C x Actions de liaison Le torseur des efforts intérieurs se calcule de la manière suivante: R m R M ext ext R M ext ext D où R M R A A R A
9 Les projections du torseur des efforts intérieurs sur les axes x, y, et z donnent: N : Effort normal R m Nx Ty y m x mf Notion de Contrainte t Tz z y mf y z z T i : Effort tranchant dans la direction i (y ou z) m t : Moment de torsion autour de la ligne moyenne mf i : Moment fléchissant suivant la direction i (y ou z) Avant de définir ce qu est une contrainte, certaines hypothèses sur le matériau s imposent Continuité de la matière Lorsqu on regarde au microscope la coupe d une pièce en métal, on voit généralement une structure fibreuse, ou quelquefois une structure granulaire. Toutefois, les distances entre ces fibres ou ces grains sont très petites par rapport aux dimensions des plus petites pièces mécaniques qui sont étudiées. On peut alors raisonnablement considérer le matériau comme continu.
10 Structure granulaire d un métal
11 Homogénéité On admet que les matériaux ont les mêmes propriétés mécaniques en tous points. Cela est à peu près vérifié pour la plupart des métaux, mais il faut savoir que cette hypothèse n est qu une grossière approximation pour les matériaux tels que le bois ou le béton. Isotropie On admet que les matériaux étudiés ont, en un même point, les mêmes propriétés mécaniques dans toutes les directions. Cela est à peu près vrai pour les aciers, mais il faut savoir que cette hypothèse est loin de la réalité pour le bois et les matériaux composites par exemple. Ainsi les efforts intérieurs sont indépendants de la position de la particule dans le milieu Continu considéré
12 Considérons une poutre droite subissant plusieurs forces ponctuelles lim S 0 fi S 2/1
13 Le point M étant le centre de l élément de surface S de la section (S). f i est appliquée à S et représente la force interne en M. Le rapport f i S représente la force interne en M par unité de surface Le passage à la limite est opéré en vertu de la continuité du milieu Unité de contrainte: Le Pascal noté [Pa] Cette unité étant petite nous adoptons le Méga-pascal noté [MPa] 1MPa = 1N/mm 2
14 Les Hypothèses de la RDM: Dans le cadre de la RDM certaines hypothèses simplificatrices sont posées 1/ Matériaux parfaitement élastiques Les matériaux considérés sont des matériaux continus, homogènes et isotropes Leur élasticité est considérée parfaite (matériaux parfaitement élastiques) c est-à-dire qu il existe une relation de proportionnalité entre la déformation et l effort qui la provoque (Déformation =. Effort) 2/ hypothèse des petites déformations Les déformations subies par la structure sont faibles par rapport à ses dimensions 3/ hypothèse de Saint-Venant À une distance suffisamment éloignée de la zone d application des charges l action mécanique exercée sur la structure s exprime en terme du torseur des efforts extérieurs appliqué à celui-ci. Les résultats de la RDM ne s applique valablement qu à une distance suffisamment éloignée de la région d application des forces concentrées. En effet, nous ne pouvons pas, avec les équations de la RDM, calculer les déformations locales autour d un point d application d une force.
15 4/ hypothèse de Navier-Bernouilli Toute section plane et perpendiculaire à la ligne moyenne avant déformation, reste plane et perpendiculaire à la ligne moyenne après l application des charges. On dit qu il n y a pas de gauchissement des sections. Remarque: Compte tenu des hypothèses 2 et 4, on peut admettre que les forces extérieures conservent une direction constante avant et après déformation
16 Les sollicitations mécaniques Définition: une sollicitation mécanique est une action mécanique appliquée à une certaine structure considérée comme système matériel Ces sollicitations peuvent être simples ou composées On dit qu une sollicitation est simple quand elle engendre un torseur des efforts intérieurs ayant une seule composante de force «ou bien» de moment (N, T, M T ou M f ) Une sollicitation composée est donc une sollicitation qui engendre un torseur des efforts intérieurs ayant au moins deux composantes de force ou de moment Les cas de sollicitations simples et composées les plus courants sont donnés dans le tableau suivant:
17
18
19 Les essais mécaniques On distingue essentiellement deux types d essais mécaniques Les essais destructifs sur éprouvette: la pièce est détruite pendant l essais Les essais non destructifs: la pièce n est pas détruite Ce sont des expériences ayant pour but la détermination de certaines caractéristiques mécaniques des matériaux. Parmi ces essais, l essai de traction est le plus couramment rencontré
20 L essai de traction L essai de traction permet à lui seul de définir les caractéristiques mécaniques courantes utilisées en RDM. La seule connaissance des paramètres de l essai de traction permet de prévoir le comportement d une pièce sollicitée en cisaillement, traction, compression et flexion. Les trois photos ci-contre représentent respectivement, une éprouvette cylindrique, une éprouvette plate et un détail d une éprouvette cylindrique montée dans des mors d une machine de traction.
21 Détails d une éprouvette cylindrique: F S 0 F L c L 0 d Tête d amarrage L 0 = k S 0 = Longueur utile de l éprouvette L C = L 0 + 2d =Longueur calibrée S 0 = section de l éprouvette La valeur de k dépend du matériau k = 5,65 pour les aciers, fontes à graphite sphéroïdal k = 3 pour les fontes malléables
22 L essai est réalisé sur une machine de traction (photo ci-contre) : on applique lentement et progressivement à une éprouvette de forme et dimensions normalisées, un effort de traction croissant dont l intensité varie de 0 à F. La machine enregistre un diagramme donnant la déformation de l éprouvette en fonction de la charge. Les résultats sont sous forme de courbes de traction
23 Diagramme de traction d un matériau ductile ou malléable
24 Zone élastique OA : l éprouvette se comporte élastiquement (comme un ressort) et revient toujours à sa longueur initiale dès que la charge est relâchée. Le point A, auquel correspond la limite élastique Re, marque la fin de cette zone. La proportionnalité entre la contrainte et la déformation se traduit par la loi de Hooke ( = E ). E = tan caractérise la pente de la droite OA et = E son équation. Zone de déformation plastique AE : on distingue encore trois zones BC, CD et DE. Dans la zone BC, parfaitement plastique, la contrainte reste constante et l allongement se poursuit jusqu en C. Entre C et D, zone d écrouissage, le matériau subit un changement de structure qui accroît sa résistance. Le point D, auquel correspond la résistance maximale Rm, marque la fin de cette zone. Enfin, entre D et E, l éprouvette subit une striction amenant une diminution de la section avec étranglement. La rupture se produit au point E, auquel correspond la résistance à la rupture Rr.
25 Caractéristiques fondamentales Limite élastique Résistance à la rupture Coefficient d allongement Allongement relatif Coefficient de S0 S z striction S0 u S 0 : section de l éprouvette S u : section à l endroit de la rupture est appelé aussi allongement unitaire ou dilatation linéique relative
26 Contraintes dans une section Pour des déformations élastiques, les dimensions de la section droite ne varient pratiquement pas. Il apparait en tout point de cette section des contraintes normales uniformément réparties vérifiant la relation: N N étant l effort normal sur S 0 S 0 (S) constante, donc analogie entre les courbes «effort-allongement» et «contrainte déformation» La courbe ci-contre représente le comportement d un matériau fragile. Dans ce cas, la courbe se réduit presque à la zone de déformation élastique.
27 La loi de proportionnalité entre la contrainte et l allongement relatif est appelée Loi de Hooke: = E E: module d élasticité longitudinales ou module de Young Unité : N/mm 2 ou MPa Ce module est une constante pour le matériau, il définit son élasticité longitudinale Coefficient de Poisson L allongement provoque une contraction du diamètre de l éprouvette. On appelle coefficient de Poisson le rapport: Avec : e L L 0 e' e et 0,25< < 0,3 pour tous les métaux Remarque: intervient en élasticité e' D0 D D 0 u D 0 : diamètre initial D u : diamètre à l endroit de la rupture e : rétrécissement relatif transversale
28 Ecrouissage R e2 I J Pour une charge supérieure à la limite élastique, la suppression progressive de l effort ou décharge se fait suivant (I J) // à (OA) Le segment OJ est appelé allongement rémanent Le second chargement se fait de J à I puis de I à E. On constate: - La limite élastique a augmenté R e2 - Le palier BC à disparu Ce phénomène est appelé écrouissage il correspond à un durcissement du matériau.
29 Les autres essais mécaniques destructifs ou non sont utilisés pour déterminer d autres propriétés mécaniques des matériaux: Essai de compression
30 Essai de torsion
31 Essai de dureté
32 Essai de résilience
33 Essai de fatigue Les organes soumis à des efforts variables et répétés se rompent sans que la Contrainte en chaque point du matériau ait dépassé la limite élastique. On dit que la rupture se produit par fatigue. La limite de fatigue conventionnelle désignée par D, est la valeur de la contrainte maximum qui, appliquée périodiquement et de façon indéfinie n entraine pas de rupture.
34 Coefficient de sécurité et résistance pratique Pour qu une structure (machine, véhicule, immeuble ) puisse supporter en toute sécurité les charges qui normalement la sollicitent, il suffit qu elle puisse résister à des charges plus élevées. La capacité à supporter ces charges s appelle la résistance de la structure. Le coefficient de sécurité s est alors défini par : s Charg es admissibles par la structure charg es habituellement exercées Un coefficient de sécurité trop faible augmente exagérément les risques de rupture. Un coefficient de sécurité trop élevé a également des effets néfastes : augmentation du poids, du prix de revient s varie le plus souvent de 1 à 10. Pour un grand nombre de structures, la sécurité est obtenue si, sous charge, les déformations du matériau restent élastiques. Ceci est réalisé lorsque les contraintes en n importe quel point de la structure restent inférieures à la limite élastique Re (ou R e 0.2) du matériau. s est alors défini par :
35 s R R e p R e : limite élastique du matériau R p : résistance pratique (contrainte tolérée dans la structure) Pour les matériaux fragiles (béton, fontes, bois,.) il est préférable d utiliser La résistance à la rupture: s R R r p R r : limite à la rupture du matériau La valeur de s est alors plus grande dans ce cas Remarque: dans certaines industries (aérospatiale), on parle plutôt de marge de sécurité m, (m = s 1)
Cours de résistance des matériaux
ENSM-SE RDM - CPMI 2011-2012 1 Cycle Préparatoire Médecin-Ingénieur 2011-2012 Cours de résistance des matériau Pierre Badel Ecole des Mines Saint Etienne Première notions de mécanique des solides déformables
Cours de Résistance des Matériaux (RDM)
Solides déformables Cours de Résistance des Matériau (RDM) Structure du toit de la Fondation Louis Vuitton Paris, architecte F.Gehry Contenu 1 POSITIONNEMENT DE CE COURS... 2 2 INTRODUCTION... 3 2.1 DEFINITION
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une
Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques
Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques Descriptif du support pédagogique Le banc d essais des structures permet de réaliser des essais et des études
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ
Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE par S. CANTOURNET 1 ELASTICITÉ Les propriétés mécaniques des métaux et alliages sont d un grand intérêt puisqu elles conditionnent
Jean-Marc Schaffner Ateliers SCHAFFNER. Laure Delaporte ConstruirAcier. Jérémy Trouart Union des Métalliers
Jean-Marc Schaffner Ateliers SCHAFFNER Laure Delaporte ConstruirAcier Jérémy Trouart Union des Métalliers Jean-Marc SCHAFFNER des Ateliers SCHAFFNER chef de file du GT4 Jérémy TROUART de l Union des Métalliers
Analyse statique d une pièce
Analyse statique d une pièce Contrainte de Von Mises sur une chape taillée dans la masse 1 Comportement d un dynamomètre On considère le dynamomètre de forme globalement circulaire, excepté les bossages
RELEVE D ETAT DU PONT DES GRANDS-CRÊTS. On a procédé une auscultation visuelle entre le 23 et le 29 mars 2007.
RELEVE D ETAT DU PONT DES GRANDS-CRÊTS On a procédé une auscultation visuelle entre le 23 et le 29 mars 2007. Pour mieux comprendre les résultats ici une petit plan où il y a signalées les différentes
Chapitre 12. Bâtiments à ossature mixte en zone sismique.
12.1 Chapitre 12. Bâtiments à ossature mixte en zone sismique. 12.1. Introduction. Il existe des solutions mixtes acier-béton très diverses dans le domaine du bâtiment. A côté des classiques ossatures
SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :
Titre : SSNL16 - Flambement élastoplastique d'une poutre [...] Date : 15/1/011 Page : 1/6 Responsable : Nicolas GREFFET Clé : V6.0.16 Révision : 8101 SSNL16 - Flambement élastoplastique d'une poutre droite
DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE
Revue Construction étallique Référence DÉVERSEENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYÉTRIQUE SOUISE À DES OENTS D EXTRÉITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE par Y. GALÉA 1 1. INTRODUCTION Que ce
TUBES ET ACCESSOIRES Serrurier A ailettes Construction Canalisation Spéciaux
TUBES ET ACCESSOIRES 47 Serrurier A ailettes Construction Canalisation Spéciaux Possibilité d autres sections sur demande. Les caractéristiques indiquées sont théoriques et non garanties. TUBES 48 TUBES
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Fiche Technique d Évaluation sismique : Construction basse en Maçonnerie Non-armée, Chaînée, ou de Remplissage en Haïti
.0 RISQUES GEOLOGIQUES DU SITE NOTES. LIQUÉFACTION : On ne doit pas trouver de sols granulaires liquéfiables, lâches, saturés, ou qui pourraient compromettre la performance sismique du bâtiment, dans des
Les métaux pour construction métallique
Extrait d'un document interne du Sétra rédigé en 2002 par Daniel Poineau et actualisé en 2010. Voir également - l'article de JP Gourmelon dans le n 20 du bulletin Ponts métalliques de 2000 "Matériaux pour
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Vis à billes de précision à filets rectifiés
sommaire Calculs : - Capacités de charges / Durée de vie - Vitesse et charges moyennes 26 - Rendement / Puissance motrice - Vitesse critique / Flambage 27 - Précharge / Rigidité 28 Exemples de calcul 29
ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE
562 ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE 563 TABLE DES MATIÈRES ANNEXE J... 562 POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]
Les moments de force Les submersibles Mir peuvent plonger à 6 000 mètres, rester en immersion une vingtaine d heures et abriter 3 personnes (le pilote et deux observateurs), dans une sphère pressurisée
DISQUE DUR. Figure 1 Disque dur ouvert
DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?
Compétences générales Avoir des piles neuves, ou récentes dans sa machine à calculer. Etre capable de retrouver instantanément une info dans sa machine. Prendre une bouteille d eau. Prendre CNI + convocation.
CONCEPTION MÉCANIQUE ET DIMENSIONNEMENT ASSISTÉ PAR ORDINATEUR
M01 CONCEPTION MÉCANIQUE ET DIMENSIONNEMENT ASSISTÉ PAR ORDINATEUR 30 Heures Techniciens ou ingénieurs confrontés aux problèmes de conception et de dimensionnement des pièces mécaniques en bureau d études.
ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE
ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE ANALYSIS OF THE EFFICIENCY OF GEOGRIDS TO PREVENT A LOCAL COLLAPSE OF A ROAD Céline BOURDEAU et Daniel BILLAUX Itasca
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS
Généralités Aperçu Introduction Précision Instruction de montage Lubrification Conception page............................. 4............................. 5............................. 6.............................
COMMENT FAIRE DES ESCALIERS?
COMMENT FAIRE DES ESCALIERS? Conception et mise en œuvre GUIDE TECHNIQUE 2012 Union des Métalliers C O L L E CT I O N R E C H E R C H E D É V E LO P P E M E N T M É T I E R 4 INTRODUCTION 13 PARTIE I GÉNÉR
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
Département de Génie Civil
Sommaire Chapitre 01 : RAPPEL... 5 I Rappel de mathématiques... 5 I-1 Equation du 1 ier degrés à deu inconnues... 5 I- Equation du Second degré à deu inconnues... 5 I-3 Calcul d intégrale... 6 I-4 Equation
des giratoires en béton
Chapitre Réalisation des giratoires en béton.1 Les giratoires en béton à dalles courtes.1.1 Les joints et leur calepinage.2 Les giratoires à dalles courtes goujonnées.3 Les giratoires en béton armé continu.
Prise en compte des Eurocodes dans le dimensionnement d ouvrages d art courant en béton armé. Comparaison avec «l ancienne» réglementation.
Prise en compte des Eurocodes dans le dimensionnement d ouvrages d art courant en béton armé. Comparaison avec «l ancienne» réglementation. Projet de Fin d Etude Auteur : GODARD Sandy Elève ingénieur en
MODELISATION DES SYSTEMES MECANIQUES
Département Génie Mécanique Alain DAIDIE Manuel PAREDES MODELISATION DES SYSTEMES MECANIQUES Semestre 8 Version : 009/00 Formation : Réf. ECTS du cours : 4ème Année GM I4GMBE3 Institut National des Sciences
BACCALAURÉAT TECHNOLOGIQUE SESSION 2008 POSITIONNEUR DE PANNEAU SOLAIRE POUR CAMPING-CAR
BACCALAURÉAT TECHNOLOGIQUE SÉRIE SCIENCES ET TECHNIQUES INDUSTRIELLES GÉNIE ÉLECTROTECHNIQUE SESSION 2008 ÉPREUVE: ÉTUDE DES CONSTRUCTIONS Durée: 4 heures Coefficient : 6 POSITIONNEUR DE PANNEAU SOLAIRE
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
LES ESCALIERS. Les mots de l escalier
Les mots de l escalier L escalier :ouvrage constitué d une suite régulière de plans horizontaux (marches et paliers) permettant, dans une construction, de passer à pied d un étage à un autre. L emmarchement
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Guide pour l analyse de l existant technique. Partie 3
Partie 3 La Liaison Pivot sur roulement : Le Composant ROULEMENT 0 Introduction Le but de ce guide est de vous permettre une meilleure rédaction des rapports de Bureaux d Études que vous aurez à nous remettre
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
Guide Technique Pour la Charpente de Mur. LSL et LVL SolidStart LP
Conception aux états limites LSL et LVL SolidStart LP Guide Technique Pour la Charpente de Mur 1730F b -1.35E, 2360F b -1.55E and 2500F b -1.75E LSL 2250F b -1.5E and 2900F b -2.0E LVL Veuillez vérifier
G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction
DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
N09 Viaduc de Chillon
Département fédéral de l'environnement, des transports, de l'énergie et de la communication DETEC Office fédéral des routes N09 Viaduc de Chillon Solution innovante en relation avec la RAG Conférence JERI
Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation
4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
STRUCTURE D UN AVION
STRUCTURE D UN AVION Cette partie concerne plus la technique de l avion. Elle va vous permettre de connaître le vocabulaire propre à l avion. Celui ci vous permettra de situer plus facilement telle ou
Exemple d application du EN 1993-1-2 : Poutre fléchie avec section tubulaire reconstituée
Exemple d application du EN 1993-1-2 : Poutre fléchie avec section tubulaire reconstituée P. Schaumann, T. Trautmann University of Hannover Institute for Steel Construction, Hannover, Germany 1 OBJECTIF
EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian
1 EPFL 2010 Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilia Nafaï Weil Florian 11 Table de matière Ø Introduction 3 Ø Objectif 3 Ø Déroulement de l eai 4 Ø Exécution de deux palier de charge 6 Ø Calcul
II - 2 Schéma statique
II - 2 Schéma statique [email protected] version 7 septembre 2006 Schéma statique Définition Appuis et liaisons [Frey, 1990, Vol. 1, Chap. 5-6] Éléments structuraux Sans références Les dias
BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE
BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE ÉPREUVE DE SCIENCES DE L INGÉNIEUR ÉPREUVE DU VENDREDI 20 JUIN 2014 Session 2014 Durée de l épreuve : 4 heures Coefficient 4,5 pour les candidats ayant choisi un
Rupture et plasticité
Rupture et plasticité Département de Mécanique, Ecole Polytechnique, 2009 2010 Département de Mécanique, Ecole Polytechnique, 2009 2010 25 novembre 2009 1 / 44 Rupture et plasticité : plan du cours Comportements
Etude de fonctions: procédure et exemple
Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons
Colle époxydique multi usages, à 2 composants
Notice Produit Edition 20 01 2014 Numéro 9.11 Version n 2013-310 01 04 02 03 001 0 000144 Colle époxydique multi usages, à 2 composants Description est une colle structurale thixotrope à 2 composants,
Chapitre 4: Dérivée d'une fonction et règles de calcul
DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.
6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013
Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
SYSTEMES LINEAIRES DU PREMIER ORDRE
SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle
La physique nucléaire et ses applications
La physique nucléaire et ses applications I. Rappels et compléments sur les noyaux. Sa constitution La représentation symbolique d'un noyau est, dans laquelle : o X est le symbole du noyau et par extension
CODE ET MANUEL D APPLICATION POUR LE CALCUL ET L EXECUTION
CODE ET MANUEL D APPLICATION POUR LE CALCUL ET L EXECUTION DU BETON ARMI. Rédigé par une Commission d Experts de l UNESCO, DUNOD PARIS 1968 CODE ET MANUEL D APPLICATION POUR LE CALCUL ET L EXECUTION DU
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
L Évolution de la théorie d élasticité au XIX e siècle
Kaouthar Messaoudi L Évolution de la théorie d élasticité au XIX e siècle Publibook Retrouvez notre catalogue sur le site des Éditions Publibook : http://www.publibook.com Ce texte publié par les Éditions
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
Paris et New-York sont-ils les sommets d'un carré?
page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2
FICHE TECHNIQUE. Domaines d applications. Stockage / Mise en oeuvre. Caractéristiques physiques et techniques STOCKAGE MISE EN OEUVRE
FICHE TECHNIQUE PLANS DE TRAVAIL EGGER EUROSPAN Les plans de travail EGGER EUROSPAN se composent d un panneau support EUROSPAN à faible émission de formaldéhyde E1 et d un stratifié décoratif plaqué uniformément
1 Mise en application
Université Paris 7 - Denis Diderot 2013-2014 TD : Corrigé TD1 - partie 2 1 Mise en application Exercice 1 corrigé Exercice 2 corrigé - Vibration d une goutte La fréquence de vibration d une goutte d eau
Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique
Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant
Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof
Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof
INFLUENCE de la TEMPERATURE. Transition ductile/fragile Choc Thermique Fluage
INFLUENCE de la TEMPERATURE Transition ductile/fragile Choc Thermique Fluage Transition ductile/fragile Henry Bessemer (UK)! 1856 : production d'acier à grande échelle Pont des Trois-Rivières 31 janvier
LE GÉNIE PARASISMIQUE
LE GÉNIE PARASISMIQUE Concevoir et construire un bâtiment pour qu il résiste aux séismes 1 Présentation de l intervenant Activité : Implantation : B.E.T. structures : Ingénierie générale du bâtiment. Siège
Simulation du transport de matière par diffusion surfacique à l aide d une approche Level-Set
Simulation du transport de matière par diffusion surfacique à l aide d une approce Level-Set J. Brucon 1, D. Pino-Munoz 1, S. Drapier 1, F. Valdivieso 2 Ecole Nationale Supérieure des Mines de Saint-Etienne
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information
Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information I. Nature du signal I.1. Définition Un signal est la représentation physique d une information (température, pression, absorbance,
AiryLab. 12 impasse de la Cour, 83560 Vinon sur Verdon. Rapport de mesure
AiryLab. 12 impasse de la Cour, 83560 Vinon sur Verdon Rapport de mesure Référence : 2010-44001 FJ Référence 2010-44001 Client Airylab Date 28/10/2010 Type d'optique Lunette 150/1200 Opérateur FJ Fabricant
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
Séquence 2. Repérage dans le plan Équations de droites. Sommaire
Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis
Exposé d étude : Sage 100 gestion commerciale
Exposé d étude : Sage 100 gestion commerciale Présenté par : Demb Cheickysoul 1 INTRODUCTION Parfaitement adapté à l organisation de l entreprise par sa puissance de paramétrage, Sage 100 Gestion Commerciale
(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)
Analyse de la charge transmise aux roulements de la roue dentée, notamment en rajoutant les efforts axiaux dus aux ressorts de l embrayage (via la cloche) (Exemple ici de calcul pour une Ducati 748 biposto,
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
VII Escaliers et rampes
VII Escaliers et rampes 1. Généralité et terminologie des escaliers Les escaliers permettent de franchir une dénivellation et de relier les différences de niveaux d une construction ou d un jardin. A son
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
La fabrication des objets techniques
CHAPITRE 812 STE Questions 1 à 7, 9, 11, 14, A, B, D. Verdict 1 LES MATÉRIAUX DANS LES OBJETS TECHNIQUES (p. 386-390) 1. En fonction de leur utilisation, les objets techniques sont susceptibles de subir
P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte
Matière : Couleur : Polyuréthane (PUR) Cellulaire mixte Gris Recommandations d usage : Pression (dépend du facteur de forme) Déflexion Pression statique maximum :. N/mm ~ % Pression dyn. maximum :. N/mm
Concepts généraux de la surveillance électronique des ponts routiers au ministère des Transports du Québec
Concepts généraux de la surveillance électronique des ponts routiers au ministère des Transports du Québec Marc Savard, ing, Ph. D. et Jean-François Laflamme, ing, M. Sc. Service de l entretien, Direction
La boule de fort. Olympiades de Physique. Année 2010-2011. Simon Thomas. Thomas Roussel. Julien Clabecq. Travail de recherche réalisé par :
Olympiades de Physique Année 2010-2011 La boule de fort Travail de recherche réalisé par : Julien Clabecq Thomas Roussel Simon Thomas Manuel Coffin Nous nous sommes intéressés à un sport plutôt méconnu,
Thème 17: Optimisation
OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir
Institut technologique FCBA : Forêt, Cellulose, Bois - construction, Ameublement
Renforcer la compétitivité des entreprises françaises des secteurs forêt, bois, pâte à papier, bois construction, ameublement face à la mondialisation et à la concurrence inter-matériaux Institut technologique
Dans ce chapitre : Sommaire 93
Dans ce chapitre : Les différents types de contractions musculaires 78 Contraction statique 78 Contraction dynamique 80 Contraction isométrique 80 Contraction auxotonique 80 Contraction isotonique 82 Contraction
Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure.
Étude du comportement mécanique du plâtre pris en relation avec sa microstructure Sylvain Meille To cite this version: Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa
Calcul des pertes de pression et dimensionnement des conduits de ventilation
Calcul des pertes de pression et dimensionnement des conduits de ventilation Applications résidentielles Christophe Delmotte, ir Laboratoire Qualité de l Air et Ventilation CSTC - Centre Scientifique et
BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX
BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX Coefficient 8 Durée 4 heures Aucun document autorisé Calculatrice
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
