UNIVERSITÉ PARIS-SUD 11 FACULTÉ DE MÉDECINE

Dimension: px
Commencer à balayer dès la page:

Download "UNIVERSITÉ PARIS-SUD 11 FACULTÉ DE MÉDECINE"

Transcription

1 UNIVERSITÉ PARIS-SUD 11 FACULTÉ DE MÉDECINE Année : 2009 N attribué par la bibiothèque THÈSE en vue de l obtention du diplôme de DOCTEUR DE L UNIVERSITÉ PARIS-SUD 11 Spécialité : BIOSTATISTIQUE Présentée et soutenue publiquement par Ismaïl AHMED Le 8 avril 2009 Détection automatique de signaux en pharmacovigilance : Approche statistique fondée sur les comparaisons multiples Directeur de thèse : M me Pascale Tubert-Bitter JURY M. Jean Christophe Thalabard, Pr. Président M. Stephen Evans, Pr. Rapporteur M me Sylvia Richardson, Pr. Rapporteur M. Stéphane Robin, Pr. Examinateur M me Pascale Tubert-Bitter, DR. Examinateur

2 Mes remerciements s adressent en premier lieu à Pascale Tubert-Bitter. Travailler avec elle a été un très grand plaisir et je lui suis profondément reconnaissant d avoir su si bien me guider et m encourager tout au long de ce parcours. Je tiens aussi à remercier chaleureusement Françoise Haramburu, Annie Fourrier- Réglat, Frantz Thiessard, Carmen Kreft-Jais, Ghada Miremont-Salamé et Bernard Bégaud pour leur aide et l intérêt qu ils ont porté à ce travail. Mes remerciements s adressent ensuite à Cyril Dalmasso avec qui j ai eu grand plaisir à travailler ainsi qu à Philippe Broët. Je remercie également les membres et ex-membres de l équipe biostatistique, et plus particulièrement Laurence Watier et Thierry Moreau, pour leur accueil, leur disponibilité et leurs conseils. Je tiens aussi à remercier vivement M. Lellouch pour nos longues conversations, ses lectures attentives et ses conseils avisés. Merci aux membres de l unité 780 qui ont rendu ces trois années de thèse très agréables et plus particulièrement à Jérémie, Hélène, Antoine, Estelle, Olivier, Hélèna, Yves, Dorota, Sigrid, Juliette, Mounia, Raphaëlle, Marie, Alexia et David avec lesquels j ai le plus partagé. L occasion m est donnée de remercier l Institut de Recherche en Santé Publique qui a contribué financièrement à l accomplissement de ce travail. Je remercie Stephen Evans et Sylvia Richardson pour avoir accepté d être les rapporteurs de ma thèse ainsi que Stéphane Robin et Jean Christophe Thalabard pour leur participation à mon jury. Mes derniers remerciements s adressent à ma famille et à Aurélie. i

3 Valorisation scientifique Communications orales I. Ahmed, C. Dalmasso, F. Haramburu, A. Fourrier-Réglat, F. Thiessard, C. Kreft-Jaïs, G. Miremont-Salamé, B. Bégaud, P. Broët, P. Tubert-Bitter, Fisher s Exact Test Applied to Pharmacovigilance, 29th Annual Conference of the International Society for Clinical Biostatistics, August 2008, Copenhagen, Denmark. I. Ahmed, F. Haramburu, A. Fourrier-Réglat, F. Thiessard, C. Kreft-Jais, G. Miremont- Salamé, B. Bégaud, P. Tubert-Bitter, Signal Ranking-Based Comparison of Automatic Detection Methods in Pharmacovigilance : A Hypothesis Test Approach, Epidemiology and Biometry 2008, IBS Channel Network, July 2008, Paris, France. I. Ahmed, F. Haramburu, A. Fourrier-Réglat, F. Thiessard, G. Miremont-Salamé, C. Kreft- Jaïs, P. Tubert-Bitter, Bayesian Pharmacovigilance Signal Detection Methods Revisited in a Multiple Comparison Setting, First IBS Channel Network Conference, 8-11 May 2007, Rolduc, The Netherlands. I. Ahmed, F. Haramburu, A. Fourrier-Réglat, F. Thiessard, G. Miremont-Salamé, C. Kreft- Jaïs, P. Tubert-Bitter, A New Automatic Signal Detection Method in Pharmacovigilance ; A Bayesian Multiple Comparisons Setting, 22nd International Conference on Pharmacoepidemiology & Therapeutic Risk Management, August 2006, Lisbon, Portugal. Publications avec comité de lecture I. Ahmed, C. Dalmasso, F. Haramburu, F. Thiessard, P. Broët, P. Tubert-Bitter, False Discovery Rate Estimation for Frequentist Pharmacovigilance Signal Detection Methods, Biometrics, Accepté. I. Ahmed, F. Haramburu, A. Fourrier-Réglat, F. Thiessard, C. Kreft-Jais, G. Miremont- Salamé, B. Bégaud, P. Tubert-Bitter, Bayesian Pharmacovigilance Signal Detection Methods Revisited in a Multiple Comparison Setting Statistics in Medicine, Accepté. ii

4 Table des matières Remerciements i Valorisation scientifique Communications orales Publications avec comité de lecture ii ii ii Table des matières iii Table des figures vi Liste des tableaux viii Liste des abréviations ix 1 Introduction Contexte Problématique Objectif Description des principales méthodes de détection automatique Structure des données analysées Les méthodes fréquentistes La méthode Reporting Odds Ratio (ROR) iii

5 TABLE DES MATIÈRES iv La méthode Proportional Reporting Ratio (PRR) Les méthodes bayésiennes La méthode Bayesian Confidence Propagation Neural Network (BCPNN) La méthode Gamma Poisson Shrinker (GPS) Quelques remarques générales Méthodes de détection automatique revisitées dans le cadre des comparaisons multiples Comparaisons multiples et méthodes fréquentistes ROR, PRR et test d hypothèses Test exact de Fisher et mid-p-values FDR et méthodes fréquentistes Comparaisons multiples et méthodes bayésiennes GPS et BCPNN dans le cadre bayésien de la théorie de la décision Autres approches proposées pour la prise en compte des comparaisons multiples à partir du modèle GPS Quelques remarques Étude de simulations Modèle de simulation Comparaison des approches fréquentistes Étude de la densité des degrés de signification Estimation de π 0 π Comparaison des méthodes selon le FDR et son estimation Comparaison des approches bayésiennes GPS et règles de classement

6 TABLE DES MATIÈRES v Comparaison de GPS et BCPNN basés sur Pr(H 0 ) Comparaison à partir du modèle de simulations proposé Comparaison à partir du modèle de simulations de Roux et al Conclusion des simulations Application aux données françaises de pharmacovigilance Comparaison des méthodes sur les données de Les données Estimation des quantités caractéristiques (FDR, FNR, Se et Sp) Comparaison des signaux générés Évaluation séquentielle à partir de cas d alertes réels Plan d analyse Premier scénario : Mise en place d un système de détection automatique Deuxième scénario : Utilisation en routine de GPS Conclusion 90 Réferences 94 Annexes 98 A Résultats complémentaires pour l étude de simulations 98 B Résultats complémentaires pour l application 102 C Publications 114

7 Table des figures 3.1 Histogrammes de la densité marginale des degrés de signification obtenus à partir de la méthode midrfet sur les données de la base française Histogramme de la distribution de Pr(λ ij 1) obtenu à partir des données de la base Française Histogrammes du logarithme des risques observés dans la base française et dans les données simulées Histogrammes des distributions marginales, sous H 0 et sous H 1 des degrés de signification pour ROR, RFET et midrfet Estimations de π 0 π 0 obtenues avec LBE et Qvalue à partir de la distribution marginale des degrés de signification transformés (p ) pour RFET Comparaison de ROR, RFET et midrfet selon le FDR et son estimation pour n ij Comparaison de ROR, RFET et midrfet selon le FDR et son estimation pour n ij Biais relatif observé dans l estimation du FDR pour ROR, RFET et midrfet Comparaison selon le FDR et son estimation des différentes règles de classement pour GPS Variabilité du FDR et de son estimation pour GPS basé sur Pr(H 0) Comparaison selon le FDR et son estimation de BCPNN et GPS basés sur Pr(H 0) Comparaison selon le FNR et son estimation de BCPNN et GPS basés sur Pr(H 0 ) Comparaison selon la sensibilité et son estimation de BCPNN et GPS basés sur Pr(H 0 ) Comparaison selon la spécificité et son estimation de BCPNN et GPS basés sur Pr(H 0) Comparaison du FDR obtenu avec midrfet, ROR, BCPNN et GPS basé sur Pr(H 0) vi

8 TABLE DES FIGURES vii 4.14 Comparaison du FDR et de son estimation pour midrfet, BCPNN et GPS basé sur Pr(H 0) Comparaison du FDR et de son estimation pour ROR, midrfet, BCPNN et GPS basé Pr(H 0) à partir du plan de simulation de Roux et al. (2005) Comparaison des estimations du FDR sur la base de pharmacovigilance française Proportion de signaux communs entre les méthodes proposées en fonction du nombre de signaux générés Proportion de signaux communs entre les méthodes proposées pour {ψ 0 = 1, RR 0 = 1} en fonction du FDR estimé par GPS basé sur Pr(H 0) Proportion de signaux communs entre les différentes règles de classement pour GPS et RR 0 = Évolution au cours du temps du nombre de couples médicamentévénements présentant au moins une et au moins trois notifications dans la base française créée au 1 er janvier Histogramme des délais observés entre la date de détection par le modèle GPS basé sur Pr(H 0 ) et la date d alerte en comité technique - Scénario Évolution du nombre de nouveaux signaux générés à partir du modèle GPS basé sur Pr(H 0 ) et d un seuil de 5% pour le FDR - Scénario Évolution du seuil sur Pr(H 0) pour FDR = 5% lors de l utilisation de GPS - Scénario Histogramme des 216 délais observés entre la date de détection par le modèle GPS basé sur Pr(H 0 ) et la date d alerte en comité technique - Scénario Évolution du nombre de nouveaux signaux générés à partir du modèle GPS basé sur Pr(H 0 ) et FDR = 1% - Scénario A.1 Histogrammes de la distribution des degrés de signification sous H 0 pour ROR, RFET et midrfet avec n ij A.2 Histogrammes de la distribution des degrés de signification sous H 0 pour ROR, RFET et midrfet avec n ij A.3 Estimations de π 0 π 0 obtenues avec LBE et Qvalue à partir de la distribution marginale des degrés de signification transformés (p ) pour ROR B.1 Proportion de signaux communs entre les méthodes proposées en fonction du FDR estimé par GPS

9 Liste des tableaux 2.1 Représentation des données pour le couple (i, j) Tableau récapitulatif des méthodes étudiées Estimation des quantités caractéristiques avec GPS et Pr(H 0 ) sur les données de pharmacovigilance française Nombre de signaux de référence détectés par GPS basé sur Pr(H 0) et Q 0.05 (λ ), midrfet et ROR - Scénario Comparaison des signaux de référence détectés dans les cas n ij 3 et n ij 1 pour GPS basé sur Pr(H 0) et pour midrfet - Scénario Rangs moyens dans le délai de détection des 309 signaux de référence pour GPS basé sur Pr(H 0) et Q 0.05 (λ ), midrfet et ROR - Scénario Rangs moyens dans le délai de détection des 164 signaux de référence pour GPS basé sur Pr(H 0 ) et Q 0.05(λ ), midrfet et ROR - Scénario Capacité de détection du modèle GPS basé sur Pr(H 0) et FDR = 5% en fonction du nombre de notifications associé aux signaux de référence au 1 er juillet Scénario B.1 Signaux de référence (47) avec moins de 3 notifications spontanées au 1 er juillet B.2 Signaux de référence (216) détectés par le modèle GPS basé sur Pr(H 0) et FDR = 5% - Scénario B.3 Signaux de référence (46) avec au moins 3 notifications spontanées au 1 er juillet 2002 et non détectés par le modèle GPS basé sur Pr(H 0) et FDR = 5% - Scénario viii

10 Liste des abréviations Afssaps Agence française de sécurité sanitaire des produits de santé ATC Anatomical Therapeutical Clinical ATC5 Code ATC à 5 caractères BCPNN Bayesian Confidence Propagation Neural Network CRPV Centre régional de pharmacovigilance FDA Food and Drug Administration FDP False Discovery Proportion FDR False Discovery Rate FNP False Negative Proportion FNR False Negative Rate GPS Gamma Poisson Shrinker HLT High Level Term LBE Location Based Estimator MedDRA Medical Dictionary for Regulatory Activities MGPS Multi-Item Gamma Poisson Shrinker midrfet mid-p-values calculées à partir du test exact de Fisher PRR Proportional Reporting Ratio RFET Reporting Fisher s Exact Test ROR Reporting Odds Ratio. Se Sensibilité Sp Spécificité ix

11 Chapitre 1 Introduction 1.1 Contexte Les effets indésirables des médicaments sont le plus souvent découverts après leur autorisation de mise sur le marché et ceci pour au moins deux raisons. La première tient à la nature même des effets indésirables qui peuvent être rares, spécifiques à certaines catégories de la population ou se manifester après une grande période de latence. Une autre raison est qu une fois le médicament commercialisé, ses conditions d utilisation sont en général différentes de celles étudiées dans les cadres expérimentaux précédant sa mise sur le marché. Les systèmes de pharmacovigilance ont donc pour but de détecter le plus précocement possible l existence d associations entre médicaments et événements indésirables. Ils reposent en général sur la déclaration par des professionnels de santé (médecins ou pharmaciens) de la survenue d événements indésirables dont la cause suspectée est médicamenteuse. Prises individuellement, ces notifications spontanées ne comportent que très rarement l assurance de la responsabilité du ou des médicaments incriminés. C est donc leur accumulation qui conduit les pharmacologues à mettre en évidence l existence d effets indésirables médicamenteux. Une difficulté rencontrée dans l analyse de telles données réside dans le fait que 1

12 1.1 Contexte 2 les effets indésirables des médicaments commercialisés ne sont pas tous reconnus ni rapportés aux instances de pharmacovigilance. Des études montrent que cette sousnotification peut être très importante même dans le cas d effets indésirables graves (Bégaud et al., 2002). Il est très vraisemblable qu elle soit fonction de l événement indésirable, du médicament ou du couple événement-médicament étudié ce qui peut biaiser les conclusions tirées de l information brute (van der Heijden et al., 2002). Néanmoins, malgré ses limites, l analyse des notifications spontanées demeure certainement le moyen le plus rapide et économique pour identifier de nouveaux effets médicamenteux après l autorisation de mise sur le marché et est par conséquent à la base de la plupart des décisions prises par les instances de pharmacovigilance. Le système de pharmacovigilance français a été mis en place en Il reposait alors sur un réseau de 15 centres régionnaux de pharmacovigilance (CRPV) qui fut rapidement étendu à 29 en 1984 puis à 31 en Ces centres ont une mission d information auprès des professionnels de santé. Ils ont aussi en charge la collecte des notifications ainsi que leur enregistrement au sein de la base nationale coordonnée par l unité de pharmacovigilance de l Agence Française de Sécurité Sanitaire des Produits de Santé (Afssaps). C est aussi au niveau de ces centres que s exerce une partie de la surveillance; les cas suspectés étant par la suite discutés par le comité technique de pharmacovigilance lors de réunions mensuelles au siège de l Afssaps. Entre 1986 et 2001, les données de pharmacovigilance françaises ont été enrichies de notifications spontanées avec une augmentation linéaire à travers le temps pour atteindre le nombre annuel de en 2001 (Thiessard et al., 2005). Cette base doit être cependant considérée comme petite face aux deux principales bases mondiales : la base américaine coordonnée par la Food and Drug Administration (FDA) et la base de l Organisation Mondiale de la Santé administrée par l Uppsala Moni-

13 1.2 Problématique 3 toring Center en Suède, qui, en décembre 2004, contenaient respectivement environ 2.6 et 3.7 millions de notifications (Almenoff et al., 2005). Face à ce flux très important de données, ces deux systèmes de pharmacovigilance ainsi que d autres ont développé depuis une dizaine d années des méthodes statistiques de génération automatique de signaux. Ces méthodes ont pour but de détecter les couples événement-médicament dont la présence est anormalement fréquente par rapport à ce qui est attendu compte tenu de l information présente dans le reste de la base. Du fait des limites des notifications spontanées énoncées plus haut et de la nature essentiellement exploratoire des ces analyses, les signaux ainsi générés doivent être examinés par des experts pour en évaluer la pertinence. Il s agit donc plutôt d outils complémentaires à la veille opérée par les pharmacovigilants ayant pour objectif d aider à l exploration de l immensité des données et agissant comme des générateurs d hypothèses. 1.2 Problématique Les principales méthodes de détection automatique décrites dans la littérature sont les méthodes Proportional Reporting Ratio (PRR, Evans et al. 2001), Reporting Odds Ratio (ROR, van Puijenbroek et al. 2002), Bayesian Confidence Propagation Neural Network (BCPNN, Bate et al. 1998; Norén et al. 2006) et (Multi- Item) Gamma Poisson Shrinker ((M)GPS, DuMouchel 1999; DuMouchel et Pregibon 2001). La méthode PRR est utilisée à la fois par le système de pharmacovigilance anglais (Medical Control Agency) et par le système de pharmacovigilance européen EudraVigilance. La méthode ROR est utilisée sur la base nationale des Pays Bas. La méthode BCPNN est utilisée sur la base de l OMS tandis que la méthode MGPS est utilisée par la FDA (Almenoff et al., 2005; Hauben et al., 2005). La France, pour sa part, n utilise pas encore de système de détection automatique. Néanmoins, le tra-

14 1.2 Problématique 4 vail de thèse de Frantz Thiessard (Thiessard, 2004), l étude par simulation de Roux et al. (2005) et ce travail réalisé en collaboration avec l unité de pharmacovigilance de l Afssaps et le CRPV de Bordeaux (Inserm U. 687) témoignent de la volonté de mettre en place un tel système à moyen terme. Les méthodes de détection automatique citées plus haut reposent sur une représentation simplifiée de la base de pharmacovigilance dans laquelle les données sont agrégées de manière à obtenir une très grande table de contingence croisant l ensemble des événements indésirables et des médicaments. Chaque couple se voit ensuite associer une mesure de disproportionnalité qui conduit par comparaison à un seuil à la génération ou non d un signal. Ces méthodes diffèrent sur la mesure de disproportionnalité choisie, le modèle de probabilité à l origine de cette mesure ainsi que sur les seuils de génération d alerte. De plus, elles ne présentent pas le même degré de complexité. En effet, les méthodes PRR et ROR sont des méthodes simples de nature fréquentiste alors que BCPNN et GPS sont des méthodes bayésiennes reposant sur une modélisation des données plus complexe. Une limite de ces méthodes réside dans les seuils actuellement utilisés qui ont été déterminés de manière arbitraire, au mieux sur la seule base d études rétrospectives empiriques. Il nous a donc semblé intéressant de réfléchir à une détermination plus objective de ces derniers, fondée en particulier sur des critères d erreurs statistiques tenant compte du nombre très important de comparaisons effectuées simultanément. La prise en compte de la multiplicité des comparaisons est un problème statistique qui a reçu un intérêt croissant ces dernières années, en grande partie motivé par l arrivée de technologies pour l analyse de données génomiques que sont les biopuces. Le fruit de ces travaux a été le développement d une multitude de méthodes pour contrôler ou estimer de nouveaux critères d erreurs. Parmi eux, le False Discovery Rate (FDR) proposé par Benjamini et Hochberg (1995) et défini comme l espérance

15 1.3 Objectif 5 du taux de fausses découvertes a reçu un intérêt particulier dans la mesure où il est adapté à l exploration de jeux de données de grandes tailles. 1.3 Objectif Ce travail a été initié par la volonté de proposer des seuils de détection pour les méthodes existantes fondés sur le FDR. Pour ce faire, les méthodes ont été revisitées dans le cadre des tests d hypothèses, ce qui ne modifie en rien leur modèle statistique sous-jacent mais conduit néanmoins à des stratégies de détection relativement différentes. Nous nous sommes intéressés au FDR dans la mesure où ce critère semblait a priori répondre au caractère exploratoire de l analyse des données de pharmacovigilance. La nature fréquentiste ou bayésienne des méthodes nous a conduit à son estimation selon deux approches différentes. En ce qui concerne les méthodes fréquentistes, nous avons étudié les approches d estimation du FDR par la modélisation des degrés de signification à l aide de mélanges de distributions (Storey, 2002) tandis que pour les méthodes bayésiennes, l approche envisagée s est appuyée sur le cadre de la théorie de la décision proposé par Müller et al. (2004). Le plan de ce manuscrit est le suivant. Nous présentons dans le chapitre 2 les principales méthodes de détection automatique. Le chapitre 3 expose l extension de ces méthodes au cadre des comparaisons multiples. Le chapitre 4 est consacré à la présentation de deux études par simulations visant à comparer les stratégies de détection proposées à celles actuellement en vigueur. La première se fonde sur un modèle de simulation utilisant des caractéristiques de la base française de pharmacovigilance tandis que la deuxième reprend le modèle de simulation de Roux et al. (2005) qui vise à reproduire un système complet de notifications spontanées. Le chapitre 5 inclut d une part les résultats de ce travail sur l ensemble des données françaises de pharmacovigilance collectées entre 1984 et D autre part nous présentons les

16 1.3 Objectif 6 résultats d une étude rétrospective ayant pour objectif d évaluer les méthodes proposées en utilisation séquentielle à partir de cas d alertes réels. Le chapitre 6 conclut sur le travail réalisé.

17 Chapitre 2 Description des principales méthodes de détection automatique 2.1 Structure des données analysées Toutes les méthodes de détection automatique de signaux citées en introduction se fondent sur une représentation des données de pharmacovigilance sous la forme d une très grande table de contingence de dimension I J croisant l ensemble des médicaments et des événements indésirables impliqués au moins une fois dans une notification spontanée. Comme nous le verrons dans le chapitre 5, la taille de cette table de contingence dépend fortement du degré de précision utilisé pour le codage des événements indésirables et des médicaments. Cette table est aussi caractérisée par une grande proportion de cellules vides dépendant, là encore, du codage utilisé. Une grande partie des notifications spontanées envoyées aux CRPV implique plusieurs médicaments et/ou plusieurs événements indésirables. Dans de tels cas, 7

18 2.1 Structure des données analysées 8 chacune des combinaisons médicament-événement indésirable présente dans la notification est reportée dans la table de contingence. Les méthodes automatiques étudiées reposent sur des mesures de disproportionnalité calculées pour l ensemble des couples ayant fait l objet d au moins une notification spontanée. Ces dernières constituent les statistiques d intérêt et sont calculées pour un couple (i, j) par agrégation de la table I J en une table de contingence 2 2 présentée dans le tableau 2.1. Tab. 2.1: Représentation des données pour le couple (i, j). Evénement Autres événement indésirable j indésirables Médicament i n ij n i j n i. Autres médicaments n īj n ī j n ī. n.j n. j n n ij avec i {1,...I} et j {1,...J} indique donc le nombre de notifications impliquant à la fois le médicament i et l événement indésirable j. n i. = i n ij, n.j = j n ij et n = ij n ij représentent les comptes marginaux. Il faut néanmoins noter que du fait de la multiplicité des couples impliqués dans certaines notifications spontanées, ces comptes marginaux ne correspondent pas au nombre de notifications impliquant le médicament i (n i. ), l événement indésirable j (n.j ) ou les deux (n). Dans la suite de l exposé, les méthodes existantes sont passées en revue.

19 2.2 Les méthodes fréquentistes Les méthodes fréquentistes La méthode Reporting Odds Ratio(ROR) La méthode ROR proposée par van Puijenbroek et al. (2002) consiste à estimer pour chacun des couples (i, j) l odds ratio ψ ij à partir de la table 2.1 : ˆψ ij = n ijn ī j. n īj n i j Le logarithme de ˆψ ij est supposé suivre une loi normale dont la variance est estimée à partir de la delta méthode : var{ln( ˆψ ij )} = 1 n ij + 1 n ī j + 1 n īj + 1. n i j Un signal est généré lorsque la borne inférieure de l intervalle de confiance à 95% de ln( ˆψ ij ) est strictement supérieure à 0. De par sa définition, ˆψij n est pas calculable dans les cas très rares où le médicament i n est associé qu à l événement indésirable j (n i j = 0) ou lorsque l événement indésirable j n est associé qu au médicament i (n īj =0) La méthode Proportional Reporting Ratio(PRR) La méthode PRR proposée par Evans et al. (2001) est basée sur le calcul du risque relatif observé dans la table 2.1 : ˆϕ ij = n ij/n i.. n īj /n ī. De manière analogue à ˆψ ij, ˆϕ ij n est pas calculable dans le cas où n īj = 0.

20 2.3 Les méthodes bayésiennes 10 La règle proposée par Evans et al. et utilisée au MCA pour la génération d un signal est fondée sur 3 critères : (i) ˆϕ ij 2, (ii) n ij 3 et (iii) la statistique de χ 2 à 1 degré de liberté 4. D autre part, van Puijenbroek et al. (2002) ont proposé le même type de règle de décision que celle utilisée pour la méthode ROR. Le logarithme de ˆϕ ij est supposé suivre une loi normale de variance estimée par : var{ln(ˆϕ ij )} = 1 n ij + 1 n i. + 1 n īj + 1, n ī. et un signal est généré lorsque la borne inférieure de l intervalle de confiance à 95% de ln(ˆϕ ij ) est strictement supérieure à 0. En pratique, les deux statistiques ˆψ et ˆϕ donnent des résultats très proches ce qui s explique par le fait que l on observe pour la très grande majorité des couples n ij (n īj, n i j) n ī j (Almenoff et al., 2007). 2.3 Les méthodes bayésiennes La méthode Bayesian Confidence Propagation Neural Network(BCPNN) Le modèle La méthode initialement proposée par Bate et al. (1998) repose sur 3 modèles beta-binomiaux : n ij p ij Bi(n, p ij ) avec p ij Be(α ij, β ij ) n i. p i. Bi(n, p i. ) avec p ij Be(α i., β i. ) n.j p.j Bi(n, p.j ) avec p.j Be(α.j, β.j )

21 2.3 Les méthodes bayésiennes 11 dans lesquels p i., p.j et p ij indiquent respectivement la probabilité dans la base d être exposé au médicament i, d observer l événement indésirable j et de rencontrer les deux. Les distributions des paramètres a posteriori sont donc aussi des lois beta : p ij p ij n ij Be(α ij + n ij, β ij + n n ij ) p i. p i. n i. Be(α i. + n i., β i. + n n i. ) p.j p.j n.j Be(α.j + n.j, β.j + n n.j ). Dans la suite de l exposé, le symbole sera utilisé pour indiquer des variables aléatoires conditionnelles aux observations appropriées. Les hyperparamètres proposés par Bate et al. (1998) pour les distributions a priori sont les suivants : α ij = 1, β ij = 1 E(p i. )E(p.j ) 1, α i. = 1, β i. = 1, α.j = 1 et β.j = 1 avec E(p i. ) = α i. + n i. α i. + β i. + n et E(p.j ) = α.j + n.j α.j + β.j + n. Bate et al. définissent donc deux lois uniformes pour p i. et p.j. Quant aux valeurs choisies pour les hyperparamètres α ij et β ij, elles sont justifiées par le fait que l espérance a priori de p ij correspond ainsi au produit des espérances a posteriori des probabilités marginales. Plus récemment, Norén et al. (2006) ont proposé de généraliser ces 3 modèles beta-binomiaux à un modèle Dirichlet-multinomial afin de mieux prendre en compte les dépendances existant entre la probabilité de la cellule considérée et les probabilités

22 2.3 Les méthodes bayésiennes 12 marginales correspondantes : (n ij, n i j, n īj, n ī j) Mu(n, p ij, p i j, p īj, p ī j) avec (p ij, p i j, p īj, p ī j) Di(α ij, α i j, α īj, α ī j). La distribution a posteriori de (p ij, p i j, p īj, p ī j) est donc aussi une loi de Dirichlet : (p ij, p i j, p īj, p ī j) Di(γ ij, γ i j, γ īj, γ ī j) où γ kl désigne α kl + n kl. p i., p.j et p ij sont toujours distribuées selon des lois beta mais avec une paramétrisation légèrement différente : p ij Be(γ ij, γ i j + γ īj + γ ī j) p i. = p ij + p i j Be(γ ij + γ i j, γ īj + γ ī j) p.j = p ij + p īj Be(γ ij + γ īj, γ i j + γ ī j). Les hyperparamètres choisis sont les suivants : α ij = q i. q.j α.., α i j = q i. q. j α.., α īj = q ī. q.j α.., α ī j = q ī. q. j α.., avec α.. = 0.5 q i. q.j et q i. = n i n + 1, qī. = nī n + 1, q.j = n.j n + 1, q. j = n. j n + 1.

Etude comparative des procedures d estimation du local False Discovery Rate

Etude comparative des procedures d estimation du local False Discovery Rate Etude comparative des procedures d estimation du local False Discovery ate Cyril Dalmasso & Philippe Broët INSEM U472 - Faculté de médecine Paris Sud 16, avenue Paul Vaillant-Couturier 94 807 Villejuif

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Spécificités méthodologiques en pédiatrie : gestion des petits effectifs et des effets rares au long cours

Spécificités méthodologiques en pédiatrie : gestion des petits effectifs et des effets rares au long cours Spécificités méthodologiques en pédiatrie : gestion des petits effectifs et des effets rares au long cours Corinne Alberti CIE 5 : modèles et méthodes de l évaluation clinique et thérapeutique en pédiatrie

Plus en détail

Louis-André Vallet (CNRS) Laboratoire de Sociologie Quantitative, CREST, UMR 2773 CNRS & INSEE

Louis-André Vallet (CNRS) Laboratoire de Sociologie Quantitative, CREST, UMR 2773 CNRS & INSEE Utiliser le modèle log-linéaire pour mettre au jour la structure du lien entre les deux variables d un tableau de contingence : un exemple d application à la mobilité sociale Louis-André Vallet (CNRS)

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

Feuille de TP N 3 : Modèle log-linéaire - Travail guidé. 1 Cancers : modèle log-linéaire à deux facteurs croisés

Feuille de TP N 3 : Modèle log-linéaire - Travail guidé. 1 Cancers : modèle log-linéaire à deux facteurs croisés M1 MLG Année 2012 2013 Feuille de TP N 3 : Modèle log-linéaire - Travail guidé 1 Cancers : modèle log-linéaire à deux facteurs croisés Ce premier exercice reprend l exercice 1 de la feuille de TD n 3.

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Chapitre 4 NOTIONS DE PROBABILITÉS

Chapitre 4 NOTIONS DE PROBABILITÉS Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 4 NOTIONS DE PROBABILITÉS Les chapitres précédents donnent des méthodes graphiques et numériques pour caractériser

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Chapitre 6 TESTS STATISTIQUES

Chapitre 6 TESTS STATISTIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 6 TESTS STATISTIQUES Les tests statistiques sont des méthodes de la statistique inférentielle qui, comme

Plus en détail

Note sur la méthode du kernel. Philippe Bernard Ingénierie Economique et Financière Université Paris-Dauphine

Note sur la méthode du kernel. Philippe Bernard Ingénierie Economique et Financière Université Paris-Dauphine Note sur la méthode du kernel. Philippe Bernard Ingénierie Economique et Financière Université Paris-Dauphine Février 26 Table des matières 1 Loi normale, loi log-normale et rendements 2 2 La méthode du

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Projet de thèse. Intitulé de la thèse. Spécialité du doctorat. Problématique scientifique générale

Projet de thèse. Intitulé de la thèse. Spécialité du doctorat. Problématique scientifique générale Projet de thèse Intitulé de la thèse Détection automatisée de signaux en pharmacovigilance : Exploitation conjointe de données de notifications spontanées et médico- administratives. Spécialité du doctorat

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables

Plus en détail

11. Evaluation de la qualité des essais

11. Evaluation de la qualité des essais 11. Evaluation de la qualité des essais L évaluation de la qualité méthodologique d un essai thérapeutique est une tâche difficile [117]. L essai thérapeutique contrôlé randomisé est considéré comme étant

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

Conditions d application des méthodes statistiques paramétriques :

Conditions d application des méthodes statistiques paramétriques : Conditions d application des méthodes statistiques paramétriques : applications sur ordinateur GLELE KAKAÏ R., SODJINOU E., FONTON N. Cotonou, Décembre 006 Conditions d application des méthodes statistiques

Plus en détail

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3

Plus en détail

Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011

Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011 Lot Quality Assurance Sampling LQAS Elise Naoufal EVARISQ 15 septembre 2011 1 LQAS Une question d efficacité? LQAS et santé Méthode et Fondements théoriques Détermination du couple (n,d n,d) Conclusion

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

FACULTE DE MEDECINE D ANGERS. Polycopié de cours pour les 1 e et 2 e cycles des études médicales Préparation à l examen national classant

FACULTE DE MEDECINE D ANGERS. Polycopié de cours pour les 1 e et 2 e cycles des études médicales Préparation à l examen national classant FACULTE DE MEDECINE D ANGERS Polycopié de cours pour les 1 e et 2 e cycles des études médicales Préparation à l examen national classant Année scolaire 2007-2008 SANTE PUBLIQUE ET MEDECINE SOCIALE Responsable

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Simulation Examen de Statistique Approfondie II **Corrigé **

Simulation Examen de Statistique Approfondie II **Corrigé ** Simulation Examen de Statistique Approfondie II **Corrigé ** Ces quatre exercices sont issus du livre d exercices de François Husson et de Jérôme Pagès intitulé Statistiques générales pour utilisateurs,

Plus en détail

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement Estimation consistante des paramètres d un modèle non linéaire pour des données fonctionnelles discrétisées aléatoirement Consistent estimation of parameters in a nonlinear model for functional data with

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Contrôle du False Discovery Rate en tests multiples: conditions suffisantes et adaptivité.

Contrôle du False Discovery Rate en tests multiples: conditions suffisantes et adaptivité. Contrôle du False Discovery Rate en tests multiples: conditions suffisantes et adaptivité. G. Blanchard 1 1 Weierstrass Institut Berlin, Germany Journées Statistiques du Sud, Porquerolles 18/06/09 G. Blanchard

Plus en détail

Régression de Poisson

Régression de Poisson ZHANG Mudong & LI Siheng & HU Chenyang 21 Mars, 2013 Plan Composantes des modèles Estimation Qualité d ajustement et Tests Exemples Conclusion 2/25 Introduction de modèle linéaire généralisé La relation

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

MEDIAPLANNING & HYBRIDATION APPLIQUE A L INTERNET

MEDIAPLANNING & HYBRIDATION APPLIQUE A L INTERNET MEDIAPLANNING & HYBRIDATION APPLIQUE A L INTERNET MOBILE Gaël Crochet 1 & Gilles Santini 2 1 Médiamétrie, 70 rue Rivay, 92532 Levallois-Perret, France, gcrochet@mediametrie.fr 2 Vintco SARL, 8 rue Jean

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Données qualitatives, modèles probit et logit

Données qualitatives, modèles probit et logit Données qualitatives, modèles probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours de Christophe Hurlin. On est confronté à des données qualitatives en micro-économie

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

Collection les mémentos finance dirigée par Jack FORGET. Gestion budgétaire. Prévoir et contrôler les activités de l entreprise.

Collection les mémentos finance dirigée par Jack FORGET. Gestion budgétaire. Prévoir et contrôler les activités de l entreprise. Collection les mémentos finance dirigée par Jack FORGET Gestion budgétaire Prévoir et contrôler les activités de l entreprise Jack FORGET Éditions d Organisation, 2005 ISBN : 2-7081-3251-2 Chapitre 3 Optimiser

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Mémoire d actuariat - promotion 2010. complexité et limites du modèle actuariel, le rôle majeur des comportements humains.

Mémoire d actuariat - promotion 2010. complexité et limites du modèle actuariel, le rôle majeur des comportements humains. Mémoire d actuariat - promotion 2010 La modélisation des avantages au personnel: complexité et limites du modèle actuariel, le rôle majeur des comportements humains. 14 décembre 2010 Stéphane MARQUETTY

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Cours IFT6266, Exemple d application: Data-Mining

Cours IFT6266, Exemple d application: Data-Mining Cours IFT6266, Exemple d application: Data-Mining Voici un exemple du processus d application des algorithmes d apprentissage statistique dans un contexte d affaire, qu on appelle aussi data-mining. 1.

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

STA240 : Tests statistiques

STA240 : Tests statistiques STA240 : Tests statistiques 1 Règle de décision, seuil et p-valeur Dans un test, l hypothèse nulle H 0 est celle dont on choisit de maîtriser la probabilité de rejet à tort. C est celle à laquelle on tient

Plus en détail

Notes méthodologiques

Notes méthodologiques Notes méthodologiques Projection de la population active du Québec de 2010 à 2030 en fonction de cinq hypothèses d'allongement de la vie active À la demande de la Commission nationale sur la participation

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Économétrie 2 : données qualitatives, probit et logit

Économétrie 2 : données qualitatives, probit et logit URCA Hugo Harari-Kermadec 2008-2009 harari@ecogest.ens-cachan.fr Économétrie 2 : données qualitatives, probit et logit I Un modèle pour données qualitatives Cette section est fortement inspirée du cours

Plus en détail

STAT0162-1 Analyse statistique de données qualitatives et quantitatives en sciences sociales. Transparents Philippe Lambert

STAT0162-1 Analyse statistique de données qualitatives et quantitatives en sciences sociales. Transparents Philippe Lambert STAT0162-1 Analyse statistique de données qualitatives et quantitatives en sciences sociales Transparents Philippe Lambert http : //www.statsoc.ulg.ac.be/quali.html Institut des Sciences Humaines et Sociales

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

RETScreen International. ACÉTATE 3 : Feuille Sommaire financier

RETScreen International. ACÉTATE 3 : Feuille Sommaire financier Module de formation NOTES DU FORMATEUR ANALYSES FINANCIÈRE ET DE RISQUE AVEC LE LOGICIEL RETSCREEN COURS D ANALYSE DE PROJETS D ÉNERGIES PROPRES Ce document donne la transcription de la présentation orale

Plus en détail

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE Forum HH 05.02.2013 Ghislaine Gagnon Unité HPCI Qualitatif ou quantitatif? Les 2 méthodes peuvent être utilisées séparément ou en conjonction - le qualitatif

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

Examen Mesures de Risque de Marché

Examen Mesures de Risque de Marché ESILV 2012 D. Herlemont Mesures de Risque de Marché I Examen Mesures de Risque de Marché Durée: 2 heures. Documents non autorisés et calculatrices simples autorisées. 2 pt 1. On se propose d effectuer

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Points méthodologiques Adapter les méthodes statistiques aux Big Data

Points méthodologiques Adapter les méthodes statistiques aux Big Data Points méthodologiques Adapter les méthodes statistiques aux Big Data I. Répétition de tests et inflation du risque alpha II. Significativité ou taille de l effet? 2012-12-03 Biomédecine quantitative 36

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Christian CYRILLE A quoi servent les mathématiques? : C est pour l honneur de l esprit humain? Jacobi 1 Exercice 1-5 points - Commun à tous les candidats

Plus en détail

Examen de Gestion des Risques Financiers

Examen de Gestion des Risques Financiers Examen de Gestion des Risques Financiers Thierry Roncalli 4 janvier 2012 Merci de rédiger entièrement vos réponses. 1 Les réglementations Bâle II et Bâle III 1. Quelles sont les principales différences

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE Statistiques et probabilités : Loi Normale Les I.P.R. et Formateurs de l Académie de LILLE Bulletin officiel spécial 8 du 13 octobre 2011 Cadre général : loi à densité Définition Une fonction f définie

Plus en détail

Simulations des Grecques : Malliavin vs Différences finies

Simulations des Grecques : Malliavin vs Différences finies 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le

Plus en détail

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels.

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels. Licence de Sciences et Technologies EM21 - Analyse Fiche de cours 1 - Nombres réels. On connaît les ensembles suivants, tous munis d une addition, d une multiplication, et d une relation d ordre compatibles

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Analyse de la variance

Analyse de la variance M2 Statistiques et Econométrie Fanny MEYER Morgane CADRAN Margaux GAILLARD Plan du cours I. Introduction II. Analyse de la variance à un facteur III. Analyse de la variance à deux facteurs IV. Analyse

Plus en détail

Modélisation coalescente pour la détection précoce d un cancer

Modélisation coalescente pour la détection précoce d un cancer Modélisation coalescente pour la détection précoce d un cancer Mathieu Emily 27 Novembre 2007 Bioinformatics Research Center - Université d Aarhus Danemark Mathieu Emily Coalescence et cancer 1 Introduction

Plus en détail

Analyses dans les essais thérapeutiques :

Analyses dans les essais thérapeutiques : 6ème Université d été Recherche et Evaluation en Cancérologie Analyses dans les essais thérapeutiques : analyses intermédiaires, finale et cross-over. M. Bouziani (Oran) 1 Laboratoire de biostatistique

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail