Modélisation de la machine synchrone à aimants permanents (MSAP)
|
|
|
- Laurence Pruneau
- il y a 9 ans
- Total affichages :
Transcription
1 1 Modélisation de la machine synchrone à aimants permanents (MSAP) 1. Introduction Hypotheses simplificatrices Modélisation de la machine synchrone à aimants permanents Conclusion....9
2 1. Introduction L'étude du comportement d'un moteur électrique est une tache difficile qui nécessite, avant tout, une bonne connaissance de son modèle dynamique afin de bien prédire, par voie de simulation, son comportement dans les différents modes de fonctionnement envisagés. La première étape de la synthèse d une loi de commande est la modélisation du procédé à contrôler (MSAP). Le modèle doit être capable de représenter fidèlement les différentes dynamiques présentes. Cette modélisation est établie en termes d'équations différentielles et est basée essentiellement sur la transformation de Park. Dans ce chapitre, nous présentons la modélisation du moteur synchrone à aimants permanents, le modèle triphasé et le modèle obtenu à l'aide de la décomposition selon deux axes (transformation de Park). 2. Hypotheses simplificatrices La machine synchrone à aimants permanents est un système complexe, dont la modélisation obéit aux hypothèses simplificatrices suivantes [18] : L entrefer est d épaisseur uniforme, et d encochage négligeable. La saturation du circuit magnétique, l hystérésis et les courants de Foucault sont négligeables. Les résistances des enroulements ne varient pas avec la température et l effet de peau est négligeable. On admet que la FMM crée par chacune des phases des deux armatures est à répartition sinusoïdale. 3. Modélisation de la machine synchrone à aimants permanents La machine (moteur) synchrone à aimants permanents (MSAP) comporte, au stator, un enroulement triphasé représenté par les trois axes (a, b, c) déphasés, l'un par rapport à l'autre, de 120 électrique (figure 1.1) et au rotor des aimants permanents assurant son excitation. 4
3 En fonction de la manière dont les aimants sont placés, on peut distinguer deux types de rotors : - Dans le premier type, les aimants sont montés sur la surface du rotor offrant un entrefer homogène, le moteur est appelé à rotor lisse et les inductances ne dépendent pas de la position du rotor. - Dans le deuxième, par contre, les aimants sont montés à l'intérieur de la masse rotorique et l'entrefer sera variable à cause de l'effet de la saillance. Dans ce cas, les inductances dépendent fortement de la position du rotor. Le diamètre du rotor du premier type est moins important que celui du deuxième ce qui réduit considérablement son inertie en lui offrant la priorité dans l'entrainement des charges rapides. Figure 1.1 Référentiel a, b, c et référentiel d, q Le modèle mathématique du MSAP est similaire à celui de la machine synchrone classique, le modèle triphasé s'exprime par [10] : [v abc ] = [R][i abc ] + d dt [λ abc ] (1.1) avec v a [v abc ] = v b, [i abc ] = v c i a i b λ a R 0 0, [λ abc ] = λ b, [R] = 0 R 0 (1.2) i c λ c 0 0 R 5
4 avec v abc, i abc et λ abc, représentant respectivement les tensions de phases statoriques, les courants des phases statoriques et les flux totaux produits par les courants statoriques. R est la résistance d'une phase statorique. Les flux totaux λ abc sont exprimés par : [λ abc ] = [L][i abc ] + [φ abc ] (1.3) où L ss M s M s [L] = M s L ss M s (1.4) M s M s L ss avec L ss et M s représentant l'inductance propre et l'inductance mutuelle entre les enroulements statoriques, la self-inductance est la somme de deux inductances (L ss = L sl L m), l'inductance de fuite L ls et l'inductance de magnétisation L m. Les flux φ j, j = a, b, c sont les flux rotoriques, vus par les enroulements du stator. Ils représentent les amplitudes des tensions induites dans les phases statoriques à vide. La substitution de (1.3) dans (1.1) donne : [v abc ] = [R][i abc ] + [L] d dt [i abc ] + [φ abc] (1.5) Le couple électromagnétique est exprimé par : T em = 1 ω ([e abc] T [i abc ]) (1. 6) où e abc = d [φ dt abc ] représentent les FÉMs produites dans les phases statorique, ω définit la vitesse de rotation du rotor en (rad/sec). On remarque que le système (1.5) engendre des équations fortement non-linéaires et couplées. Pour simplifier ce problème, la majorité des travaux dans la littérature préfèrent d utiliser la dite transformation de Park qui, par une transformation appliquée aux variables réelles (tensions, courants et flux), permet d'obtenir des variables fictives appelées les composantes d-q ou les équations de Park. 6
5 Du point de vue physique, cette transformation est interprétée comme étant une substitution des enroulement immobiles (a, b, c) par des enroulements (d, q) tournant avec le rotor. Cette transformation rend les équations dynamiques des moteurs à courant alternatif plus simples ce qui facilite leur étude et leur analyse. La transformation de Park est définie comme suit : X dqo = [K θ ][X abc ] (1.7) où X peut-être un courant, une tension ou un flux et θ représente la position du rotor. Les termes X d, X q représentent les composantes longitudinale et transversale des variables statoriques (tensions, courants, flux et inductances). La matrice de transformation K θ est donnée par : cos(θ) cos(θ 2π ) cos(θ + 2π ) 3 3 [K θ ] = sin( θ) sin(θ 2π ) sin(θ + 2π ) (1.8) 3 3 dont la matrice inverse a pour forme : cos(θ) sin( θ) 1 [K θ ] 1 = cos(θ 2π ) sin(θ 2π ) (1.9) cos(θ + 2π ) sin(θ + 2π ) Le moteur est supposé avec une connexion étoile qui forme un système équilibré i a + i b + i c = 0. En appliquant la transformation (1.7) au système (1.l), on aura : u dq = [K θ ][R][i abc ] + [K θ ] d [λ dt abc ] (1. 10) Ensuite, en se basant sur (1.9) et (1.5) on obtient : u dq = [K θ ][R][K θ ] 1 i dq + [K θ ][K θ ] 1 d dt φ dq + +[K θ ] d dt [K θ ]1 φ dq (1. 11) Du moment que [R] est diagonale, alors : [K θ ][R][K θ ] 1 = [R] 7
6 En utilisant : [K θ ] d [K dt θ ]1 = dθ (1. 12) dt et à l'aide de (1.11), on peut déduire les équations de Park sous une forme vectorielle comme suit : u dq = [R]i dq + d dt λ dq + pωλ dq (1. 13) où u dq = u d u, [R] R O = q O R, i dq = i d iq La transformation appliquée à (1.3) donne : λ = λ λ, λ = λ λ λ d λ = L d O q O L i d d iq + θ v (1. 14) O Où : θ v et p désignent respectivement le flux crée par les aimants au rotor et le nombre de paires de pôles. L'équation électromécanique est exprimée par : T em T L = J dω dt + Bω (1. 15) Avec : B, J et T L définissent le coefficient d'amortissement, le moment d'inertie du rotor et le couple de charge. Le couple électromagnétique (T em ) est produit par l'interaction entre les pôles formés par les aimants au rotor et les pôles engendrés par les FMMs dans l'entrefer générées par les courants statoriques. Il est exprimé par : T em = 3p 2 θ vi q + L d L q i d i q (1. 16) En développant le système d'équations (1.13), on peut déduire la forme finale des équations du MSAP dans le référentiel d-q : 8
7 dω dt = 3p 2J φ vi q + L d L q i d i q 1 J T L B J ω di q dt = R i L q + L d pωi q L d + φ v pω + 1 q L q L q di d dt = R i L d + L q pωi d L q + 1 u d L d d (1. 7) Ce système d'équations est plus simple que celui donné en (1.1) sauf qu'il est toujours non-linéaire. À noter que si le moteur est à entrefer constant (sans pièces polaires L d =L q ), le modèle sera encore plus simple comme l'indique le système d'équations suivant : dω dt = 3p 2J φ vi q 1 J T L B J ω di q dt = R L i q + pωi d + φ v L pω + 1 L u q di d dt = R L i d + pωi q + 1 L d u d (1. 18) 4. Conclusion Dans ce chapitre, nous avons présenté le modèle dynamique du moteur synchrone à aimants permanents. Le modèle triphasé est de nos jours rarement utilisé à cause de sa complexité et du fort couplage de ses équations. On y montre qu'à l'aide de la transformation de Park, le modèle devient plus simple et les non-linéarités sont réduites au nombre de trois. Les équations obtenues par la transformation de Park engendrent des phénomènes identiques aux phénomènes liés à la machine à courant continu, ce qui confirme l'analogie entre les deux modèles. 9
CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté
CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons
Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique
Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant
CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.
XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes
Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/
Electrotechnique Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ 1 Sommaire 1 ère partie : machines électriques Chapitre 1 Machine à courant continu Chapitre 2 Puissances électriques
Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel
Simulation Matlab/Simulink une machine à inuction triphasée Constitution un référentiel Capocchi Laurent Laboratoire UMR CNRS 6134 Université e Corse 3 Octobre 7 1 Table es matières 1 Introuction 3 Moélisation
MODULE DES SCIENCES APPLIQUÉES
MODULE DES SCIENCES APPLIQUÉES Machine synchrone/asynchrone PROJET DE FIN D ETUDE EN INGÉNIERIE DANS LE CADRE DU PROGRAMME EN GÉNIE ÉLECTROMÉCANIQUE Présenté par : Mouad Oubidar Sedik Bendaoud Superviseur:
Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique
PGA & SDUEE Année 008 09 Interaction milieux dilués rayonnement Travaux dirigés n. Résonance magnétique : approche classique Première interprétation classique d une expérience de résonance magnétique On
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere
Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge
MATIE RE DU COURS DE PHYSIQUE
MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel
M HAMED EL GADDAB & MONGI SLIM
Sous la direction : M HAMED EL GADDAB & MONGI SLIM Préparation et élaboration : AMOR YOUSSEF Présentation et animation : MAHMOUD EL GAZAH MOHSEN BEN LAMINE AMOR YOUSSEF Année scolaire : 2007-2008 RECUEIL
«LES ALTERNATEURS DE VOITURES»
MENUGE CECILE BELVAL FRANCOIS BRAS FRANCOIS CADART JULIEN GAIGNEUR GUILLAUME «LES ALTERNATEURS DE VOITURES» LYCEE EDOUARD BRANLY BOULOGNE SUR MER Aidés par nos professeurs : M Buridant, M Courtois, M Ducrocq
Electrotechnique: Electricité Avion,
Electrotechnique: Electricité Avion, La machine à Courant Continu Dr Franck Cazaurang, Maître de conférences, Denis Michaud, Agrégé génie Electrique, Institut de Maintenance Aéronautique UFR de Physique,
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
1 Systèmes triphasés symétriques
1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
CONCOURS COMMUN 2010 PHYSIQUE
CONCOUS COMMUN SUJET A DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES Épreuve de Physique-Chimie (toutes filières) Corrigé Barème total points : Physique points - Chimie 68 points PHYSIQUE Partie A :
Convertisseurs Statiques & Machines
MASTER EEA Parcours CESE Travaux Pratiques Convertisseurs Statiques & Machines EM7ECEBM V. BLEY D. RISALETTO D. MALEC J.P. CAMBRONNE B. JAMMES 0-0 TABLE DES MATIERES Rotation des TP Binôme Séance Séance
Variation de vitesse des machines à courant alternatif. par
Variation de vitesse des machines à courant alternatif. par Philippe Ladoux Variation de vitesse des machines à courant alternatif. Introduction. Sommaire A : Principe de fonctionnement des machines à
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Introduction. Mathématiques Quantiques Discrètes
Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.
F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres
LE M O TE U R A C O U R A N T C O N TI N U La loi de LAPLACE Un conducteur traversé par un courant et placé dans un champ magnétique est soumis à une force dont le sens est déterminée par la règle des
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.
Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques
TP 7 : oscillateur de torsion
TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)
La voiture électrique
La voiture électrique par Michel KANT Professeur à l Université de Technologie de Compiègne 1. Généralités... D 5 560-2 1.1 État de développement... 2 1.2 Architecture de motorisation... 2 1.3 Éléments
Conception et implémentation d un Méta-modèle de machines asynchrones en défaut
Thèse Présentée à L Université de Poitiers Pour l obtention du grade de Docteur de l Université de Poitiers École Supérieure d Ingénieurs de Poitiers École doctorale des sciences pour l ingénieur Diplôme
Les résistances de point neutre
Les résistances de point neutre Lorsque l on souhaite limiter fortement le courant dans le neutre du réseau, on utilise une résistance de point neutre. Les risques de résonance parallèle ou série sont
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
I- Définitions des signaux.
101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais
Michel Henry Nicolas Delorme
Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université
THESE DE DOCTORAT SPECIALITE : ELECTROTECHNIQUE
MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MOULOUD MAMMERI, TIZI-OUZOU FACULTE DE : GENIE ELECTRIQUE ET D INFORMATIQUE DEPARTEMENT : ELECTROTECHNIQUE THESE DE DOCTORAT
1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.
Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste
Cahier technique n 207
Collection Technique... Cahier technique n 207 Les moteurs électriques pour mieux les piloter et les protéger E. Gaucheron Building a New Electric World * Les Cahiers Techniques constituent une collection
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
Chauffage par induction
Guide Power Quality Section 7: Efficacité Energétique www.leonardo-energy.org/france Edition Août 2007 Chauffage par induction Jean Callebaut, Laborelec Décembre 2006 1 Introduction... 3 2 Principes physiques...
Machine à courant continu
Machine à courant continu Technologie, choix et alimentation des machines à courant continu Objectif Choisir un ensemble moto-variateur à courant continu à partir d un cahier des charges. Pré-requis Mécanique
Moteurs pas à pas Michel ABIGNOLI Clément GOELDEL Principe des moteurs pas à pas Structures et modèles de description Alimentation Commande
Moteurs pas à pas par Michel ABIGNOLI Professeur d Université à l ENSEM (École Nationale Supérieure d Électricité et de Mécanique de Nancy) et Clément GOELDEL Professeur d Université à la Faculté des Sciences
ELEC2753 Electrotechnique examen du 11/06/2012
ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes
PHY2723 Hiver 2015. Champs magnétiques statiques. [email protected]. Notes partielles accompagnant le cours.
PHY2723 Hiver 2015 Champs magnétiques statiques [email protected] otes partielles accompagnant le cours. Champs magnétiques statiques (Chapitre 5) Charges électriques statiques ρ v créent champ électrique
Plan du chapitre «Milieux diélectriques»
Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation
Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER
Introduction à l électronique de puissance Synthèse des convertisseurs statiques Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER 28 janvier 2007 Table des matières 1 Synthèse des convertisseurs
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Thermodynamique (Échange thermique)
Thermodynamique (Échange thermique) Introduction : Cette activité est mise en ligne sur le site du CNRMAO avec l autorisation de la société ERM Automatismes Industriels, détentrice des droits de publication
1 Introduction : 5 2 Couplage, marche à vide 5
1 2 1 Introduction : 5 2 Couplage, marche à vide 5 2.1 Conditions électriques de couplage en parallèle : 5 2.2 Manœuvres de couplage d'un alternateur : 6 2.3 Cas des alternateurs triphasés : 8 3 Principaux
INSTALLATIONS INDUSTRIELLES
Ministère de l Enseignement Supérieur et de la Recherche Scientifique Institut Supérieur des Etudes Technologiques de Nabeul Département : Génie Electrique Support de cours : INSTALLATIONS INDUSTRIELLES
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
DIFFRACTion des ondes
DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène
SOMMAIRE. B5.1 Première approche
APPROCHE THEORIQE LES COMPOSANTS ELECTRONIQES B5 LES IOES SOMMAIRE B5.1 Première approche B5.2 e la jonction PN à la diode B5.3 Caractéristique d'une diode B5.4 Mécanisme de conduction d'une diode B5.5
MPI Activité.10 : Logique binaire Portes logiques
MPI Activité.10 : Logique binaire Portes logiques I. Introduction De nombreux domaines font appel aux circuits logiques de commutation : non seulement l'informatique, mais aussi les technologies de l'asservissement
Cours 9. Régimes du transistor MOS
Cours 9. Régimes du transistor MOS Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 005 Dans ce document le transistor MOS est traité comme un composant électronique.
Résonance Magnétique Nucléaire : RMN
21 Résonance Magnétique Nucléaire : RMN Salle de TP de Génie Analytique Ce document résume les principaux aspects de la RMN nécessaires à la réalisation des TP de Génie Analytique de 2ème année d IUT de
Compatibilité Électromagnétique
Compatibilité Électromagnétique notions générales et applications à l électronique de puissance Ir. Stéphane COETS 18 mai 2005 Journée d étude en Électronique de Puissance 1 Plan de l exposé La Compatibilité
Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1
1 Introduction Un convertisseur statique est un montage utilisant des interrupteurs à semiconducteurs permettant par une commande convenable de ces derniers de régler un transfert d énergie entre une source
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Mesure de la surface spécifique
Mesure de la surface spécifique Introducing the Acorn Area TM Acorn Area est un instrument révolutionnaire conçu pour mesurer la surface spécifique des nanoparticules en suspension dans un liquide. Utilisant
Algorithmes pour la planification de mouvements en robotique non-holonome
Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Cahier technique n 185
Collection Technique... Cahier technique n 185 Stabilité dynamique des réseaux électriques industriels B. De Metz-Noblat G. Jeanjean Merlin Gerin Square D Telemecanique Les Cahiers Techniques constituent
Champ électromagnétique?
Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques
Rapport de Stage de Master 2 ATIAM
Rapport de Stage de Master 2 ATIAM Conception et programmation d un synthétiseur sonore pour la restitution des vibrations tactiles d un outil de fraisage chirurgical Stage effectué au CEA Laboratoire
Réalisation et modélisation de rubans déployables pour application spatiale
Réalisation et modélisation de rubans déployables pour application spatiale F. GUINOT a, S. BOURGEOIS a, B. COCHELIN a, C.HOCHARD a, L. BLANCHARD b a. Laboratoire de Mécanique et d Acoustique (LMA), 31
CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.
CABLECAM de HYMATOM La société Hymatom conçoit et fabrique des systèmes de vidéosurveillance. Le système câblecam (figure 1) est composé d un chariot mobile sur quatre roues posé sur deux câbles porteurs
Finance, Navier-Stokes, et la calibration
Finance, Navier-Stokes, et la calibration non linéarités en finance 1 1 www.crimere.com/blog Avril 2013 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck
Dossier Logique câblée pneumatique
Dossier Logique câblée pneumatique Festo Belgium SA Rue Colonel Bourg 11 BE-13 Bruxelles www.festo.com Logique câblée pneumatique Chaque schéma de commande est élaboré selon une logique déterminée. Cette
5. Les conducteurs électriques
5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,
Démarreur-testeur par ordinateur via le port USB d un PC pour moteurs asynchrones triphasés
Démarreur-testeur par ordinateur via le port USB d un PC pour moteurs asynchrones triphasés J. MBIHI Email : [email protected] E. AMIE EBANDA et A. DONWOUNG KANA Groupe de Recherche en Informatique Industrielle
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
Contribution à l'étude des machines synchrones à aimants permanents internes à large espace de fonctionnement. Application à l'alterno-démarreur
Contribution à l'étude des machines synchrones à aimants permanents internes à large espace de fonctionnement. Application à l'alterno-démarreur L. Chédot Soutenue le 9 novembre 24 devant le jury composé
NO-BREAK KS. Système UPS dynamique PRÉSENTATION
NO-BREAK KS Système UPS dynamique PRÉSENTATION Table des matières Chapitre 1 : Description du système No-Break KS...3 Chapitre 2 : Fonctionnement lorsque le réseau est présent...4 Chapitre 3 : Fonctionnement
Caractéristiques des ondes
Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Décharge électrostatique
Décharge électrostatique F. Rachidi École Polytechnique Fédérale de Lausanne Groupe Compatibilité Électromagnétique [email protected] http://emcwww.epfl.ch 1 Contenu Génération des charges statiques
Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle
Série 77 - Relais statiques modulaires 5A Caractéristiques 77.01.x.xxx.8050 77.01.x.xxx.8051 Relais statiques modulaires, Sortie 1NO 5A Largeur 17.5mm Sortie AC Isolation entre entrée et sortie 5kV (1.2/
Les objets très lointains
Les objets très lointains Lorsque les étoiles sont proches il est possible de mesurer la distance qui nous en sépare par une méthode dite abusivement directe, la trigonométrie, qui permet de déduire les
Cahier technique n 18
Collection Technique... Cahier technique n 8 Analyse des réseaux triphasés en régime perturbé à l aide des composantes symétriques B. de Metz-Noblat Building a New lectric World * Les Cahiers Techniques
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)
Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)
CORRECTION D EXAMEN CONTROLE CONTINU n 1 Question de cours Question 1 : Les équilibres de Cournot et de Stackelberg sont des équilibres de situation de duopole sur un marché non coopératif d un bien homogène.
TABLE DES MATIERES CHAPITRE 1 OSCILLATEURS LINÉAIRES...3
TABLE DES MATIERES CHAPITRE 1 OSCILLATEURS LINÉAIRES...3 I. OSCILLATEURS HARMONIQUES AMORTIS...3 II. ANALYSE QUALITATIVE...5 1. Energétique...5. L'espace des phases...5 3. Visualisation de l'espace des
Gestion des stocks et des approvisionnements
Les stocks représentent dans le bilan des entreprises de 20 à 80% du total de l actifs. Engendrent un important besoin de financement. Les stocks remplissent d importantes fonctions. Bien gérer les stocks
N d ordre 2012 ISAL 0041 Année 2012. Thèse TRANSMISSIONS PAR ENGRENAGES - DES AVARIES
N d ordre 2012 ISAL 0041 Année 2012 Thèse MODELISATION ELECTRO-MECANIQUE DE TRANSMISSIONS PAR ENGRENAGES - APPLICATIONS A LA DETECTION ET AU SUIVI DES AVARIES Présentée devant L institut national des sciences
PHYSIQUE Discipline fondamentale
Examen suisse de maturité Directives 2003-2006 DS.11 Physique DF PHYSIQUE Discipline fondamentale Par l'étude de la physique en discipline fondamentale, le candidat comprend des phénomènes naturels et
ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.
L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.
Gestion et entretien des Installations Electriques BT
Durée : 5 jours Gestion et entretien des Installations Electriques BT Réf : (TECH.01) ² Connaître les paramètres d une installation basse tension, apprendre les bonnes méthodes de gestion et entretien
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
TS Physique Satellite à la recherche de sa planète Exercice résolu
P a g e 1 Phsique atellite à la recherche de sa planète Exercice résolu Enoncé Le centre spatial de Kourou a lancé le 1 décembre 005, avec une fusée Ariane 5, un satellite de météorologie de seconde génération
Circuits RL et RC. Chapitre 5. 5.1 Inductance
Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite
LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)
Chapitre 3 LES APPARELS A DEVATON EN COURANT CONTNU ( LES APPRELS MAGNETOELECTRQUES) - PRNCPE DE FONCTONNEMENT : Le principe de fonctionnement d un appareil magnéto-électrique est basé sur les forces agissant
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2
CHPITRE IX Modèle de Thévenin & modèle de Norton Les exercices EXERCICE N 1 R 3 E = 12V R 1 = 500Ω R 2 = 1kΩ R 3 = 1kΩ R C = 1kΩ E R 1 R 2 U I C R C 0V a. Dessiner le générateur de Thévenin vu entre les
