GENERALITES SUR LES FONCTIONS
|
|
|
- Corinne Truchon
- il y a 9 ans
- Total affichages :
Transcription
1 GENERALITES SUR LES FONCTIONS I. Notion de fonction numérique : 1 1) Définition, notations et vocabulaire : Soit D une partie de l'ensemble des réels. Lorsqu'à un réel x de D on associe un réel y, on définit une fonction sur l'ensemble D. La fonction f est " la machine " qui permet de transformer x en y. Une fonction est en général notée f, g, h Le réel y associé au réel x par la fonction f est noté f(x). C'est l'image de x par f. Le réel x a qui l'on associe le réel y par la fonction f est l'antécédent de y par f. La phrase " f est la fonction qui à x associe f (x) ou y " s'écrit f : x f ( x ) ou f : x y ou y = f (x). f (x) est l'image de x par la fonction f. L'ensemble D sur lequel est définie la fonction f est appellé ensemble de définition de f. Les réels x appartenant à D sont des variables. Exemple : f(5) = 8 8 est l'image de 5 par f 5 a pour image 8 par f 5 est un antécédent de 8 par f 8 a un antécédent qui est 5 par f. 2) Calculs d'images et d'antécédents : Pour calculer l'image d'un réel a par une fonction f, on calcule f (a) c'est-à-dire que l'on remplace, dans l'expression de f, tous les x par le nombre a. Exemple : Soit f la fonction définie sur IR par f(x) = 5x² 3 2 x + 8. Calculer f( 6 ) ou calculer l'image de 6 par f. f (-6) = 5 ( 6)² 3 2 ( 6) + 8 = = 197. Pour calculer les éventuels antécédents d'un nombre b par la fonction f, il faut résoudre l'équation f (x) = b. Les solutions de cettte équation sont les antécédents de b. Exemple : Calculer les antécédents de 8 par la fonction f. Il faut résoudre f (x ) = 8 5x² 3 2 x + 8 = 8 5x² 3 2 x = 0 x ( 5x 3 2 ) = 0 x = 0 ou 5x 3 2 = 0 x = 0 ou x = = 3 10 Les antécédents de 8 sont 0 et 3 10.
2 3) Détermination de l'ensemble de définition d'une fonction f : Reprenons l'exemple du début : f(x) = 70 ; g(x )= 0,4 x ; h(x)= 0,2 x + 25 Dans cet exemple x était une longueur donc un réel positif ou nul. On dira donc que les fonctions f, g et h ne sont définies que pour des réels positifs. On dira que leur ensemble de définition est [ 0 ; + [. 2 Autre exemple : La fonction carré f(x) = x². Quelque soit le réel x, on peut toujours calculer x² donc l'ensemble de définition de la fonction carré est IR. Dans la plupart des cas, l'ensemble de définition d'une fonction sera IR. EXCEPTIONS : Si l'expression de la fonction comporte une fraction 2x Exemple : g(x) = 5x 3 On ne pourra pas calculer g(x) si on obtient un 0 au dénominateur. Il faut donc trouver les valeurs qui annule le dénominateur. Il faut donc résoudre l'équation 5x 3 = 0 x = n'a pas d'image par g. On dit que c'est une valeur interdite pour la fonction g 5 et elle ne doit pas faire partie de l'ensemble de définition. On écrira D g = ] ; 3 5 [ ] 3 5 ; + [ = IR \ { 3 5 } Si l'expression de la fonction comporte une racine carrée Exemple : h(x) = 3 2x On ne pourra pas calculer h(x) si on obtient un nombre négatif sous le radical. Il faut donc résoudre l'inéquation 3 2x 0 x Seuls les réels inférieurs ou égaux à 3 2 ont une image par h. On écrira D h = ] ; 3 2 ] 3 2
3 II. Courbe représentative d'une fonction numérique : 1) Repère du plan : 3 Un repère orthogonal est constitué de deux axes perpendiculaires de même origine ; l'axe des abscisses est "horizontal", l'axe des ordonnées est "vertical". Chaque point du plan est repéré par deux nombres relatifs appelés coordonnées du point. Le premier nombre cité est toujours l'abscisse et le second l'ordonnée. Un repère orthonormal est un repère orthogonal ayant la même unité sur chaque axe. 2) Définition de la courbe représentative d'une fonction : Soit f une fonction définie sur un ensemble D f. On appelle courbe représentative de f l'ensemble des points M du plan de coordonnées ( x ; f (x) ). On écrira C f = { M ( x ; y ) avec x D f et y = f (x) } On dira que l'équation de C f est y = f (x).
4 3) Courbe représentative d'une fonction : Une fonction f n'est pas forcément définie par un calcul, elle peut, par exemple, être définie par une courbe représentative. Un réel x n'a qu'une seule image possible par une fonction f. Cette caractéristique permet de savoir si une courbe est la représentation graphique d'une fonction ou non.. 4 Les courbes des figures 2, 3, 4 et 6 représentent des fonctions. Sur la courbe de la figure 1, 1 a deux images : 2 et 4 donc ce n'est pas la courbe d'une fonction. Sur la courbe de la figure 5, 1 a deux images : 1 et 1 donc ce n'est pas la courbe d'une fonction. Un réel y peut avoir plusieurs antécédents par f. Il peut aussi n'en avoir aucun. 4) Construction de la courbe représentative d'une fonction f : a) Le tableau de valeurs : Pour construire la courbe représentative d'une fonction on peut utiliser une construction point par point avec un tableau de valeurs. Ce tableau de valeurs peut être fait grâce à la calculatrice. Exemple : Construire la courbe représentative de la fonction f définie par f (x) = 3x² 5. x f (x) b) Le tracé à l'aide de la calculatrice graphique : On peut aussi demander à la calculatrice de tracer la courbe. Reprendre l'exemple et le tracer sur la calculatrice. c) Remarque : Si le point A de coordonnées ( -2 ; 7 ) appartient à la courbe représentative de la fonction f cela signifie que : f (-2) = 7 ou que l'image de -2 par f est 7 ou que 7 est l'antécédent de -2 par f. Remarque : Si une fonction est définie par une courbe représentative, on pourra lire l'ensemble de définition sur la graphique : il suffira de regarder, sur l'axe des abscisse, l'intervalle sur lequel est représentée la fonction.
5 Exemple : D f = [ 6 ; 8 [ 5) Lecture d'images et d'antécédents sur une courbe : a) Pour lire l'image d'un réel il faut : Chercher ce réel sur l'axe des abscisses Tracer la parallèle à l'axe des ordonnées passant par cette abscisse Lire l'ordonnée du point d'intersection de la droite précédente avec la courbe. b) Pour lire les antécédents d'un réel il faut : Chercher ce réel sur l'axe des ordonnées Tracer la parallèle à l'axe des abscisses passant par cette ordonnée Lire les abscisses des points d'intersection de la droite précédente avec la courbe. Exemple : Soit f la fonction définie sur l'intervalle [-10 ;10] et représentée par le graphe ci-dessous: Trouver l'image de 0 et de 6. L'image de 0 est 6 L'image de 6 est 3 Trouver les antécédents de 0, de 2 et de 9 Les antécédents de 0 sont 8, 3,9 et 2,9. Les antécédents de 2 sont 7, 4,9 et 3,1 9 n'a pas d'antécédent par f.
6 6 6) Tracés de quelques fonctions de référence : a) f(x) = 5 D f = IR. f est une fonction constante. Sa représentation graphique est une droite passant par les points ( 0 ; 5 ) et ( 3 ; 5 ) par exemple. C'est donc une droite parallèle à l'axe des abscisses. Tous les points de cette droite ont la même ordonnée donc on dira que l'équation de cette droite est y = 5. b) g(x) = 2x D g = IR. g est une fonction linéaire. Sa représentation graphique est une droite passant par les points ( 0 ; 0 ) et ( 3 ; 6 ) par exemple. Cette droite passe par l'origine du repère et a pour coefficient directeur 2. c) h(x) = 3 x + 4 D h = IR h est une fonction affine. Sa représentation graphique est une droite passant par les points ( 0 ; 4 ) et ( 2 ; 2 ) par exemple. Cette droite a pour coefficient directeur 3 et pour ordonnée à l'origine 4. d) k(x) = x² D k = IR. k est la fonction carré. Sa représentation graphique est une parabole de sommet O ( 0 ; 0 ). x k(x)
7 7 e) m(x) = 1 D x f = IR \ { 0 } = IR * m est la fonction inverse. Sa représentation graphique est une hyperbole. x ,8 0,5 0,25 0,25 0,5 0, l(x) 0,25 0,5 1 1, ,25 1 0,5 0,25 f) n(x) = x 3 D k = IR. n est la fonction cube. Sa représentation graphique est une courbe passant par O ( 0 ; 0 ). x k(x)
8 8 g) p(x) = x D f = [ 0 ; + [ m est la fonction racine carrée. Sa représentation graphique est une courbe. x l(x)
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse
N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Chapitre 4: Dérivée d'une fonction et règles de calcul
DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.
Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction
Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Fonction inverse Fonctions homographiques
Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Lecture graphique. Table des matières
Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Etude de fonctions: procédure et exemple
Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons
Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES
Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Mais comment on fait pour...
Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition
Généralités sur les fonctions 1ES
Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX
SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX 1. EXPERIENCE 1 : APPLICATION DE LA LOI FONDAMENTALE DE LA DYNAMIQUE a) On incline d un angle α la table à digitaliser (deuxième ou troisième cran de la table).
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3
RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3 Pour construire un graphique : On lance l assistant graphique à l aide du menu Insérer è Diagramme en ayant sélectionné au préalable une cellule vide dans
Logistique, Transports
Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Du Premier au Second Degré
Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
Exemples de Projets SAFI
Exemples de Projets SAFI Analyse sismique simplifiée (CNB-95) Société Informatique SAFI Inc. 3393, chemin Sainte-Foy Ste-Foy, Québec, G1X 1S7 Canada Contact: Rachik Elmaraghy, P.Eng., M.A.Sc. Tél.: 1-418-654-9454
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
Les fonction affines
Les fonction affines EXERCICE 1 : Voir le cours EXERCICE 2 : Optimisation 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus
IV- Equations, inéquations dans R, Systèmes d équations
IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation
PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES
Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.
Baccalauréat ES Amérique du Nord 4 juin 2008
Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Calculs de probabilités avec la loi normale
Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce
Comment créer un diagramme de Gantt avec OpenOffice.org
Comment créer un diagramme de Gantt avec OpenOffice.org Version 1.9 du 05.05.2005 Réalisé avec : OOo 2.0 Plate-forme / Os : Toutes Distribué par le projet Sommaire 1 Une rapide introduction : Diagramme
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
FONCTION EXPONENTIELLE ( ) 2 = 0.
FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6
Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 1 1.But et théorie: Le but de cette expérience est de comprendre l'intérêt de la spectrophotométrie d'absorption moléculaire
Gestion de projet - contraintes, chevauchement, attente entre 2 tâches, jalons
Gestion de projet - contraintes, chevauchement, attente entre 2 tâches, jalons GÉRARD CASANOVA - DENIS ABÉCASSIS Paternité - Pas d'utilisation Commerciale - Pas de Modification : http://creativecommons.org/licenses/by-nc-nd/2.0/fr/
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Mathématiques Algèbre et géométrie
Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches
Mesurer les altitudes avec une carte
www.ign.fr > Espace éducatif > Les fiches thématiques > Lecture de la carte Mesurer les altitudes avec une carte Les cartes topographiques ne sont pas uniquement une représentation plane de la surface
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Equations différentielles linéaires à coefficients constants
Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I
Maple: premiers calculs et premières applications
TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
TD: Cadran solaire. 1 Position du problème
Position du problème On souhaite réaliser un cadran solaire à l aide d un stylet, de longueur a, perpendiculaire à un plan. (Le stylet n est donc pas orienté vers le pôle nord céleste). Ce cadran solaire
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
LibreOffice Calc : introduction aux tableaux croisés dynamiques
Fiche logiciel LibreOffice Calc 3.x Tableur Niveau LibreOffice Calc : introduction aux tableaux croisés dynamiques Un tableau croisé dynamique (appelé Pilote de données dans LibreOffice) est un tableau
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
TP 7 : oscillateur de torsion
TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
MANUEL TBI - STARBOARD
MANUEL TBI - STARBOARD TBIH MOD2 TITRE Manuel STARBOARD (Module 2) Trucs et astuces INTITULE Manuel d'utilisation du logiciel STARBOARD accompagnant le tableau blanc interactif HITACHI F-Series et FX-Series
Cinétique et dynamique des systèmes de solides
Cinétique et dynamique des systèmes de solides Page 2/30 CINÉTIQUE des systèmes matériels... 3 1.) Notion de masse...3 2.) Centre de masse d'un ensemble matériel...4 3.) Torseurs cinétique et dynamique...6
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
