Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé"

Transcription

1 Compléments sur les suites - Récurrence Exercices - Corrigé Exercice Pour n N nn + ), on pose Hn) : k := n =. k= Pour n =, les deux membres de l égalité valent et donc H) est vraie. Soit ensuite n N tel que Hn) est vraie. Montrons que Hn + ) est également vraie. Par hypothèse de récurrence, on a nn + ) [ n ] n + ) = n + n + ) = + n + ) = n + ) + n + )n + ) =. Ainsi Hn + ) est vraie. Le principe de récurrence assure que pour tout n N, Hn) est vraie i.e. nn + ) k = n =. k= Exercice Soit x R\{}. Pour n N, on pose Hn) : x k := + x + x + + x n = xn+ k=0 x. Pour n = 0, on a x 0 = = x donc H0) est vraie. x Soit n N tel que Hn) est vraie. Montrons que Hn + ) est vraie. On a + x + x + + x n+ = + x + x + + x n + x n+ = xn+ + x n+ x = xn+ x n+ x) x = xn+ + x n+ x n+ x = xn+ x. Et par suite, Hn + ) est vraie. Le principe de récurrence assure que pour tout n N, Hn) est vraie i.e. k=0 x k = + x + x + + x n = xn+ x. Exercice 3 Pour n, on pose Hn) : n n. Pour n =, les deux membres de H) valent et donc H) est vraie. Soit n N, n tel que Hn) est vraie. Montrons que Hn + ) est vraie. On a Il suffit donc de montrer que n n + ). Or n+ =. n n par Hn). n n + ) = n n = n ) n + ).

2 Comme n, alors n et n + sont tous les deux positifs et donc n n + ) 0. Autrement dit, n+ n n+). Ainsi Hn+) est vraie et par suite, par le principe de récurrence, pour tout n, Hn) est vraie i.e. n n. Exercice Pour n N, on pose Hn) : il existe k Z tel que n + = 3k. Pour n = 0, on a n + = + = 3 donc H0) est vraie. Soit n N tel que Hn) est vraie. Donc il existe k Z tel que n + = 3k ; autrement dit, n = 3k. Donc n+ + =. n + =.3k ) + = k = 3k ) = 3k, avec k = k Z. Ainsi Hn +) est vraie. Le principe de récurrence assure que pour tout n N, Hn) est vraie i.e. n + est un multiple de 3. Exercice 5 i) On remarque que pour tout n N, on a u n > 0 donc pour déterminer le sens de variation de u n ), on peut s intéresser à u n+ et le comparer à. Alors soit n N, on a u n u n+ u n = 3 n+ n + 3 n n = 3n n +. Et donc u n+ = 3n u n n + = n n+ > 0. Autrement dit, u n+ > et par suite u n ) est strictement u n croissante. ii) Soit n N, on a v n+ v n = n + ) n = + n+) n+) ) ) n = n n n+) n+) + n. Or n + > n > 0 donc n + ) > n car la fonction x x est strictement croissante sur R + et donc n + ) < n car la fonction x x est strictement décroissante sur R +. Donc v n+ v n > 0 et par suite, v n ) est strictement croissante. iii) Soit n N, n. On a w n+ w n = 3n + n 3n + 3n + )n ) 3n + )n ) 7 = = n n )n ) n )n ) < 0. Donc w n ) est strictement décroissante. iv) Soit n N. On a y n+ y n = Donc y n ) est strictement croissante n + ) n ) n = > 0. n+ v) On a z 0 = et z = donc z 0 > z et ainsi, z n ) ne peut pas être croissante. Par ailleurs, z = 3 donc z < z et par suite, z n ) ne peut pas être décroissante. Donc finalement, z n ) n est pas monotone.

3 vi) Soit n N. On a t n+ t n = n + )) 3 n) 3 = n 3 n) 3 = 3n + 3n = 3 n ) + ) < 0. Donc t n ) est strictement décroissante. Exercice ) En calculant les premiers termes de u n ) et v n ), on obtient : u 0 =,u = 3,u = 9,u 3 = 5 7, et v 0 = 9, v = 9 3, v = 9 9 et v 3 = 9 7. ) On peut conjecturer que v n = 9 pour tout n N. Montrons cette conjecture par récurrence. 3n Pour n N, on pose Hn) : v n = 9 3 n. H0) est vraie par définition de v n ). Soit n N tel que Hn) est vraie. Autrement dit, v n = 9. Par définition, on a 3n 9 ) v n+ = u n+ n+5 = 3 u n + n n+5 = 3 u n n+5 = 3 u n n + 5) = v n 3 = 3 n 3 = 9 3 n+. Donc Hn + ) est vraie. Le principe de récurrence assure que pour tout n N, v n = 9 3 n. Rq : grâce à la première question, notre conjecture aurait pu être v n+ = v n 3. Autrement dit, v n) est géométrique, de raison 3 et de premier terme v 0 = 9. Au final, on retrouve bien la même expression explicite de v n en fonction de n. 3) Par définition, on a pour tout n N, u n = v n + n 5 trouvée dans la question précédente, on trouve que donc en remplaçant v n par l expression u n = 9. n n ) Cette question est nettement plus difficile que les précédentes. Soit n N. On a k = k=0u k=0 3 k + k 5) k=0 = 3 n+ + nn + ) 5n + ). 3 3

4 Exercice 7 Soit n N. On a u n+ u n = 3n + 8 3n + 5) = 3. Donc u n ) est arithmétique de raison 3. n + En revanche, en calculant v n+ v n = n + ) + n + n + = n 3n n + ) + ) ) n, on se rend compte + que v n+ v n n est pas constante, donc v n ) n est pas arithmétique. De même, le calcul de v n+ nous montre que ce quotient n est pas constant et alors v n ) n est pas géométrique non plus. Enfin, pour tout n N, on a w n+ w n = donc w n ) est géométrique de raison. Exercice 8 La suite u n ) est arithmétique de raison r donc u n = nr +u 0 pour tout n N. Nous allons utiliser cette formule pour répondre aux différentes questions. ) On a 30 = u =. + u 0 donc u 0 = et par suite, u 8 = + = 38. ) On a u u = r donc r = 0 et alors u 0 = 5. 3) Cette question n a aucun sens... Ensuite v n ) est géométrique de raison q donc v n = q n v 0 pour tout n N. ) On a q = v v 5 =. ) On a v v 3 = v 3 v = 7 5 = q) donc v = ) On a q = v 5 v 3 = donc q = ou q =. Exercice 9 Soit n N. On a n + n + = n + ) donc u n = n + 3 n + 3 n + n + = finalement u n et u n ) est bornée. n + n + ) et ainsi u n. Par ailleurs, u n+ 3 n + )n + 3) < 0 donc u n) est décroissante et donc u n < u 0 =. Donc v n Soit n N. On a v n = n + n majorée. = n + n > 0. Donc v n) est minorée mais en revanche, elle n est pas Exercice 0 En calculant les premiers termes, on peut conjecturer que u n 8 pour tout n N. Montrons cette conjecture par récurrence. Pour n N, on pose Hn) : u n 8. Par définition, u 0 = donc Hn) est vraie. Soit n N tel que Hn) est vraie. Autrement dit, on suppose que 8 u n 8. Donc u n et par suite 8 u n 0. Donc 8 u n+ 0 et ainsi u n+ 8. Donc Hn + ) est vraie. La principe de récurrence assure que pour tout n N, Hn) est vraie i.e. u n 8.

5 Exercice Pour n N, on pose Hn) : u n. H0) est vraie par définition de u 0. Soit n N tel que Hn) est vraie. On a donc u n donc u n + et donc u n + car la fonction x x est croissante sur R +. Donc u n+. Ainsi Hn + ) est vraie. Le principe de récurrence assure que pour tout n N, on a u n. Rq : une étude un peu plus attentive de la suite montre qu en fait la suite est constante égale à! Montrer le par récurrence. Exercice ) On a S =, S = 5 et S 3 =. ) Soit n N. On a S n+ = S n + n + ). nn + )n + ) 3) Pour n N, on pose Hn) : S n =. On vérifie aisément que H) est vraie. Soit n N tel que Hn) est vraie. D après la question précédente, on a Donc S n+ = S n + n + ) nn + )n + ) = + n + ) par Hn). nn + )n + ) + n + ) S n+ = n + )nn + ) + n + )) = = n + )n + 7n + ) n + )n + )n + 3) =. nn + )n + ) Donc Hn + ) est vraie. Par le principe de récurrence, pour tout n N, on a S n =. Exercice 3 Partie A : On considère la fonction f : [,3] R. x 8x + 3 x + La fonction f est dérivable sur I comme quotient de fonctions dérivables et pour tout x [,3], on a f 8x + ) 8x + 3) 5 x) = x + ) = > 0. Donc f est strictement croissante sur [,3]. Le tableau de x + ) variations de f sur I est le suivant : x 3 f + f C 3 7 5

6 Partie B : Pour n N, on pose Hn) : < u n < 3. H) est vraie car u = 3. Soit n N tel que Hn) est vraie. D après la partie A, la fonction f est strictement croissante sur [,3] donc en appliquant f à Hn), on obtient < 7 = f ) < f u n) = u n+ < f 3) = 3. Et ainsi, Hn + ) est vraie. Le principe de récurrence assure que pour tout n N, Hn) est vraie i.e. < u n < 3. Partie C : On définit v n = u n 3 pour tout n N. u n + Soit n N. On a v n+ = u n+ 3 u n+ + = 8u n + 3 u n + 3 = 5u n 5 8u n + 3 u n + + 9u n + 9.u n + u n + = 5 9 v n. Donc v n ) est géométrique de raison 5 9. Par ailleurs, v 0 = 5 3. ) 5 n. Donc, on montre par récurrence que pour tout n N, on a v n = Par ailleurs, on a v n = u n 3 u n + donc u n = v n + 3 pour tout n N. Donc finalement, pour tout n N, v n 3 5 ) 5 n 3 9 u n = ) 5 n Exercice Entrées : a, un nombre début algorithme n 0 3 u 0 tant que u a faire 5 n n + u u + n 7 fin tant que 8 retourner n 9 fin algorithme Alors pour a =, on trouve n =, pour a =, n = 3 et pour a =, n = 7.

7 Exercice 5 ) On a u =, u = 3, u 3 = 7, u = 5, u 5 = 3 et u = 3. ) On conjecture que pour tout n N, on a u n = n. 3) Pour n N, on pose Hn) : u n = n. H) est vraie par définition de u n ). Soit n N tel que Hn) est vraie. On a u n+ = u n + = n )+ = n+. Donc Hn + ) est vraie et par suite, par le principe de récurrence, on a que pour tout n N, u n = n. Exercice Par définition, si n N, n! = nn )n )... Or dans ce produit, tous les termes sont supérieurs à sauf ), donc n! n. 7

SUITES I. GENERALITES. a. Définition et notations. b. Différentes façons de définir une suite

SUITES I. GENERALITES. a. Définition et notations. b. Différentes façons de définir une suite SUITES I. GENERALITES a. Définition et notations On appelle suite numérique, toute application de IN dans IR Une suite se note (u n ) n IN, (u n ) n 0 ou (u n ) On dit que u n est le terme général de la

Plus en détail

RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES.

RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES. 1 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES. I) RAPPELS DE COURS : Caractérisation par une relation de récurrence Caractérisation par une formule explicite Représentation graphique sur un axe Suites

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

Suites - cours - 1 STG

Suites - cours - 1 STG Suites - cours - STG F.Gaudon 0 juin 2006 Table des matières Notion de suite 2. Définitions............................. 2.2 Méthodes de construction des suites............... 2.2. Définition explicite....................

Plus en détail

Suites numériques. Introduction. Exercice 1 1 er terme. 2 ième terme 1 ère série ième série ième série

Suites numériques. Introduction. Exercice 1 1 er terme. 2 ième terme 1 ère série ième série ième série Introduction Exercice 1 1 er terme 2 ième terme 1 ère série 3 4 5 6 2 ième série 2-4 8 32 Formule de récurrence Formule explicite 3 ième série 0 1 3 6 15 4 ième série 0 1 4 9 5 ième série 4 0-2 -6 6 ième

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

Exercices d entrainement pour le chapitre 02 (récurrence et suites)

Exercices d entrainement pour le chapitre 02 (récurrence et suites) Exercices d entrainement pour le chapitre 0 récurrence et suites 0. Énoncés Exercice. Démontrer l inégalité n > n pour tout entier naturel n. Exercice. On définit, pour tout entier n, le n ième nombre

Plus en détail

SUITES NUMERIQUES. Rem : Comme pour les fonctions, on omet souvent de préciser l ensemble de définition attention.

SUITES NUMERIQUES. Rem : Comme pour les fonctions, on omet souvent de préciser l ensemble de définition attention. ) GENERALITES A ) DEFINITION et NOTATIONS SUITES NUMERIQUES On appelle suite numérique toute application de IN dans IR. Une suite se note u, ( ) n IN, ( ) n 0 ou ( ), qui est la notation la plus utilisée.

Plus en détail

Suites et récurrence

Suites et récurrence Suites et récurrence 1 Suites arithmétiques et géométriques 1.1 Définitions * On dit que la suite (u n ) est arithmétique s il existe un réel r appelé raison tel que, pour tout n dans N, on ait : u n+1

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

SUITES - RECURRENCE - SOMMES

SUITES - RECURRENCE - SOMMES SUITES - RECURRENCE - SOMMES Chapitre 1 I Généralités sur les suites Définition I.1 Une suite réelle est une fonction d une partie A de N dans R. u : A R n u(n) := u n l intervalle de définition peut donc

Plus en détail

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ).

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ). Exercice 75 p 55 exercices sur les suites Symbole Belin 0 On s intéresse aux suites définies sur V et vérifiant la relation de récurrence u n+ = + u n². Une telle suite sera déterminée par son premier

Plus en détail

Lycée la Folie Saint James. Fiche de cours : Généralités sur les suites

Lycée la Folie Saint James. Fiche de cours : Généralités sur les suites Lycée la Folie Saint James T ale S Fiche de cours : Généralités sur les suites Notion de suite. Définitions Une suite numérique réelle est une fonction u définie sur l ensemble N ou sur une partie de N

Plus en détail

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m 1 TS Rappels sur les suites Cours I. Définitions Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m L image u(n) de l entier n est notée

Plus en détail

Suites numériques Raisonnement par récurrence

Suites numériques Raisonnement par récurrence Chapitre Suites numériques Raisonnement par récurrence I. Suites numériques : rappels et coméments 1. Modes de génération d une suite Soit n 0 un entier naturel. Une suite numérique u une fonction qui

Plus en détail

Suites numériques (1 re partie)

Suites numériques (1 re partie) Chapitre 1 Suites numériques (1 re partie) I Prérequis I.1 Définition d une suite Définition. Une suite numérique est une liste de nombres réels «numérotés» par les nombres entiers naturels. N R On peut

Plus en détail

Chapitre 1 : Correction des Travaux dirigés

Chapitre 1 : Correction des Travaux dirigés U.P.S. I.U.T. A, Département d Informatique Année 009-00 Chapitre : Correction des Travaux dirigés. Soit v n n i0 qi la somme des n premiers termes d une suite géométrique de raison q, et de premier terme.

Plus en détail

1M002 - Première partie : Suites Chapitre 2 : Suites réelles et complexes

1M002 - Première partie : Suites Chapitre 2 : Suites réelles et complexes 1M002 - Première partie : Suites Chapitre 2 : Suites réelles et complexes Antonin Guilloux 27 janvier 2017 Antonin Guilloux Suites réelles et complexes 27 janvier 2017 1 / 13 L espace des suites Définitions

Plus en détail

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2 TS Suites récurrentes Exercices Exercice. Soit u la suite définie par u 0 = 3 et pour tout entier n, + = 4un +.. Démontrer que pour tout entier n, >.. On définit la suite v pour n N par v n = un. Montrer

Plus en détail

exercices types sur limite de suites

exercices types sur limite de suites exercices types sur ite de suites 1. Utiliser la définition de la ite finie d une suite : a. Démonter que la suite définie par a pour ite 0. On doit démontrer que tout intervalle ouvert contenant 0 contient

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Raisonnement par récurrence. Limite d une suite

Raisonnement par récurrence. Limite d une suite Exercices 2 octobre 2014 Raisonnement par récurrence. Limite d une suite Raisonnement par récurrence Exercice 1 Prouver que pour tout entier n, 4 n + 5 est un multiple de 3. Exercice 2 Prouver que pour

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Suites : récurrence, limites

Suites : récurrence, limites TS : Suites : récurrence, ites page 1 Suites : récurrence, ites I. Rappels sur les suites (A) Mode de génération d une suite Définition 1 Une suite numérique u ou ( ) n N est une fonction définie sur N

Plus en détail

1 RECURRENCE - SUITES BORNEES

1 RECURRENCE - SUITES BORNEES I - Rappels - Généralités 1. Définitions 1 RECURRENCE - SUITES BORNEES Une suite est une application de IN dans IR qui associe à tout entier n un unique réel. On note (u n ) la suite et u n le terme de

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

Chapitre 2 - Suites et récurrence

Chapitre 2 - Suites et récurrence Lycée Jaufré RUDEL - BLAYE 14 septembre 016 Les suites, c'est quoi déjà? Suites arithmétiques Suites géométriques Suites arithmétiques Dénition Terme général Somme de N termes consécutifs Sommes Suite

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

Bibliothèque d exercices L1 Feuille n 10. Suites

Bibliothèque d exercices L1 Feuille n 10. Suites Bibliothèque d exercices Énoncés L Feuille n 0 Suites Convergence Exercice Soit (u n ) n N une suite de R. Que pensez-vous des propositions suivantes : Si (u n ) n converge vers un réel l alors (u n )

Plus en détail

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

TS - Maths - D.S.3 - CORRECTION

TS - Maths - D.S.3 - CORRECTION TS - Maths - DS3 - CORRECTION Samedi 4 Novembre 20-2h Exercice Les parties A et B sont indépendantes Un site internet propose des jeux en ligne On donnera une valeur approchée à 0 2 près des résultats

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

Des outils pour les suites

Des outils pour les suites Des outils pour les suites Suites arithmético-géométriques Définition : ppelle suite arithmético-géométrique toute suite récurrente de la forme : où a et b sont des nombres réels. Quelques cas particuliers

Plus en détail

Soit (u n ) n n0 une suite. On dit qu elle est arithmétique si, partant du

Soit (u n ) n n0 une suite. On dit qu elle est arithmétique si, partant du Suites arithmétiques I) Définition: Soit n 0 un nombre un entier naturel Soit (u n ) n n0 une suite. On dit qu elle est arithmétique si, partant du TERME INITIAL u n0, pour passer d un terme au suivant,

Plus en détail

Exercice n 114 page 128

Exercice n 114 page 128 Jeudi 28 Février 2013 DM de Maths Exercice n 114 page 128 1) a) Voir papier millimétré 1) b) D après la représentation graphique des premiers termes de la suite (u n ), on peut conjecturer qu elle est

Plus en détail

(exercice : calculer u 2 puis u 5 )

(exercice : calculer u 2 puis u 5 ) Suites Prérequis : Division euclidienne Soient a et b deux entiers avec b 0. Il existe un unique couple (q, r) Z N tel que a = q b + r et 0 r < b. q s appelle le quotient de la division enclidienne de

Plus en détail

Suites. 1 Généralité. 1.1 Définition. 1.2 Variations d une suite. Terminale L ES

Suites. 1 Généralité. 1.1 Définition. 1.2 Variations d une suite. Terminale L ES Suites 1 Généralité 1.1 Définition Une suite u est une fonction définie dans l ensemble des entiers naturels N : La suite u peut être notée (u) n N, u : N R n u(n) Le terme u(n), image de n par u, est

Plus en détail

Exercices : Suites réelles

Exercices : Suites réelles Exercices : Suites réelles Exercice : Démontrer par récurrence les résultats suivants : n+. n N, k k = n n+ + n. n N, (k +) = n. Soit a R + fixé, n N, (+a) n +na 4. n, n! n Analyse : Chapitre Exercices

Plus en détail

Chapitre 3 : Exemples de raisonnement par récurrence

Chapitre 3 : Exemples de raisonnement par récurrence Chapitre 3 : Exemples de raisonnement par récurrence Plan de ce chapitre 1 Rappel 11 Mise en place et exemple 1 Mise en garde Exercices 1 comparaison entre n n et n! Démonstration de l inégalité de Bernoulli

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

Suites numériques. 1 Définitions. 1.1 Exemples et définitions. 1.2 Définition explicite - Définition par récurrence

Suites numériques. 1 Définitions. 1.1 Exemples et définitions. 1.2 Définition explicite - Définition par récurrence Suites numériques 1 Définitions 1.1 Exemples et définitions Exercice 1. Quel nombre écrire à la places des pointillés? 1. Liste a : 10;15;0;5;.... Liste b : 0;1;3;7;15;... 3. Liste c : 1;1;;3;5;8;13;...

Plus en détail

Suites numériques Limites et raisonnement par récurrence

Suites numériques Limites et raisonnement par récurrence Suites numériques Limites et raisonnement par récurrence 1] Limite d une suite a) Limite infinie Définition : Dire qu une suite a pour limite quand tend vers signifie que tout intervalle de la forme avec,

Plus en détail

Chapitre 4 : Fonctions exponentielles

Chapitre 4 : Fonctions exponentielles Chapitre 4 : Fonctions exponentielles I. Activité : Construction de la fonction : avec > 0 Soit > 0 un réel strictement positif, ( ) est la suite géométrique définie pour tout entier par =. Comme ( ) est

Plus en détail

Soit (u n ) n n0 une suite. On dit qu elle est arithmétique si, partant du

Soit (u n ) n n0 une suite. On dit qu elle est arithmétique si, partant du Suites arithmétiques I) Définition: Soit n 0 un nombre un entier naturel Soit (u n ) n n0 une suite. On dit qu elle est arithmétique si, partant du TERME INITIAL u n0, pour passer d un terme au suivant,

Plus en détail

CORRECTION - FX 0. ab a b + 1 1

CORRECTION - FX 0. ab a b + 1 1 Lycée Thiers CORRECTION - FX 0 Exercice. Somme et produit... qui est le plus grand? On considère deux entiers a, b >. Comparer et ab. On constate que : ab a b + = a ) b ) > 0 Or, si p, q sont entiers,

Plus en détail

Exercices type bac sur les suites.

Exercices type bac sur les suites. Exercices type bac sur les suites Corrigés NB : On ne donne dans ce document que des indices, la preuve complète reste à faire Exercice D après sujet du baccalauréat Centres étrangers, juin 003 On définit,

Plus en détail

Soit (u n ) n n0 une suite. On dit qu elle est géométrique si, partant du

Soit (u n ) n n0 une suite. On dit qu elle est géométrique si, partant du Suites géométriques I) Définition Soit n 0 est un nombre entier naturel. Soit (u n ) n n0 une suite. On dit qu elle est géométrique si, partant du TERME INITIAL u n0, pour passer d un terme au suivant,

Plus en détail

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites,

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, Généralités sur les suites Cours maths Terminale S Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, la monotonie, la convergence des suites,

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel ISEL - Année Mathématiques Suites - Rappel Raisonnement par récurrence Soit une propriété P (n) dépendant d'un entier naturel n. Pour montrer que cette propriété est vraie à partie de l'entier n 0 :. on

Plus en détail

Exercices. Rappels sur les suites. Récurrence. u0 = 2, u 1 = 4. u n+2 = 4u n+1 u n

Exercices. Rappels sur les suites. Récurrence. u0 = 2, u 1 = 4. u n+2 = 4u n+1 u n Exercices. Rappels sur les suites. Récurrence Exercice 1 : Généralités sur les suites 1) La suite (v n ) est telle que : v 0 = 1 et pour tout n, v n+1 = 3v n 1. Calculer v 2, v 3. Exprimer v n+2 en fonction

Plus en détail

Chapitre VII. Les Suites

Chapitre VII. Les Suites Chapitre VII Les Suites 1. Notion de Suite Ch VII - Les Suites 1. Notion de Suite D1 : Une suite réelle est une fonction de IN dans IR. notation : (u 0, u 1, u n, ) ou (u n ) n IN. 1. Notion de Suite D1

Plus en détail

Compléments sur les suites

Compléments sur les suites Compléments sur les suites Christophe ROSSIGNOL Année scolaire 215/216 Table des matières 1 Limites par comparaison 2 1.1 Théorèmes de comparaison....................................... 2 1.2 Application

Plus en détail

Devoir surveillé 5 mathématiques

Devoir surveillé 5 mathématiques Devoir surveillé 5 mathématiques BCPST 205-206 Exercice. Soit t un réel strictement positif. On définit la suite ( n N par la donnée de x 0 = t et la relation de récurrence : n N, + =.. (a Soit g la fonction

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Terminale Scientifique (S) : Cours de mathématiques (Terminale S) I. Chapitre 01 : Les suites 1. Etude globale d une suite A. Les suites majorées, minorées, bornées La suite ( ) est majorée si et seulement

Plus en détail

Chapitre 8. Suites numériques. 8.1 Généralités sur les suites numériques. 8.2 Comparaison de suites Définition et notation

Chapitre 8. Suites numériques. 8.1 Généralités sur les suites numériques. 8.2 Comparaison de suites Définition et notation Chapitre 8 Suites numériques La notion de suite numérique a été déjà introduite en classe de Première. On rappelle ici la définition d une suite numérique et complète les connaissances déjà acquises. On

Plus en détail

Première STMG. Suites numériques. sguhel

Première STMG. Suites numériques. sguhel Première STMG Suites numériques sguhel ... 0 Chapitre 3 : Suites numériques... 2 1 Introduction... 2 1.1 Activité 1... 2 1.2 Activité 2... 2 2 Modes de génération d une suite... 4 2.1 Suite numérique...

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

SUITES DE NOMBRE REELS

SUITES DE NOMBRE REELS SUITES DE NOMBRE REELS Version 1 Dr Euloge KOUAME UVCI 2017 Aout 2017 Table des matières Objectifs 5 I - I. Généralités 7 A. I-1. Définition d'une suite...7 B. II-2. Suite majorée, minorée, bornée...7

Plus en détail

Convergence des suites monotones

Convergence des suites monotones Convergence des suites monotones Suites majorée, minorée, bornée Définition Une suite (u # ) est majorée par un nombre réel M si pour tout n N, u # M Une suite (u # ) est minorée par un nombre réel m si

Plus en détail

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée SUITE I ) Rappels et dénition 1. N est l'ensemble des entiers naturels : 0,1,2... Une suite numérique est une fonction de N (ou une partie de N) dans R u : N R n u n Exemple : suite de Fibonnacci : 1,

Plus en détail

MPSI 2 : DL 03. pour le 12 décembre 2003

MPSI 2 : DL 03. pour le 12 décembre 2003 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère

Plus en détail

Les Suites ( En première S )

Les Suites ( En première S ) 2010 2011 Les Suites ( En première S ) Dernière mise à jour : Jeudi 31 Mars 2011 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2010-2011) 1 2010 2011 J aimais et j aime encore les mathématiques

Plus en détail

Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n

Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n Correction du Contrôle commun de Mathématiques - Sujet A - TS Exercice 5 points. n N, u n = n n( n + = n ) n( + = n ) n + n Or par somme, on a lim n = et lim + n =. Ainsi par quotient, lim u n = réponse

Plus en détail

Suites de nombres réels

Suites de nombres réels Suites de nombres réels I Généralités 1.1 propriété vraie à partir d un certain rang Définition 1.1 On dit qu une propriété P (n) est vraie à partir d un certain rang N N si et seulement s il existe un

Plus en détail

Etude de limites de suites monotones

Etude de limites de suites monotones Etude de ites de suites monotones I) Définition On dit que la suite ( ) est majorée lorsqu il existe un nombre réel M tel que, pour tout entier naturel n, M. On dit que M est un majorant de la suite (

Plus en détail

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013 Suites numériques Christophe ROSSIGNOL Année scolaire 01/013 Table des matières 1 Suites géométriques : Rappels et compléments 1.1 Définition, exemples........................................... 1. Expression

Plus en détail

Suites numériques. =2 n est associée à la fonction exponentielle définie sur R par f x =2 x qui sera étudiée en classe terminale.

Suites numériques. =2 n est associée à la fonction exponentielle définie sur R par f x =2 x qui sera étudiée en classe terminale. Suites numériques Définition Une suite numérique s est une fonction de N vers R : s:n s n. Son ensemble de définition est donc N ou un sous-ensemble de N. Notations - Vocabulaire: La variable n étant un

Plus en détail

Compléments sur les suites

Compléments sur les suites Lycée Marcel Pagnol 2016-2017 TES 2 Cours Compléments sur les suites Table des matières 1 Suites géométriques 1 1.1 Définition....................................... 1 1.2 Expression explicite..................................

Plus en détail

Travail de vacances en autonomie : Révision sur les suites numériques N 13 page 133(Sauf Q3 b) ) N 17,18,19 page 135 Vrai/Faux page 137 QCM page 151

Travail de vacances en autonomie : Révision sur les suites numériques N 13 page 133(Sauf Q3 b) ) N 17,18,19 page 135 Vrai/Faux page 137 QCM page 151 Devoir distribué mercredi 18/10/2017 pour le mercredi 8 novembre 2017. La recherche peut être menée à plusieurs mais la rédaction doit être individuelle. Exercice 1. TP A page 150 Exercice 2. On considère

Plus en détail

CM - MOYENNE ARITHMETICO- GEOMETRICO HARMONIQUE

CM - MOYENNE ARITHMETICO- GEOMETRICO HARMONIQUE CM - MOYENNE ARITHMETICO- GEOMETRICO HARMONIQUE Préliminaires Si (a... a n ) est un n uplet de nombres strictement positifs on définit trois moyennes (strictement positives) : (i) la moyenne arithmétique

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Soient α et u 0 deux réels donnés. Soit alors (u n ) une suite géométrique définie par u n = αu n 1. Donner le terme général de

Plus en détail

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

Suites Réelles. Aptitudes à développer :

Suites Réelles. Aptitudes à développer : Suites Réelles Aptitudes à développer : Suites * Reconnaître qu un réel est un majorant ou un minorant d une suite du programme. * Etudier les variations d une suite du programme. * Représenter graphiquement

Plus en détail

Suites Raisonnement par récurrence Exercices corrigés

Suites Raisonnement par récurrence Exercices corrigés Suites Raisonnement par récurrence Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : expression du terme général d une suite Exercice 2 : majoration

Plus en détail

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels,

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels, I Qu est-ce qu une suite? Définition : Rappels sur les suites Une suite de nombres réels est une liste ordonnée de nombres réels, finie ou infinie. On note ( ) la suite u 0, u 1, u 2,..,, +1, Le nombre

Plus en détail

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt :

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt : Terminale SSI 1 Chapitre 3 : Suites numériques 1 1 Introduction 1.1 s On rappelle que IN est On appelle suite numérique une fonction définie sur L image d un entier naturel n par une suite u n est en général

Plus en détail

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011.

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011. Université MONTPELLIER 3 UFR 4 Notes de Cours Mathématiques M1 MRHDS 2011-2012 Laurent Piccinini version du 5 octobre 2011. M1 MRHDS 1 Table des matières I Les suites numériques 2 I.1 Généralités..............................................

Plus en détail

Chapitre 4. Suites. Objectifs du chapitre : item références auto évaluation. définir et représenter graphiquement une suite

Chapitre 4. Suites. Objectifs du chapitre : item références auto évaluation. définir et représenter graphiquement une suite Chapitre 4 Suites Objectifs du chapitre : item références auto évaluation définir et représenter graphiquement une suite étudier une suite arithmétique étudier une suite géométrique étudier le sens de

Plus en détail

Modes de générations de suites

Modes de générations de suites I Généralités sur les suites Généralités Une suite u de nombres réels est une fonction dont la variable est un entier naturel. L image par u d un entier naturel n est notée un et se lit «u indice n». un

Plus en détail

Ch.11!SUITES_ partie 2

Ch.11!SUITES_ partie 2 1 Ch11!SUITES_ partie 1ere S Nous allons nous intéresser dans ce chapitre à deux types de suites : les suites arithmétiques et les suites géométriques I Suite arithmétique A introduction définition Une

Plus en détail

Chapitre 2. Suites, Sommes & Récurrence

Chapitre 2. Suites, Sommes & Récurrence ECE 1 - Année 016-017 Lycée français de Vienne Mathématiques - F. Gaunard http://frederic.gaunard.com Chapitre. Suites, Sommes & Récurrence Ce second chapitre présente la notion de suite, les premières

Plus en détail

Classe de TS2 24 novembre 2011

Classe de TS2 24 novembre 2011 Classe de TS 4 novembre 011 Devoir surveillé n 3 La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l appréciation des copies. L utilisation

Plus en détail

Corrigé du baccalauréat S Asie 18 juin 2008

Corrigé du baccalauréat S Asie 18 juin 2008 Corrigé du baccalauréat S Asie 8 juin 28 www.mathoman.com Exercice Commun à tous les candidats A - Vrai ou faux? Dans l espace soient P, P 2 et P 3 trois plans distincts et D une droite. ) Si P P 2 et

Plus en détail

Devoir maison n 2 Corrigé

Devoir maison n 2 Corrigé ECE Année scolaire 017-018 Lycée Marcelin Berthelot Mathématiques Exercice 1 Devoir maison n Corrigé 0 1 1 Soit f L (R 3 ) de matrice dans la base canonique : A 0 1 1. 0 1 1 1. Montrer que f 0. Un calcul

Plus en détail

Chapitre 1 Le principe du raisonnement par récurrence

Chapitre 1 Le principe du raisonnement par récurrence Chapitre 1 : Principe du raisonnement par récurrence Chapitre 1 Le principe du raisonnement par récurrence 1 I Exemple introductif On considère les suites de terme général : n (n + 1) u n = 0 + 1 + + (n

Plus en détail

TS Feuille de révision n 1 novembre 2017

TS Feuille de révision n 1 novembre 2017 TS Feuille de révision n 1 novembre 017 Exercice 1 Dans un pays de population constante égale à 10 millions, les habitants vivent soit en zone rurale, soit en ville. Les mouvements de population peuvent

Plus en détail

( ) de premier terme

( ) de premier terme Suites arithmétiques Suites géométriques I Suites arithmétiques 1 Définition Une suite arithmétique est une suite obtenue en ajoutant au terme précédent toujours un même nombre, appelé raison Pour tout

Plus en détail

Etude de suites définies par différents types de récurrence

Etude de suites définies par différents types de récurrence Etude de suites définies par différents types de récurrence F.Gaudon 22 juillet 2005 Table des matières 1 Suites arithmétiques 2 2 Suites géométriques 2 3 Suites arithmético-géométriques 3 4 Suites récurrentes

Plus en détail

Les suites. u : N R. n u(n) = e ln(n+1)+2 Compléter le tableau de valeurs (les images) par la suite u : n u n.

Les suites. u : N R. n u(n) = e ln(n+1)+2 Compléter le tableau de valeurs (les images) par la suite u : n u n. Les suites 1 Suites généralités 1.1 Définition Une suite u est une fonction de l ensemble des entiers naturels N dans l ensemble des nombres réels R : Le terme u(n) est plus souvent noté u n. 1. Soit la

Plus en détail

FONCTIONS COMPOSEES EXERCICES CORRIGES

FONCTIONS COMPOSEES EXERCICES CORRIGES Cours et eercices de mathématiques M CUAZ, http://mathscyrfreefr FONCTIONS COMPOSEES EXERCICES CORRIGES Eercice n On considère les fonctions suivantes : f :, f : et : 4 g Donner l ensemble de définition

Plus en détail

LES SUITES 3. II Utilisation de la calculatrice Représentation Graphique Représentation graphique (n ;u n ) 4

LES SUITES 3. II Utilisation de la calculatrice Représentation Graphique Représentation graphique (n ;u n ) 4 LES SUITES 3 I Généralités 3 1.1 Définitions 3 Exemple : 3 1. Différentes façons de définir une suite 3 a ) Par une formule explicite 3 3 3 b ) Par récurrence 4 ex 4 II Utilisation de la calculatrice Représentation

Plus en détail

A quoi servent les suites numériques?

A quoi servent les suites numériques? FICHE METHODE SUITES NUMERIQUES A quoi servent les suites numériques? a) Illustrations : 1 Ce mois ci ( dans 0 mois ) il a 150 euros sur son compte et il en ajoute 0 par mois! On note U n la valeur de

Plus en détail

Suites de nombres, cours, première STMG

Suites de nombres, cours, première STMG Suites de nombres, cours, première STMG F.Gaudon 9 juin 2014 Table des matières 1 Notion de suite 2 2 Méthodes de construction des suites 2 2.1 Dénition explicite.......................................

Plus en détail

SUITES ARITHMETIQUES ET GEOMETRIQUES

SUITES ARITHMETIQUES ET GEOMETRIQUES SUITES ARITHMETIQUES ET GEOMETRIQUES Lycée Stendhal Première S M Obaton L équipe des professeurs de mathématiques Lycée Stendhal Le but des mathématiques est de déterminer les grandeurs les unes par les

Plus en détail