Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé

Dimension: px
Commencer à balayer dès la page:

Download "Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé"

Transcription

1 Compléments sur les suites - Récurrence Exercices - Corrigé Exercice Pour n N nn + ), on pose Hn) : k := n =. k= Pour n =, les deux membres de l égalité valent et donc H) est vraie. Soit ensuite n N tel que Hn) est vraie. Montrons que Hn + ) est également vraie. Par hypothèse de récurrence, on a nn + ) [ n ] n + ) = n + n + ) = + n + ) = n + ) + n + )n + ) =. Ainsi Hn + ) est vraie. Le principe de récurrence assure que pour tout n N, Hn) est vraie i.e. nn + ) k = n =. k= Exercice Soit x R\{}. Pour n N, on pose Hn) : x k := + x + x + + x n = xn+ k=0 x. Pour n = 0, on a x 0 = = x donc H0) est vraie. x Soit n N tel que Hn) est vraie. Montrons que Hn + ) est vraie. On a + x + x + + x n+ = + x + x + + x n + x n+ = xn+ + x n+ x = xn+ x n+ x) x = xn+ + x n+ x n+ x = xn+ x. Et par suite, Hn + ) est vraie. Le principe de récurrence assure que pour tout n N, Hn) est vraie i.e. k=0 x k = + x + x + + x n = xn+ x. Exercice 3 Pour n, on pose Hn) : n n. Pour n =, les deux membres de H) valent et donc H) est vraie. Soit n N, n tel que Hn) est vraie. Montrons que Hn + ) est vraie. On a Il suffit donc de montrer que n n + ). Or n+ =. n n par Hn). n n + ) = n n = n ) n + ).

2 Comme n, alors n et n + sont tous les deux positifs et donc n n + ) 0. Autrement dit, n+ n n+). Ainsi Hn+) est vraie et par suite, par le principe de récurrence, pour tout n, Hn) est vraie i.e. n n. Exercice Pour n N, on pose Hn) : il existe k Z tel que n + = 3k. Pour n = 0, on a n + = + = 3 donc H0) est vraie. Soit n N tel que Hn) est vraie. Donc il existe k Z tel que n + = 3k ; autrement dit, n = 3k. Donc n+ + =. n + =.3k ) + = k = 3k ) = 3k, avec k = k Z. Ainsi Hn +) est vraie. Le principe de récurrence assure que pour tout n N, Hn) est vraie i.e. n + est un multiple de 3. Exercice 5 i) On remarque que pour tout n N, on a u n > 0 donc pour déterminer le sens de variation de u n ), on peut s intéresser à u n+ et le comparer à. Alors soit n N, on a u n u n+ u n = 3 n+ n + 3 n n = 3n n +. Et donc u n+ = 3n u n n + = n n+ > 0. Autrement dit, u n+ > et par suite u n ) est strictement u n croissante. ii) Soit n N, on a v n+ v n = n + ) n = + n+) n+) ) ) n = n n n+) n+) + n. Or n + > n > 0 donc n + ) > n car la fonction x x est strictement croissante sur R + et donc n + ) < n car la fonction x x est strictement décroissante sur R +. Donc v n+ v n > 0 et par suite, v n ) est strictement croissante. iii) Soit n N, n. On a w n+ w n = 3n + n 3n + 3n + )n ) 3n + )n ) 7 = = n n )n ) n )n ) < 0. Donc w n ) est strictement décroissante. iv) Soit n N. On a y n+ y n = Donc y n ) est strictement croissante n + ) n ) n = > 0. n+ v) On a z 0 = et z = donc z 0 > z et ainsi, z n ) ne peut pas être croissante. Par ailleurs, z = 3 donc z < z et par suite, z n ) ne peut pas être décroissante. Donc finalement, z n ) n est pas monotone.

3 vi) Soit n N. On a t n+ t n = n + )) 3 n) 3 = n 3 n) 3 = 3n + 3n = 3 n ) + ) < 0. Donc t n ) est strictement décroissante. Exercice ) En calculant les premiers termes de u n ) et v n ), on obtient : u 0 =,u = 3,u = 9,u 3 = 5 7, et v 0 = 9, v = 9 3, v = 9 9 et v 3 = 9 7. ) On peut conjecturer que v n = 9 pour tout n N. Montrons cette conjecture par récurrence. 3n Pour n N, on pose Hn) : v n = 9 3 n. H0) est vraie par définition de v n ). Soit n N tel que Hn) est vraie. Autrement dit, v n = 9. Par définition, on a 3n 9 ) v n+ = u n+ n+5 = 3 u n + n n+5 = 3 u n n+5 = 3 u n n + 5) = v n 3 = 3 n 3 = 9 3 n+. Donc Hn + ) est vraie. Le principe de récurrence assure que pour tout n N, v n = 9 3 n. Rq : grâce à la première question, notre conjecture aurait pu être v n+ = v n 3. Autrement dit, v n) est géométrique, de raison 3 et de premier terme v 0 = 9. Au final, on retrouve bien la même expression explicite de v n en fonction de n. 3) Par définition, on a pour tout n N, u n = v n + n 5 trouvée dans la question précédente, on trouve que donc en remplaçant v n par l expression u n = 9. n n ) Cette question est nettement plus difficile que les précédentes. Soit n N. On a k = k=0u k=0 3 k + k 5) k=0 = 3 n+ + nn + ) 5n + ). 3 3

4 Exercice 7 Soit n N. On a u n+ u n = 3n + 8 3n + 5) = 3. Donc u n ) est arithmétique de raison 3. n + En revanche, en calculant v n+ v n = n + ) + n + n + = n 3n n + ) + ) ) n, on se rend compte + que v n+ v n n est pas constante, donc v n ) n est pas arithmétique. De même, le calcul de v n+ nous montre que ce quotient n est pas constant et alors v n ) n est pas géométrique non plus. Enfin, pour tout n N, on a w n+ w n = donc w n ) est géométrique de raison. Exercice 8 La suite u n ) est arithmétique de raison r donc u n = nr +u 0 pour tout n N. Nous allons utiliser cette formule pour répondre aux différentes questions. ) On a 30 = u =. + u 0 donc u 0 = et par suite, u 8 = + = 38. ) On a u u = r donc r = 0 et alors u 0 = 5. 3) Cette question n a aucun sens... Ensuite v n ) est géométrique de raison q donc v n = q n v 0 pour tout n N. ) On a q = v v 5 =. ) On a v v 3 = v 3 v = 7 5 = q) donc v = ) On a q = v 5 v 3 = donc q = ou q =. Exercice 9 Soit n N. On a n + n + = n + ) donc u n = n + 3 n + 3 n + n + = finalement u n et u n ) est bornée. n + n + ) et ainsi u n. Par ailleurs, u n+ 3 n + )n + 3) < 0 donc u n) est décroissante et donc u n < u 0 =. Donc v n Soit n N. On a v n = n + n majorée. = n + n > 0. Donc v n) est minorée mais en revanche, elle n est pas Exercice 0 En calculant les premiers termes, on peut conjecturer que u n 8 pour tout n N. Montrons cette conjecture par récurrence. Pour n N, on pose Hn) : u n 8. Par définition, u 0 = donc Hn) est vraie. Soit n N tel que Hn) est vraie. Autrement dit, on suppose que 8 u n 8. Donc u n et par suite 8 u n 0. Donc 8 u n+ 0 et ainsi u n+ 8. Donc Hn + ) est vraie. La principe de récurrence assure que pour tout n N, Hn) est vraie i.e. u n 8.

5 Exercice Pour n N, on pose Hn) : u n. H0) est vraie par définition de u 0. Soit n N tel que Hn) est vraie. On a donc u n donc u n + et donc u n + car la fonction x x est croissante sur R +. Donc u n+. Ainsi Hn + ) est vraie. Le principe de récurrence assure que pour tout n N, on a u n. Rq : une étude un peu plus attentive de la suite montre qu en fait la suite est constante égale à! Montrer le par récurrence. Exercice ) On a S =, S = 5 et S 3 =. ) Soit n N. On a S n+ = S n + n + ). nn + )n + ) 3) Pour n N, on pose Hn) : S n =. On vérifie aisément que H) est vraie. Soit n N tel que Hn) est vraie. D après la question précédente, on a Donc S n+ = S n + n + ) nn + )n + ) = + n + ) par Hn). nn + )n + ) + n + ) S n+ = n + )nn + ) + n + )) = = n + )n + 7n + ) n + )n + )n + 3) =. nn + )n + ) Donc Hn + ) est vraie. Par le principe de récurrence, pour tout n N, on a S n =. Exercice 3 Partie A : On considère la fonction f : [,3] R. x 8x + 3 x + La fonction f est dérivable sur I comme quotient de fonctions dérivables et pour tout x [,3], on a f 8x + ) 8x + 3) 5 x) = x + ) = > 0. Donc f est strictement croissante sur [,3]. Le tableau de x + ) variations de f sur I est le suivant : x 3 f + f C 3 7 5

6 Partie B : Pour n N, on pose Hn) : < u n < 3. H) est vraie car u = 3. Soit n N tel que Hn) est vraie. D après la partie A, la fonction f est strictement croissante sur [,3] donc en appliquant f à Hn), on obtient < 7 = f ) < f u n) = u n+ < f 3) = 3. Et ainsi, Hn + ) est vraie. Le principe de récurrence assure que pour tout n N, Hn) est vraie i.e. < u n < 3. Partie C : On définit v n = u n 3 pour tout n N. u n + Soit n N. On a v n+ = u n+ 3 u n+ + = 8u n + 3 u n + 3 = 5u n 5 8u n + 3 u n + + 9u n + 9.u n + u n + = 5 9 v n. Donc v n ) est géométrique de raison 5 9. Par ailleurs, v 0 = 5 3. ) 5 n. Donc, on montre par récurrence que pour tout n N, on a v n = Par ailleurs, on a v n = u n 3 u n + donc u n = v n + 3 pour tout n N. Donc finalement, pour tout n N, v n 3 5 ) 5 n 3 9 u n = ) 5 n Exercice Entrées : a, un nombre début algorithme n 0 3 u 0 tant que u a faire 5 n n + u u + n 7 fin tant que 8 retourner n 9 fin algorithme Alors pour a =, on trouve n =, pour a =, n = 3 et pour a =, n = 7.

7 Exercice 5 ) On a u =, u = 3, u 3 = 7, u = 5, u 5 = 3 et u = 3. ) On conjecture que pour tout n N, on a u n = n. 3) Pour n N, on pose Hn) : u n = n. H) est vraie par définition de u n ). Soit n N tel que Hn) est vraie. On a u n+ = u n + = n )+ = n+. Donc Hn + ) est vraie et par suite, par le principe de récurrence, on a que pour tout n N, u n = n. Exercice Par définition, si n N, n! = nn )n )... Or dans ce produit, tous les termes sont supérieurs à sauf ), donc n! n. 7

SUITES I. GENERALITES. a. Définition et notations. b. Différentes façons de définir une suite

SUITES I. GENERALITES. a. Définition et notations. b. Différentes façons de définir une suite SUITES I. GENERALITES a. Définition et notations On appelle suite numérique, toute application de IN dans IR Une suite se note (u n ) n IN, (u n ) n 0 ou (u n ) On dit que u n est le terme général de la

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES.

RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES. 1 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES. I) RAPPELS DE COURS : Caractérisation par une relation de récurrence Caractérisation par une formule explicite Représentation graphique sur un axe Suites

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

Suites - cours - 1 STG

Suites - cours - 1 STG Suites - cours - STG F.Gaudon 0 juin 2006 Table des matières Notion de suite 2. Définitions............................. 2.2 Méthodes de construction des suites............... 2.2. Définition explicite....................

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

Exercices d entrainement pour le chapitre 02 (récurrence et suites)

Exercices d entrainement pour le chapitre 02 (récurrence et suites) Exercices d entrainement pour le chapitre 0 récurrence et suites 0. Énoncés Exercice. Démontrer l inégalité n > n pour tout entier naturel n. Exercice. On définit, pour tout entier n, le n ième nombre

Plus en détail

SUITES - RECURRENCE - SOMMES

SUITES - RECURRENCE - SOMMES SUITES - RECURRENCE - SOMMES Chapitre 1 I Généralités sur les suites Définition I.1 Une suite réelle est une fonction d une partie A de N dans R. u : A R n u(n) := u n l intervalle de définition peut donc

Plus en détail

SUITES NUMERIQUES. Rem : Comme pour les fonctions, on omet souvent de préciser l ensemble de définition attention.

SUITES NUMERIQUES. Rem : Comme pour les fonctions, on omet souvent de préciser l ensemble de définition attention. ) GENERALITES A ) DEFINITION et NOTATIONS SUITES NUMERIQUES On appelle suite numérique toute application de IN dans IR. Une suite se note u, ( ) n IN, ( ) n 0 ou ( ), qui est la notation la plus utilisée.

Plus en détail

Chapitre 1 : Correction des Travaux dirigés

Chapitre 1 : Correction des Travaux dirigés U.P.S. I.U.T. A, Département d Informatique Année 009-00 Chapitre : Correction des Travaux dirigés. Soit v n n i0 qi la somme des n premiers termes d une suite géométrique de raison q, et de premier terme.

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m 1 TS Rappels sur les suites Cours I. Définitions Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m L image u(n) de l entier n est notée

Plus en détail

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ).

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ). Exercice 75 p 55 exercices sur les suites Symbole Belin 0 On s intéresse aux suites définies sur V et vérifiant la relation de récurrence u n+ = + u n². Une telle suite sera déterminée par son premier

Plus en détail

Chapitre 2 - Suites et récurrence

Chapitre 2 - Suites et récurrence Lycée Jaufré RUDEL - BLAYE 14 septembre 016 Les suites, c'est quoi déjà? Suites arithmétiques Suites géométriques Suites arithmétiques Dénition Terme général Somme de N termes consécutifs Sommes Suite

Plus en détail

TS - Maths - D.S.3 - CORRECTION

TS - Maths - D.S.3 - CORRECTION TS - Maths - DS3 - CORRECTION Samedi 4 Novembre 20-2h Exercice Les parties A et B sont indépendantes Un site internet propose des jeux en ligne On donnera une valeur approchée à 0 2 près des résultats

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Des outils pour les suites

Des outils pour les suites Des outils pour les suites Suites arithmético-géométriques Définition : ppelle suite arithmético-géométrique toute suite récurrente de la forme : où a et b sont des nombres réels. Quelques cas particuliers

Plus en détail

Suites numériques (1 re partie)

Suites numériques (1 re partie) Chapitre 1 Suites numériques (1 re partie) I Prérequis I.1 Définition d une suite Définition. Une suite numérique est une liste de nombres réels «numérotés» par les nombres entiers naturels. N R On peut

Plus en détail

1 RECURRENCE - SUITES BORNEES

1 RECURRENCE - SUITES BORNEES I - Rappels - Généralités 1. Définitions 1 RECURRENCE - SUITES BORNEES Une suite est une application de IN dans IR qui associe à tout entier n un unique réel. On note (u n ) la suite et u n le terme de

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

Raisonnement par récurrence. Limite d une suite

Raisonnement par récurrence. Limite d une suite Exercices 2 octobre 2014 Raisonnement par récurrence. Limite d une suite Raisonnement par récurrence Exercice 1 Prouver que pour tout entier n, 4 n + 5 est un multiple de 3. Exercice 2 Prouver que pour

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

Soit (u n ) n n0 une suite. On dit qu elle est géométrique si, partant du

Soit (u n ) n n0 une suite. On dit qu elle est géométrique si, partant du Suites géométriques I) Définition Soit n 0 est un nombre entier naturel. Soit (u n ) n n0 une suite. On dit qu elle est géométrique si, partant du TERME INITIAL u n0, pour passer d un terme au suivant,

Plus en détail

Exercice n 114 page 128

Exercice n 114 page 128 Jeudi 28 Février 2013 DM de Maths Exercice n 114 page 128 1) a) Voir papier millimétré 1) b) D après la représentation graphique des premiers termes de la suite (u n ), on peut conjecturer qu elle est

Plus en détail

Etude de limites de suites monotones

Etude de limites de suites monotones Etude de ites de suites monotones I) Définition On dit que la suite ( ) est majorée lorsqu il existe un nombre réel M tel que, pour tout entier naturel n, M. On dit que M est un majorant de la suite (

Plus en détail

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée SUITE I ) Rappels et dénition 1. N est l'ensemble des entiers naturels : 0,1,2... Une suite numérique est une fonction de N (ou une partie de N) dans R u : N R n u n Exemple : suite de Fibonnacci : 1,

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Terminale Scientifique (S) : Cours de mathématiques (Terminale S) I. Chapitre 01 : Les suites 1. Etude globale d une suite A. Les suites majorées, minorées, bornées La suite ( ) est majorée si et seulement

Plus en détail

Soit (u n ) n n0 une suite. On dit qu elle est arithmétique si, partant du

Soit (u n ) n n0 une suite. On dit qu elle est arithmétique si, partant du Suites arithmétiques I) Définition: Soit n 0 un nombre un entier naturel Soit (u n ) n n0 une suite. On dit qu elle est arithmétique si, partant du TERME INITIAL u n0, pour passer d un terme au suivant,

Plus en détail

Chapitre VII. Les Suites

Chapitre VII. Les Suites Chapitre VII Les Suites 1. Notion de Suite Ch VII - Les Suites 1. Notion de Suite D1 : Une suite réelle est une fonction de IN dans IR. notation : (u 0, u 1, u n, ) ou (u n ) n IN. 1. Notion de Suite D1

Plus en détail

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel ISEL - Année Mathématiques Suites - Rappel Raisonnement par récurrence Soit une propriété P (n) dépendant d'un entier naturel n. Pour montrer que cette propriété est vraie à partie de l'entier n 0 :. on

Plus en détail

Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n

Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n Correction du Contrôle commun de Mathématiques - Sujet A - TS Exercice 5 points. n N, u n = n n( n + = n ) n( + = n ) n + n Or par somme, on a lim n = et lim + n =. Ainsi par quotient, lim u n = réponse

Plus en détail

Suites. 1 Généralité. 1.1 Définition. 1.2 Variations d une suite. Terminale L ES

Suites. 1 Généralité. 1.1 Définition. 1.2 Variations d une suite. Terminale L ES Suites 1 Généralité 1.1 Définition Une suite u est une fonction définie dans l ensemble des entiers naturels N : La suite u peut être notée (u) n N, u : N R n u(n) Le terme u(n), image de n par u, est

Plus en détail

Modes de générations de suites

Modes de générations de suites I Généralités sur les suites Généralités Une suite u de nombres réels est une fonction dont la variable est un entier naturel. L image par u d un entier naturel n est notée un et se lit «u indice n». un

Plus en détail

Exercices type bac sur les suites.

Exercices type bac sur les suites. Exercices type bac sur les suites Corrigés NB : On ne donne dans ce document que des indices, la preuve complète reste à faire Exercice D après sujet du baccalauréat Centres étrangers, juin 003 On définit,

Plus en détail

Suites Raisonnement par récurrence Exercices corrigés

Suites Raisonnement par récurrence Exercices corrigés Suites Raisonnement par récurrence Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : expression du terme général d une suite Exercice 2 : majoration

Plus en détail

Devoir surveillé 5 mathématiques

Devoir surveillé 5 mathématiques Devoir surveillé 5 mathématiques BCPST 205-206 Exercice. Soit t un réel strictement positif. On définit la suite ( n N par la donnée de x 0 = t et la relation de récurrence : n N, + =.. (a Soit g la fonction

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: RAISONNEMENT PAR RECURRENCE Montrons par récurrence que pour tout n N *, P (n) : i=n i = 1 + + 3 +...+ ( n -1) + n = n n1 n n1 Initialisation : pour n = 1 i =1 et = 111 =1 donc P(1) est vraie.

Plus en détail

Suites numériques. =2 n est associée à la fonction exponentielle définie sur R par f x =2 x qui sera étudiée en classe terminale.

Suites numériques. =2 n est associée à la fonction exponentielle définie sur R par f x =2 x qui sera étudiée en classe terminale. Suites numériques Définition Une suite numérique s est une fonction de N vers R : s:n s n. Son ensemble de définition est donc N ou un sous-ensemble de N. Notations - Vocabulaire: La variable n étant un

Plus en détail

FONCTIONS COMPOSEES EXERCICES CORRIGES

FONCTIONS COMPOSEES EXERCICES CORRIGES Cours et eercices de mathématiques M CUAZ, http://mathscyrfreefr FONCTIONS COMPOSEES EXERCICES CORRIGES Eercice n On considère les fonctions suivantes : f :, f : et : 4 g Donner l ensemble de définition

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Chapitre 4. Suites. Objectifs du chapitre : item références auto évaluation. définir et représenter graphiquement une suite

Chapitre 4. Suites. Objectifs du chapitre : item références auto évaluation. définir et représenter graphiquement une suite Chapitre 4 Suites Objectifs du chapitre : item références auto évaluation définir et représenter graphiquement une suite étudier une suite arithmétique étudier une suite géométrique étudier le sens de

Plus en détail

MPSI 2 : DL 03. pour le 12 décembre 2003

MPSI 2 : DL 03. pour le 12 décembre 2003 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère

Plus en détail

Corrigé du baccalauréat S Asie 18 juin 2008

Corrigé du baccalauréat S Asie 18 juin 2008 Corrigé du baccalauréat S Asie 8 juin 28 www.mathoman.com Exercice Commun à tous les candidats A - Vrai ou faux? Dans l espace soient P, P 2 et P 3 trois plans distincts et D une droite. ) Si P P 2 et

Plus en détail

Suites de nombres, cours, première STMG

Suites de nombres, cours, première STMG Suites de nombres, cours, première STMG F.Gaudon 9 juin 2014 Table des matières 1 Notion de suite 2 2 Méthodes de construction des suites 2 2.1 Dénition explicite.......................................

Plus en détail

LES SUITES 3. II Utilisation de la calculatrice Représentation Graphique Représentation graphique (n ;u n ) 4

LES SUITES 3. II Utilisation de la calculatrice Représentation Graphique Représentation graphique (n ;u n ) 4 LES SUITES 3 I Généralités 3 1.1 Définitions 3 Exemple : 3 1. Différentes façons de définir une suite 3 a ) Par une formule explicite 3 3 3 b ) Par récurrence 4 ex 4 II Utilisation de la calculatrice Représentation

Plus en détail

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013 Suites numériques Christophe ROSSIGNOL Année scolaire 01/013 Table des matières 1 Suites géométriques : Rappels et compléments 1.1 Définition, exemples........................................... 1. Expression

Plus en détail

Chapitre 1 Le principe du raisonnement par récurrence

Chapitre 1 Le principe du raisonnement par récurrence Chapitre 1 : Principe du raisonnement par récurrence Chapitre 1 Le principe du raisonnement par récurrence 1 I Exemple introductif On considère les suites de terme général : n (n + 1) u n = 0 + 1 + + (n

Plus en détail

Première STMG. Suites numériques. sguhel

Première STMG. Suites numériques. sguhel Première STMG Suites numériques sguhel ... 0 Chapitre 3 : Suites numériques... 2 1 Introduction... 2 1.1 Activité 1... 2 1.2 Activité 2... 2 2 Modes de génération d une suite... 4 2.1 Suite numérique...

Plus en détail

( ) de premier terme

( ) de premier terme Suites arithmétiques Suites géométriques I Suites arithmétiques 1 Définition Une suite arithmétique est une suite obtenue en ajoutant au terme précédent toujours un même nombre, appelé raison Pour tout

Plus en détail

Cours de terminale S - Généralités sur les fonctions

Cours de terminale S - Généralités sur les fonctions les fonctions LPO de Chirongui - Exercices : Savoir Faire (livre)- Déterminer une ite Interprétation graphique Livre Indice BORDAS - Page 45 Exercice 34, 35, 36 et 37 page 56 - Limite finie à l infini

Plus en détail

Méthodes sur les suites

Méthodes sur les suites Méthodes sur les suites G. Petitjean Lycée de Toucy 19 juin 2007 G. Petitjean (Lycée de Toucy) Méthodes sur les suites 19 juin 2007 1 / 41 1 Déterminer par le calcul et graphiquement les premiers termes

Plus en détail

CM - MOYENNE ARITHMETICO- GEOMETRICO HARMONIQUE

CM - MOYENNE ARITHMETICO- GEOMETRICO HARMONIQUE CM - MOYENNE ARITHMETICO- GEOMETRICO HARMONIQUE Préliminaires Si (a... a n ) est un n uplet de nombres strictement positifs on définit trois moyennes (strictement positives) : (i) la moyenne arithmétique

Plus en détail

A quoi servent les suites numériques?

A quoi servent les suites numériques? FICHE METHODE SUITES NUMERIQUES A quoi servent les suites numériques? a) Illustrations : 1 Ce mois ci ( dans 0 mois ) il a 150 euros sur son compte et il en ajoute 0 par mois! On note U n la valeur de

Plus en détail

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

Calcul intégral et suite numérique Intégration Exercices corrigés

Calcul intégral et suite numérique Intégration Exercices corrigés Calcul intégral et suite numérique Intégration Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : étudier le sens de variation d une suite

Plus en détail

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés Chapitre I Suites Exercices 8, 9, 0, 3, 4, 6, 3, 3, 34 page 34 pour revoir les notions de première sur les suites (récurrence, sens de variation...) Suite géométrique. Définition Définition Une suite u

Plus en détail

1S Corrigé DS n o 14 2h. ( 4 points ) Exercice 1

1S Corrigé DS n o 14 2h. ( 4 points ) Exercice 1 1S Corrigé DS n o 14 h Exercice 1 ( 4 points ) 1. Etudier le sens de variation de la suite (u n ) définie par u 0 = 3 et u n+1 = u n + u n + 3 pour tout n N. Pour tout entier n : u n+1 u n = u n + u n

Plus en détail

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels,

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels, I Qu est-ce qu une suite? Définition : Rappels sur les suites Une suite de nombres réels est une liste ordonnée de nombres réels, finie ou infinie. On note ( ) la suite u 0, u 1, u 2,..,, +1, Le nombre

Plus en détail

Type bac janvier Corrigé

Type bac janvier Corrigé Exercice (Métropole 24) Commun à tous les élèves Type bac janvier 27 - Corrigé Partie A ) L image de par la fonction f est : f () +e. Le point d abscisse sur la courbe C, représentative de la fonction

Plus en détail

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉRIVABILITÉ 1 Dérivabilité en un point, fonction dérivée 1.1 Définitions et premières propriétés Définition 1.1 Dérivabilité en un point Soient f : I R une application et a I. On dit que f est dérivable

Plus en détail

Corrigé du baccalauréat S Liban 31 mai 2016

Corrigé du baccalauréat S Liban 31 mai 2016 Corrigé du baccalauréat S Liban 3 mai 6 Exercice points Commun à tous les candidats A. P. M. E. P.. a) Le triangle AI E est rectangle en I. Par le théorème de Pythagore, on en déduit E I = AE AI. D autre

Plus en détail

Chapitre 4 : Suites usuelles

Chapitre 4 : Suites usuelles Chapitre 4 : Suites usuelles Dans ce chapitre, on s'intéresse aux suites réelles, c'est à dire aux suites à valeur dans R. Ce chapitre est le prolongement de l'étude des suites qui a été initiée au lycée.

Plus en détail

Corrigé du baccalauréat S Antilles-Guyane 22 juin 2015

Corrigé du baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé du baccalauréat S Antilles-Guyane juin 15 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 6 POINTS 1. Pour toutes les courbes, on a g a (1)= a. Donc on a de bas en haut les courbes Γ,5, Γ,1,

Plus en détail

Les suites. u : N R. n u(n) = e ln(n+1)+2 Compléter le tableau de valeurs (les images) par la suite u : n u n.

Les suites. u : N R. n u(n) = e ln(n+1)+2 Compléter le tableau de valeurs (les images) par la suite u : n u n. Les suites 1 Suites généralités 1.1 Définition Une suite u est une fonction de l ensemble des entiers naturels N dans l ensemble des nombres réels R : Le terme u(n) est plus souvent noté u n. 1. Soit la

Plus en détail

Exercices supplémentaires : Suites

Exercices supplémentaires : Suites Exercices supplémentaires : Suites Partie A : Calculs de termes et représentation graphique Exercice On considère la suite définie par 4 3 pour tout N. Calculer,, et Exercice On considère la suite définie

Plus en détail

Soit une suite. On dit qu elle est arithmétique si, partant du

Soit une suite. On dit qu elle est arithmétique si, partant du Suites arithmétiques I) Définition: Soit un nombre un entier naturel Soit une suite. On dit qu elle est arithmétique si, partant du TERME INITIAL, pour passer d un terme au suivant, on AJOUTE toujours

Plus en détail

Suites numériques. I) Modes de génération d une suite numérique. 1) Définitions et notations : Exemple 2 : On définit la suite ( par:

Suites numériques. I) Modes de génération d une suite numérique. 1) Définitions et notations : Exemple 2 : On définit la suite ( par: Suites numériques I) Modes de génération d une suite numérique 1) Définitions et notations : Une suite numérique est une application de dans. est le terme de rang (ou indice ) On note aussi la suite dont

Plus en détail

Soit une suite. On dit qu elle est géométrique si, partant du

Soit une suite. On dit qu elle est géométrique si, partant du Suites géométriques I) Définition Soit est un nombre entier naturel. Soit une suite. On dit qu elle est géométrique si, partant du TERME INITIAL, pour passer d un terme au suivant, on MULTIPLIE toujours

Plus en détail

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2 Suites numériques Z, auctore 4 octobre 005 1 Suites arithmétiques Définition. Une suite de nombres (u n ) n N est arithmétique lorsqu il existe un nombre r tel que pour tout entier n on ait Ce nombre r

Plus en détail

Logique, ensembles, raisonnements

Logique, ensembles, raisonnements Bibliothèque d exercices Énoncés L1 Feuille n Logique, ensembles, raisonnements 1 Logique Exercice 1 Soient les quatre assertions suivantes : (a) x R y R x + y > 0 ; (b) x R y R x + y > 0 ; (c) x R y R

Plus en détail

1 Introduction sur les suites numériques

1 Introduction sur les suites numériques ISEL - Année Mathématiques SUITES NUMERIQUES Introduction sur les suites numériques. Dénition Dénition On appelle suite réelle toute application U d'une partie A de IN dans IR. A IR U : avec A IN. L'image

Plus en détail

Généralités sur les suites

Généralités sur les suites 1 Chapitre 3 Généralités sur les suites I. Définition, mode de génération d'une suite et représentation graphique : 1) Définition : Une suite est une fonction définie de IN ou d'une partie de IN dans IR.

Plus en détail

LES SUITES NUMERIQUES

LES SUITES NUMERIQUES LES SUITES NUMERIQUES I Définition Une suite est une fonction qui a tout entier naturel n associe, au plus, un réel noté U(n) ou encore U n. Remarque C est une fonction particulière car définie dans É.

Plus en détail

SUITES. Exercice 01 (voir réponses et correction) Exercice 02 (voir réponses et correction) Exercice 03 (voir réponses et correction)

SUITES. Exercice 01 (voir réponses et correction) Exercice 02 (voir réponses et correction) Exercice 03 (voir réponses et correction) SUITES Exercice 01 (voir réponses et correction) On considère un carré ABCD de coté c = 4. On appelle A 1, B 1, C 1 et D 1, les points situés respectivement sur [AB], [BC], [CD], [DA] à la distance 1 de

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

Devoir n 10 - Suites - 1S

Devoir n 10 - Suites - 1S Devoir n 0 - Suites - S 2 mai 204 - h30 Exercice (3 pts) :. ( ) est une suite géométrique de premier terme et de raison telle que 486 et 4374. Déterminer et. On a une suite géométrique de raison et de

Plus en détail

Correction Devoir à la maison commun Saint-Charles La Cadenelle

Correction Devoir à la maison commun Saint-Charles La Cadenelle Correction Devoir à la maison commun Saint-Charles La Cadenelle Exercice On considère les matrices 0 5 0 0 5 0 0 0 0 0 0 4 ; 0 2 ; 0 2 0 ; 0 0 4 0 4 0 0 2 0 0 2 0 0 0 ) Soit la matrice 4 0 4 2 a) Prouver

Plus en détail

Olympiades Françaises de Mathématiques Envoi Numéro 3 Corrigé

Olympiades Françaises de Mathématiques Envoi Numéro 3 Corrigé Olympiades Françaises de Mathématiques 2012-2013 Envoi Numéro 3 Corrigé 1 Exercices Juniors Exercice 1. On appelle diviseur propre d un entier n un diviseur positif de n qui est différent de 1 et de n.

Plus en détail

Leçon 69 : Les différents types de raisonnement en mathématiques

Leçon 69 : Les différents types de raisonnement en mathématiques Leçon 69 : Les différents types de raisonnement en mathématiques 1 er avril 01 En mathématiques, pour démontrer divers propriétés ou théorèmes, nous avons besoin d appliquer rigoureusement un raisonnement

Plus en détail

Examen de mathématiques 1 Septembre Corrigé de l examen et remarques

Examen de mathématiques 1 Septembre Corrigé de l examen et remarques Université Pierre et Marie Curie DEUG MIAS 1 Examen de mathématiques 1 Septembre 00 Corrigé de l examen et remarques Questions de cours On trouvera bien sûr la réponse et des détails dans le cours, mais

Plus en détail

Corrigé du bac S Antilles-Guyane juin 2014

Corrigé du bac S Antilles-Guyane juin 2014 orrigé du bac S Antilles-Guyane juin 204 EXERIE ommun à tous les candidats Partie A 5 points. a. L arbre pondéré est le suivant : 0,80 0,85 J 0,20 0,5 J 0,0 b. D après l arbre : 0,90 ( ) p J = 0,5 0,0=0,05.

Plus en détail

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques Chapitre 2 Suites Sommaire 1 Généralités sur les suites....................................... 1.1 Définition d une suite...................................... 1.2 Suites arithmétiques et suites géométriques..........................

Plus en détail

Fonctions à deux variables

Fonctions à deux variables Fonctions à deux variables Exercice 1 On note l'ouvert de défini par 1 3, 3 0,1 et l'application définie sur par :,, ² ² Montrer que est strictement négative sur., 1 1 Pour,, 1 0. Pour 01, 1 0. Comme et

Plus en détail

Généralités sur les suites

Généralités sur les suites Généralités sur les suites. Définitions Exemple : Posons U 0 = 0, U =, U =, U 3 = 9, U = 6, U 5 = 5, U 6 = 36,..., U n = n Dans ce cas, (U n ) est appelée une suite. Définition : Une suite (U n ) est la

Plus en détail

Nombres réels. Définition On définit également le produit de deux suites u et v de S comme le produit terme à terme : u v = (u n v n ) n N

Nombres réels. Définition On définit également le produit de deux suites u et v de S comme le produit terme à terme : u v = (u n v n ) n N Nombres réels 1 Suites de rationnels Définition Une suite de rationnels (ou suite rationnelle) est une application u : N Q. Notation : Pour tout entier n, on note u n l image u(n) de l entier n par l application

Plus en détail

Suites, généralités et suites arithmétiques, cours, première STG

Suites, généralités et suites arithmétiques, cours, première STG F.Gaudon 4 juin 2009 Table des matières Notion de suite 2. Dénitions............................................ 2.2 Méthodes de construction des suites.............................. 2.2. Dénition explicite...................................

Plus en détail

SUITES. I Définition. Exercice 01. Exercice 02. Exercice 03

SUITES. I Définition. Exercice 01. Exercice 02. Exercice 03 SUITES I Définition Exercice 01 On donne, dans le tableau suivant, le nombre d'habitants d'une commune pour les années de 1995 à 2005. Année 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Nombre

Plus en détail

Suites. résumés de cours. exercices. contrôles. corrigés

Suites. résumés de cours. exercices. contrôles. corrigés Suites GÉNÉRALITÉS Définitions Une suite est une liste ordonnée de nombres : u ( «u indice» ), u 2, u 3, u 4, On note (u n ) n * la suite: u, u 2, u 3,, u n, u n+, On note (u n ) n la suite: u 0, u, u

Plus en détail

Suites 4 : Raisonnement par récurrence

Suites 4 : Raisonnement par récurrence Suites 4 : Raisonnement par récurrence C' est au mathématicien italien Giuseppe Peano (1858 ; 193) que l'on attribue le principe du raisonnement par récurrence. Par contre, le nom de récurrence a vraisemblablement

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Intégration Encadrement d intégrale Exercices corrigés

Intégration Encadrement d intégrale Exercices corrigés Intégration Encadrement d intégrale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : encadrer une intégrale Exercice 2 : donner un encadrement

Plus en détail

Fonctions trigonométriques - Corrigé. 2 2 cos 1

Fonctions trigonométriques - Corrigé. 2 2 cos 1 Exercice 1 : Fonctions trigonométriques - Corrigé 1. a. est dérivable sur comme somme de fonctions dérivables sur et =1 cos On sait que, pour tout réel et donc en particulier pour tout, cos 1 donc 0 et

Plus en détail

Pour remettre un peu d ordre dans R

Pour remettre un peu d ordre dans R Arnaud de Saint Julien - MPSI Lycée La Merci 016-017 1 1 Relation d ordre sur R 1.1 Vocabulaire Pour remettre un peu d ordre dans R Sur R, on dispose de la relation de comparaison. On dit que c est une

Plus en détail

Principe d une démonstration par récurrence :

Principe d une démonstration par récurrence : Chapitre Suites 1 Démonstration par récurrence Exemples introductif : Imaginons que des ouvriers construisant un immeuble aient toutes les instructions nécessaires pour construire un étage d immeuble sur

Plus en détail

Mathématique ECS 1 03 Sept Devoir surveillé 1.

Mathématique ECS 1 03 Sept Devoir surveillé 1. Mathématique ECS 0 Sept. 06 Devoir surveillé. Veillez à bien justifier vos réponses : un exercice bien traité rapporte des points, un exercice traité de façon non rigoureuse ne rapporte pas de points.

Plus en détail

Raisonnement par récurrence Cours maths Terminale S

Raisonnement par récurrence Cours maths Terminale S Raisonnement par récurrence Cours maths Terminale S Dans ce module est introduit un des grands principes de raisonnement en mathématiques : le principe de raisonnement par récurrence. Ce grand principe

Plus en détail