Les implications dans le raisonnement mathématique

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les implications dans le raisonnement mathématique"

Transcription

1 I Les implications dans le raisonnement mathématique I.1 L implication - L équivalence 1 (De la logique en français) Une réunion de cosmonautes du monde entier a lieu à Paris. Les cosmonautes américains portent tous une chemise rouge. 1. À l aéroport on voit quelqu un qui porte une chemise blanche. Est-il cosmonaute américain? 2. À côté de la personne précédente, on voit quelqu un qui porte une chemise rouge. Est-il cosmonaute américain? 3. Le haut-parleur annonce l arrivée d un cosmonaute russe. Porte-t-il une chemise rouge? 4. Dans le hall, on voit un cosmonaute américain qui porte un manteau. Porte-t-il une chemise rouge? Définition 1 La proposition «si A, alors B» est une implication. On dit aussi «A implique B» et on le note «A B». A représente l hypothèse et B la conclusion. Exemple : si la personne est un cosmonaute américain, alors elle porte une chemise rouge. Pour démontrer que l implication «A B» est vraie, on suppose que A est vraie et on montre que B est alors vraie. La proposition réciproque de «si A, alors B» est «si B, alors A». La réciproque d une implication vraie peut être vraie ou fausse. Exemple : si la personne porte une chemise rouge, alors c est un cosmonaute américain 2 (Géométrie : fabrique d implications) 1. Étudier si les affirmations suivantes sont vraies. Justifier vos réponses. (a) Si K est le milieu de [AB], alors KA = KB. (b) Si KA = KB, alors K est le milieu de [AB]. (c) Si K est le milieu de [AB], alors KA + KB = AB. (d) Si KA + KB = AB alors K est le milieu de [AB]. (e) Si K appartient à [AB], alors KA + KB = AB. (f) Si KA + KB = AB, alors K appartient à [AB]. 2. On donne ci-dessous des phrases ou des égalités. M est l image de M IM = IM par la symétrie de centre I M appartient à (IM) I est le milieu de [MM ] I appartient à [MM ] IM + IM = MM Écrire toutes les implications vraies. -1-

2 Définition 2 Si une proposition et sa réciproque sont vraies, on dit qu elles forment une équivalence. Par exemple, la proposition «si les côtés d un quadrilatère sont parallèles deux à deux, alors ce quadrilatère est un parallélogramme» et sa réciproque «si un quadrilatère est parallélogramme, alors ses côtés sont parallèles deux à deux» sont vraies. Elles forment donc une équivalence et on peut écrire «un quadrilatère est un parallélogramme si, et seulement si, ses côtés sont parallèles deux à deux.» 3 (Expression algébrique et notions sur les fonctions) 1. Résoudre l équation (x 3) 2 = (x + 9) Voici quelques propositions, où A et B sont des nombres réels : (P 1) : A 2 = B 2 (P 2) : A = B (P 3) : A = B (P 4) : (A + B)(A B) = 0 (P 5) : A = B ou A = B (P 6) : A = 0 ou B = 0 (a) Quelles sont les implications du type (P 1)... vraies pour tous A et B réels? (b) Parmi les propositions (P 2) à (P 6), identifier celles qui impliquent la proposition (P 1) (pour tous A et B réels). (c) Quelles sont les propositions équivalentes (pour tous A et B réels)? 4 (Géométrie vectorielle) Dans chaque cas, dire si l implication «H implique H» est vraie puis si l implication «H implique H» est vraie puis donner les propositions équivalentes. 1. H : «C est l image du point A par la translation de vecteur BD» H : «ABCD est un parallélogramme de centre O» 2. H : «ABCD est un parallélogramme de centre O» H : «O est le milieu de [AC]» 3. H : «EF ( 3 4 )» H : «E(0; 2) et F (3; 6)» 4. H : «Les points I, J et K sont alignés» H : «IJ = IK» I.2 Conditions nécessaires et suffisantes 5 (Inéquations et carrés) 1. On s intéresse à la condition x 2 > 4. On dresse une liste de 5 propositions : (1) x > 3 (2) x > 1, 9 (3) x < 10 (4) x < 3 ou x > 3 (5) x < 2 ou x > 2. (a) L implication (1) x 2 > 4 est-elle vraie? (b) Dresser la liste des implications du type x 2 > 4 qui sont vraies. (c) Dresser le liste des implications du type x 2 > 4... qui sont vraies. 2. Conditions nécessaires - suffisantes : Ex : x > 3 implique x 2 > 4 : -2-

3 (a) On dit que x > 3 est une condition suffisante pour que x 2 > 4. Cette condition n est pas nécessaire : par exemple x > 2, 5 convient aussi. Indiquer si chacune des conditions est suffisante pour que x 2 > 4 : x > 100 x > 10 6 x > 1, 9 x < 2 x < 2 ou x > 2 x < 10 x < 2, 1 x < 3 ou x > 3 x < 0 x < 1 (b) Parmi celles qui sont suffisantes, indiquer celle qui est également nécessaire. 6 (Géométrie) Sur un forum mathématique, P31415 a posé la question suivante : «Pour demain, je dois faire un exercice où on me demande de démontrer que ABCD est un parallélogramme, je ne sais pas comment m y prendre.» Prof répond : «Connais-tu une condition suffisante pour que ABCD soit un parallélogramme?» P31415 : «Non!» M271 : «AB = DC» X007 : «AB = CD» Z97910 : «AB et DC colinéaires» GNI : «(AB) et (BC) parallèles» E=MC 2 : «AD = BC» A000 : «AC = AB + AD» 1. (a) Parmi ces conditions, certaines sont effectivement suffisantes. Lesquelles? (b) En proposer d autres. 2. (a) Parmi les conditions ci-dessus certaines ne sont que nécessaires. Lesquelles? (b) En proposer d autres. II Les quantificateurs II.1 Quantificateurs et égalités - Quantificateurs et implications 7 Soit f la fonction définie sur R par : f(x) = x 2 + 4x 9 1. Montrer que f(x) = (x + 2) Résoudre f(x) = 4x Dans le domaine géométrique : A et B sont deux points distincts du plan. Dans quel cas (conditions sur le point M) ces égalités sont-elles vraies? AM + MB = AB MA + MB = 0 2. Dans le domaine algébrique : AM + MB = 0 Ces égalités et inégalités sont-elles vraies ou fausses? (x + 1) 2 = x 2 + 2x + 1 (x + 1) 2 = x x + 3 > 4x 5 x 2 < x + 3 x > 0 x 2 0 x 2 > 3 x 2 x 2-3-

4 2 nde Raisonnement logique D. Vavasseur Définition 3 On considère les deux égalités suivantes dans lesquelles x est un nombre réel (x + 1) 2 = x 2 + 2x + 1 (1) (x + 1) 2 = x (2) L égalité (1) est connue depuis la 3 ème comme une identité remarquable, on peut remarquer que pour tout réel x l égalité (1) est vérifiée, dans ce cas on écrit : «pour tout x appartenant à R, (x + 1) 2 = x 2 + 2x + 1» «Pour tout» est appelé quantificateur universel. On peut penser que l égalité (2) est fausse. Et pourtant pour x = 0, elle est vérifiée. Peut-on dire que l égalité (2) est vraie? Non, car pour x = 1, cette égalité n est pas vérifiée. La phrase est vraie si on écrit : «il existe un réel x tel que (x + 1) 2 = x 2 + 1». «Il existe» est appelé quantificateur existentiel. Remarque «il existe» signifie «il existe au moins un» ; «on peut choisir» peut remplacer «il existe» «pour tout» se dit aussi «quel que soit» ou «étant donné» 9 1. Vrai ou faux? (a) Pour tout x R, il existe y R tel que y > x. (b) Pour tout x R et pour tout y R, on a y > x. (c) Pour tout x R et pour tout y R, on a y 2 > x. (d) Pour tout x R et pour tout y R, on a y 2 x. (e) Il existe x R tel que pour tout y R on ait y 2 x 2. (f) Pour tout x R, on a y 2 pour tout y R. 2. En utilisant la représentation graphique de la fonction ci-dessous, recopier et compléter les phrases suivantes en utilisant soit «pour tout... on a...», soit «il existe (au moins) un... tel que...». ¾ ½ ¹¾ ¹½ ½ ¾ ¹½ (a)... réel x... f(x) > 0 (b)... réel x... f(x) < 2 (c)... réel x... f(x) = 0 (d)... x [1; 2]... f(x) 0 (e)... réel x... f(x) = 1 (f)... réel x... f(x) >

5 II.2 La négation d une propriété avec quantificateurs Donner la négation des phrases suivantes : (a) Tous les élèves sont présents. (b) Sonia a raté au moins un cours cette semaine. (c) Dorian prend son iphone ou son ipod. (d) Pour tout x réel, f(x) > Donner l évènement contraire des évènements suivants : (a) Tristan gagne au plus 1500 euros. (b) Sandrine veut une maison qui est de plain pied et qui fait plus de 160 m 2. (c) Tous les enfants de Bruno mesurent plus de 1,80 m. III III.1 Les ensembles et leurs relations Ensembles de nombres Les nombres sont connus depuis l antiquité, mais il a fallu attendre le XIX e siècle avec des mathématiciens comme Cantor pour établir une classification des nombres : N est l ensemble des entiers naturels (1; 2; 10; 1024;... ). Z est l ensemble des entiers relatifs (1; 3; 5; 124; 2048;... ). D est l ensemble des nombres décimaux, qui ont un nombre fini de chiffres après la virgule (0, 5; 12; 0, 458; 1 5 ;... ). Q est l ensemble des nombres rationnels, qui sont de la forme a b ( 1 3 ; 5, 4; 26; 3 7 ; 10 4 ;... ). R est l ensemble des nombres réels ( 4 3 ; 6; π; 2; 0, 512;... ). avec a Z et b Z III.2 Ensembles, sous-ensembles, appartenance, inclusion Définition 4 Appartenance : e E signifie que l élément e est un élément de E. e E signifie que l élément e n est pas un élément de E. Inclusion : A B signifie que tous les éléments de l ensemble A appartiennent à l ensemble B. A B signifie qu il existe un élément de l ensemble A qui n appartient pas à l ensemble B. et se lisent «appartient à» et «n appartient pas à». et se lisent «est inclus dans» et «n est pas inclus dans». Propriété des ensembles de nombres : N Z D Q R. -5-

6 11 1. Citer : (a) un nombre appartenant à R mais pas à Q ; (b) un nombre appartenant à Q mais pas à D ; (c) un nombre appartenant à D mais pas à Z ; (d) un nombre appartenant à Z mais pas à N ; 2. Compléter les phrases mathématiques avec les symboles et [ 2; 1[ ; 4... [ 3; 4[ ; 2π... ]7; 8[ ; [ 1; 1 6 [ ; ] 5; 4[ Compléter les expressions suivantes à l aide des symboles ; ; ;. 1 N... Z ; R... N ; { 2}... R ; N ; π... N ;... D ; { 2; 1; 6}... ] 1; + [ ; 3 [1; 2]... ] ; 5[ ; [1; 2]... ] ; 2[ ; 0... ] 1; 4[ [1; + [ ; ] 0, 6; + [... ] 1; + [. 12 Compléter à l aide des symboles = ; ; ; ;. 1. A = { ; ; } et B = { ; ; ; }... A ; { ; ; ; }... A B ; { ; ; }... B ; { }... A B ;... A B ; { ; }... A B ;... A B ; { ; ; ; }... A B ; { ; ; ; ; }... A B. 2. A et B sont deux ensembles distincts non vides, tels que A B ; A B et B A. (On pourra s aider d un schéma.) A... A B ; A B... A B ; A B... B A ; A... A B ; A B... B. III.3 Intersection, réunion, et/ou, contraire Compléter les phrases suivantes à l aide de «et» ou «ou». (a) xy = 0 équivaut à x = 0... y = 0. (b) xy 0 équivaut à x 0... y 0. (c) x y = 0 équivaut à x = 0... y 0. (d) 5, 0 et 5 sont des entiers naturels... des entiers relatifs. (e) (x + 3)(2x 3) = 0 pour x + 3 = x 3 = 0. (f) L intervalle ]7; 10[ contient les réels plus grands que 7... plus petits que 10. (g) R est l ensemble des réels tels que x 3... x > 0. (h) 2, 8, 6, 10, 15, 20 sont des entiers pairs... supérieurs à Déterminer les intervalles suivants (on pourra s aider d une droite graduée) : (a) les réels supérieurs à 10 ou inférieurs ou égaux à 12 ; (b) les réels compris entre -5 et 7 ou supérieurs ou égaux à 3 ; (c) les réels positifs ou nuls et inférieurs ou égaux à 25 ; (d) les réels supérieurs à 6 ou négatifs ou nuls. -6-

( ) Exercice 1. Exercice 5

( ) Exercice 1. Exercice 5 Exercice 1 1. Effectuer : A 11 5 4 B F + 5 4 6 7 C G 7 1 + 7 Exercice 5 1 5 5 5 5 D 1 6 1+ 6 E 1 H 18 0. Compléter alors le tableau suivant en utilisant le symbole ou. A B C D E F G H IN On donne Ax x

Plus en détail

1 ère S. ch1. Introduction à la logique. J. TAUZIEDE. INTRODUCTION AU VOCABULAIRE DE LA LOGIQUE.

1 ère S. ch1. Introduction à la logique. J. TAUZIEDE. INTRODUCTION AU VOCABULAIRE DE LA LOGIQUE. 1 ère S. ch1. Introduction à la logique. J. TAUZIEDE. INTRODUCTION AU VOCABULAIRE DE LA LOGIQUE. I- IMPLICATION- EQUIVALENCE. 1 ) Proposition. Définition 1. On appelle proposition mathématique, une phrase

Plus en détail

Notions de logique. 1 Proposition. 2 Les quantificateurs. 2.1 Le quantificateur universel

Notions de logique. 1 Proposition. 2 Les quantificateurs. 2.1 Le quantificateur universel Notions de logique 1 Proposition Définition préliminaire : En mathématiques, on appelle proposition toute phrase correctement construite, dont on peut dire sans ambiguïté si elle est VRAIE ou FAUSSE. Exemples

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

À partir de différentes propositions logiques, on peut en construire d autres grâce aux connecteurs

À partir de différentes propositions logiques, on peut en construire d autres grâce aux connecteurs Assertion Une assertion est une phrase (énoncé mathématique) qui peut être «vraie» ou «fausse», mais jamais les deux à la fois. Exemples: (3 > 0), (3 = 0) sont des assertions. L énoncé «L avenue des Champs

Plus en détail

Phrases quantifiées. «Tout parallélogramme dont les diagonales sont de même longueur est un rectangle.»

Phrases quantifiées. «Tout parallélogramme dont les diagonales sont de même longueur est un rectangle.» Phrases quantifiées Les étapes «comprendre la nécessité de quantifier», «être capable d expliciter les quantifications» et «être capable de rédiger avec des quantificateurs» sont des étapes différentes

Plus en détail

MT18 A2010 Logique et théorie des ensembles Aleth Chevalley. { ;( p, q) } q q

MT18 A2010 Logique et théorie des ensembles Aleth Chevalley. { ;( p, q) } q q A2010 Logique et théorie des ensembles Aleth Chevalley Rappels : N : ensemble des entiers naturels = { 0, 1, 2, } A part 0, un nombre n a pas d opposé dans N : ensemble des entiers relatifs = {, 2, 1,

Plus en détail

Vecteurs (I) 1 Notion de vecteur. Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C.

Vecteurs (I) 1 Notion de vecteur. Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C. Vecteurs (I) Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C. B A 1. Indiquez par une phrase le déplacement qu il convient d effectuer pour aller de A à B. 2. On effectue

Plus en détail

1 x. 5 2x 5 2x. 2 nde A EXAMEN BLANC de MATHEMATIQUES Nom : Mme Hobraiche

1 x. 5 2x 5 2x. 2 nde A EXAMEN BLANC de MATHEMATIQUES Nom : Mme Hobraiche 2 nde A EXAMEN BLANC de MATHEMATIQUES Nom : Avril 2013 Durée : 2h Mme Hobraiche Prénom : La calculatrice est autorisée. Le sujet, noté sur 30, comporte 4 exercices indépendants les uns des autres. La note

Plus en détail

Logique et théorie des ensembles

Logique et théorie des ensembles Rappels : Logique et théorie des ensembles N : ensemble des entiers naturels = { 0,, 2, } A part 0, un nombre n a pas d opposé dans N = {0} : ensemble des entiers relatifs = {, 2,, 0,, 2, } = { n, -n ;

Plus en détail

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit Exercice 1 : On considère un demi-cercle de diamètre AB = 5. M est un point du segment [AB]. On construit les demi-cercles de diamètres [AM] et [MB] comme l indique la figure ci-dessous. 1) Existe-t-il

Plus en détail

Taux (ti) [45 ; 47[ [47 ; 49[ [49 ; 51[ [51 ; 53[ [53 ; 55[ Effectif (ni)

Taux (ti) [45 ; 47[ [47 ; 49[ [49 ; 51[ [51 ; 53[ [53 ; 55[ Effectif (ni) 1 ère S4 Devoir de mathématiques Le 10-1-004 Durée : heures Exercice 1 : Vrai-faux 6 points Pour chacune des affirmations proposées, indiquer clairement sur la copie si elles sont vraies ou fausses, en

Plus en détail

Seconde sujets Année

Seconde sujets Année Seconde sujets Année 2016-2017 Ph DEPRESLE 0 avril 2017 Table des matières 1 Devoir n 1 Septembre 2016 2 heures 2 2 Devoir n 2 Octobre 2016 2 heures Devoir n Novembre 2016 2 heures 5 4 Devoir n 4 Novembre

Plus en détail

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements A Factorisation et developpement Rappels de 3eme 1/ Somme produit Un calcul est appelé somme si la dernière opération à effectuer est une addition. Chacun des nombres qui composent cette addition est appelé

Plus en détail

TRANSLATION et VECTEURS : Composition de deux symétries centrales. 3ème_Chap.5_Translation et Vecteurs

TRANSLATION et VECTEURS : Composition de deux symétries centrales. 3ème_Chap.5_Translation et Vecteurs TRANSLATION et VECTEURS : Composition de deux symétries centrales 1 Activité «avant de démarrer» p200 LIEN ENTRE TRANSLATION ET VECTEUR 2 I VECTEURS 1. Définition Un vecteur est défini par une direction,

Plus en détail

Translations et vecteurs

Translations et vecteurs Translations et vecteurs A) Translation. 1. Définition. Soient trois points A, B et M. L image du point M par la translation qui transforme A en B est le point M tel que ABM M, dans cet ordre, soit un

Plus en détail

Chapitre 4. Applications

Chapitre 4. Applications Chapitre 4 Applications 1. Définitions et exemples Définition 4.1 Soient E et F deux ensembles. Une application f de E dans F est un procédé qui permet d associer à chaque élément x de E un unique élément

Plus en détail

Généralités sur les fonctions, classe de 2nde

Généralités sur les fonctions, classe de 2nde Généralités sur les fonctions, classe de 2nde Généralités sur les fonctions, classe de 2nde F. Gaudon http://mathsfg.net.free.fr 2 avril 2012 1 Vocabulaire 2 Transformations d écritures 3 Intervalles de

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

Chapitre 9 : Géométrie vectorielle

Chapitre 9 : Géométrie vectorielle Chapitre 9 : Géométrie vectorielle I Notion de vecteur 1 Translation et vecteur Soit A et B deux points du plan La translation qui transforme A en B associe à tout point C du plan l unique point D tel

Plus en détail

La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apportés au devoir. Vous devez composer sur le sujet.

La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apportés au devoir. Vous devez composer sur le sujet. NOM : Prénom : Observations : Composition n 3 de Mathématiques Seconde... 15 Mai 013 Note : /0 Signature : La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apportés au devoir.

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 12 REPERAGE DANS LE PLAN I. Repère du plan Trois points distincts deux à deux O, I et J du plan forment un repère, que l on peut noter (O, I, J). L origine O et les unités OI et OJ permettent de

Plus en détail

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure.

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Exercice 1 ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Illustration D. Le Fur 1/?? Exercice 2 ABCD est un parallélogramme de centre

Plus en détail

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel)

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel) Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 80 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 La mesure principale de l angle A 1 π. B 1π est

Plus en détail

5. ( ) ( ) Aller à : Correction exercice 6 : Exercice 7 : Soient et deux parties de. Ecrire en utilisant les assertions

5. ( ) ( ) Aller à : Correction exercice 6 : Exercice 7 : Soient et deux parties de. Ecrire en utilisant les assertions Logique Exercice 1 : Parmi les assertions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi? 1. Si Napoléon était chinois alors 2. Soit Cléopâtre était chinoise, soit les grenouilles

Plus en détail

Chapitre 1. Notions de logique. 1.1 Éléments de logique

Chapitre 1. Notions de logique. 1.1 Éléments de logique Chapitre 1 Notions de logique 1.1 Éléments de logique Définition 1.1.1. Une assertion ou proposition est un énoncé auquel on peut attribuer la valeur vrai ou faux. Les propositions sont notées par des

Plus en détail

Lycée Privé Catholique Maintenon SECONDE FASCICULE MATHEMATIQUES M. MAGNE

Lycée Privé Catholique Maintenon SECONDE FASCICULE MATHEMATIQUES M. MAGNE Lycée Privé Catholique Maintenon SECONDE FASCICULE --------------- DE --------------- MATHEMATIQUES DEVOIRS MAISON Année 2011/2012 M. MAGNE Thème : Calculs Devoir Maison à rendre le : Soit un réel positif.

Plus en détail

Chapitre 9 Équations de droites. Table des matières. Chapitre 9 Équations de droites TABLE DES MATIÈRES page -1

Chapitre 9 Équations de droites. Table des matières. Chapitre 9 Équations de droites TABLE DES MATIÈRES page -1 Chapitre 9 Équations de droites TABLE DES MATIÈRES page -1 Chapitre 9 Équations de droites Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Chapitre 1 MAJORER, MINORER

Chapitre 1 MAJORER, MINORER Chapitre 1 MAJORER, MINORER 1. Les règles de base des inégalités 1.1. Axiomes de construction L ensemble des réels est muni d une relation notée qui vérifie les axiomes suivants : i) pour tout x R, x x

Plus en détail

Seconde 4 Repérage dans le plan Vecteurs

Seconde 4 Repérage dans le plan Vecteurs Exercice 1 : repères du plan coordonnées de points et de vecteurs Quadrillage à maille carrée Lire les coordonnées dans le repère (O ; i ; j ) : a) des points A, B, C, D, E b) des vecteurs u et v Exercice

Plus en détail

Les ensembles D. Daigle

Les ensembles D. Daigle Les ensembles D. Daigle 1. Notions de base La notation x A signifie que x est un élément de l ensemble A (elle se lit x est élément de A ou encore x appartient à A ). Remarquez que le symbole d appartenance

Plus en détail

Exercices Trigonométrie

Exercices Trigonométrie I Le cercle trigonométrique Savoir-faire 1 : Associer nombres réels et points du cercle trigonométrique Exercice 1 Tracer le cercle trigonométrique, puis placer les points A, B, C et D, images par enroulement

Plus en détail

La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apporté au devoir. Vous devez composer sur le sujet.

La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apporté au devoir. Vous devez composer sur le sujet. Composition n 1 de Mathématiques NOM : Prénom : Seconde... 3 novembre 2011 Note : /20 Signature : Observations : La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apporté au devoir.

Plus en détail

Douala Mathematical Society : : Workbook-2c 2015 NOMBRES REELS 1) 1 1 4) )

Douala Mathematical Society :  : Workbook-2c 2015 NOMBRES REELS 1) 1 1 4) ) Douala Mathematical Society : www.doualamaths.net : Workbook-c 0 NOMBRES REELS EXERCICE 0 Calculer ) 7 8 ) 8 8 9 6 ) ) 8 8 6 ) 6 6) 7) 0 7 7 0 6 7 80 8) 6 0 6 0 7 9) 8 6 0 0) 7 9 ) 7 ) ) 7 7 ) ) 7 9 EXERCICE

Plus en détail

Exercices de Mathématiques 1 ère S

Exercices de Mathématiques 1 ère S Exercices de Mathématiques 1 ère S Pour préparer la rentrée en TS Fonctions, équations et inéquations Exercice 1 1. Pour quelle(s) valeur(s ) de m, l'équation x² - (m+1) x +4 = 0 a-t-elle une seule solution

Plus en détail

Bilans Révisions pour la 1 S

Bilans Révisions pour la 1 S Bilans Révisions pour la 1 S Fonctions Intervalles Déterminer l ensemble de définition d une fonction Déterminer l image d un nombre a par une fonction Déterminer les antécédents éventuels d un nombre

Plus en détail

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion Année 2012-2013 UNIVERSITÉ DE CERGY U.F.R. Économie & Gestion LICENCE d ÉCONOMIE et GESTION Première année - Semestre 1 MATH101 : Pratique des Fonctions numériques Enseignant responsable : J. Stéphan Documents

Plus en détail

2 FONCTIONS CARREES 1.0

2 FONCTIONS CARREES 1.0 FONTIONS ARREES Exercices de base : Soit f la fonction carrée. alculer les images par f des nombres réels : 5 00 0 0. 5 6 7 8 9 0 5 5 5 5 9 5 0 6 8x0 7 5 0 8 + 9 8 0 6 Soit f la fonction carrée. Déterminer

Plus en détail

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure.

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. SESSION 2006 Chapitre : VECTEURS 1 ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. D. Le FUR 1/ 21 2 ABCD est un parallélogramme de centre

Plus en détail

Différents types de raisonnement en mathématiques

Différents types de raisonnement en mathématiques Différents types de raisonnement en mathématiques I) Symboles logiques 1) Les quantificateurs Les quantificateurs permettent de connaitre le domaine de validité d une propriété. a) Pour une propriété universelle

Plus en détail

CAPES Les deux problèmes de géométrie.

CAPES Les deux problèmes de géométrie. Ecrit CAPES 014. Les deux problèmes de géométrie. 1. Epreuve 1, problème 1 : le sujet Cette épreuve s intéresse aux applications bijectives du plan qui transforment une droite en une droite. Cette propriété

Plus en détail

1 e S - programme 2011 mathématiques ch.3 cahier élève Page 1 sur 30 Ch.2 : Fonctions de référence Partir d'un bon pied. sur IR.

1 e S - programme 2011 mathématiques ch.3 cahier élève Page 1 sur 30 Ch.2 : Fonctions de référence Partir d'un bon pied. sur IR. 1 e S - programme 011 mathématiques ch3 cahier élève Page 1 sur 30 Ch : Fonctions de référence Partir d'un bon pied Exercice n A page 46 : Maîtriser le vocabulaire de base relatif aux fonctions Vrai ou

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2017 COMPOSITION DE MATHÉMATIQUES. Classes de terminale S

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2017 COMPOSITION DE MATHÉMATIQUES. Classes de terminale S CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2017 COMPOSITION DE MATHÉMATIQUES Classes de terminale S DURÉE : 5 HEURES La calculatrice est autorisée conformément à la réglementation. La clarté et la précision

Plus en détail

GEOMETRIE PLANE. VECTEURS ET DROITES.

GEOMETRIE PLANE. VECTEURS ET DROITES. I. Les vecteurs : rappels et compléments. GEOMETRIE PLANE. VECTEURS ET DROITES. Propriétés et définitions à connaître : 1) Un vecteur AB est caractérisé par trois données : sa direction (celle de la droite

Plus en détail

Exercice 1 (5,5 points)

Exercice 1 (5,5 points) Devoir commun de mathématiques Durée : heures SUJET A Exercice 1 (5,5 points) QCM questions 1 à 6 (réponse exacte +0,75 point, pas de réponse 0 point, réponse fausse 0,5 point) Sachant que une et une seule

Plus en détail

Equations - Inéquations

Equations - Inéquations Equations - Inéquations I) Equation du premier degré à une inconnue : a) Equation : Définition : On appelle équation toute égalité dans laquelle un nombre inconnu est remplacée par une lettre appelée inconnue.

Plus en détail

Formalisation mathématique

Formalisation mathématique Formalisation mathématique Tony Bourdier (2012) Table des matières 1 Logique de base 1 1.1 Implication, condition nécéssaire, condition suffisante............. 1 1.2 Contraposée....................................

Plus en détail

Liaison Collège Lycée Rentrée Lycée Le Corbusier Lycée Charles de Gaulle

Liaison Collège Lycée Rentrée Lycée Le Corbusier Lycée Charles de Gaulle Liaison Collège Lycée Rentrée 04 Lycée Le Corbusier Lycée Charles de Gaulle Pour réussir son début de seconde La clef de la réussite c est bien sûr un travail régulier et approfondi tout au long de l année.

Plus en détail

Secondes Eléments de correction du D.S n 4du 23/01/2014

Secondes Eléments de correction du D.S n 4du 23/01/2014 Secondes Eléments de correction du D.S n 4du 23/01/2014 Avec calculatrice Durée : 1h30 Le barème sur 40 est donné à titre indicatif Fonction carré ( 12,5 points) Exercice n 1 : Résoudre graphiquement les

Plus en détail

Université de Provence Feuille d exercices n 4. Théorie des ensembles, relations, applications. I. Un peu de logique

Université de Provence Feuille d exercices n 4. Théorie des ensembles, relations, applications. I. Un peu de logique Université de Provence 2010 2011 Mathématiques Générales 1 Feuille d exercices n 4 Théorie des ensembles, relations, applications I. Un peu de logique Exercice 1 Ecrire à l aide de quantificateurs (, )

Plus en détail

1 Éléments de logique

1 Éléments de logique Thierry Champion - Univ. Toulon - 2017/2018 2 1 Éléments de logique 1.1 Notions de logique Définition 1. Une assertion est un énoncé auquel on peut attribuer sans ambiguité une valeur de vérité : soit

Plus en détail

EXERCICES D ARITHMÉTIQUE

EXERCICES D ARITHMÉTIQUE 101. 1. n désigne un entier naturel. a. Vérifier que, pour n = 15, le reste de la division euclidienne de (n + 2) 3 par n 2 est égal à 12n + 8. b. Déterminer tous les entiers n pour lesquels cette propriété

Plus en détail

Calcul littéral. Calcul littéral et géométrie. Exercice 1. Exercice 2

Calcul littéral. Calcul littéral et géométrie. Exercice 1. Exercice 2 Calcul littéral Calcul littéral et géométrie Eercice 1 On considère la figure codée ci-dessous D 4 5 A Eercice 2 C B 1. Eprimer l aire du rectangle ABCD de deu façons différentes en utilisant les distances

Plus en détail

I. Nature des nombres

I. Nature des nombres Seconde Lycée Desfontaines Melle Cours 01 - Les nombres I. Nature des nombres Définitions : L ensemble des entiers naturels est l ensemble des entiers positifs. Il se note IN. On écrit alors IN={0;1;2;

Plus en détail

Exercices Géométrie plane

Exercices Géométrie plane I Notions élémentaires et compléments sur les vecteurs Savoir-faire 1 : Démontrer avec des vecteurs Exercice 1 ABCD et BDFE sont deux parallélogrammes. Le point K est défini par BK = CB. 1. Justifier les

Plus en détail

BAC BLANC DE MATHEMATIQUES Durée : 4 heures

BAC BLANC DE MATHEMATIQUES Durée : 4 heures Terminale S Jeudi 1 avril 2010 BAC BLANC DE MATHEMATIQUES Durée : 4 heures L usage de la calculatrice est autorisé. Le sujet comporte pages. Exercice 1 (6 points) : Pour les candidats n ayant pas suivi

Plus en détail

5. Exercices et corrigés

5. Exercices et corrigés 5. Exercices et corrigés Rappels et questions-tests p.166 1) ABC est un triangle. Placez les points D et E tels que : BD = AC et AE = BA. Quelle est la nature du quadrilatère ADCE? ) ABC est un triangle.

Plus en détail

Corrigé du Baccalauréat S Antilles-Guyane 23 juin 2009

Corrigé du Baccalauréat S Antilles-Guyane 23 juin 2009 Corrigé du Baccalauréat S Antilles-Guyane 3 juin EXERCICE 4 points. On peut dénombrer les cas possibles à l aide d un tableau : Dé Dé A B C D A AA AB AC AD B BA BB BC BD C CA CB CC CD D DA DB DC DD Les

Plus en détail

Planche n o 1 : Éléments de langage mathématique, introduction à la géométrie

Planche n o 1 : Éléments de langage mathématique, introduction à la géométrie Planche n o 1 : Éléments de langage mathématique, introduction à la géométrie Exercice 1 : Longueur d un chemin Soient A, B, C, D et E des points tels que : D appartient à [AB] et E appartient à [AC].

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 010 Enoncés On demandait de résoudre trois questions

Plus en détail

1. Généralités sur les fonctions et fonctions polynômes

1. Généralités sur les fonctions et fonctions polynômes Comment faire pour Généralités sur les fonctions et fonctions polnômes86 Repérage 88 Dérivation90 Comportements asmptotiques et étude de fonctions9 5 Calcul vectoriel et barcentre 96 6 Produit scalaire

Plus en détail

CHAPITRE 1 : FONCTION

CHAPITRE 1 : FONCTION CHAPITRE : FONCTION Ensemble de nombres et intervalles.. Ensemble de nombre. N est l ensemble des entiers naturels :,,,... Z est l ensemble des entiers relatifs :...,,,,,,... D est l ensemble des nombres

Plus en détail

Correction du devoir commun de Seconde : Mathématiques

Correction du devoir commun de Seconde : Mathématiques Correction du devoir commun de Seconde : Mathématiques Exercice 1 5 points On se place dans un repère orthonormé, on donne les points suivants : Enfin, I est le milieu du segment 1 ) Faire une figure soignée

Plus en détail

Seconde sujet 1 IE3 vecteurs et parallélogrammes somme de vecteurs. NOM : Prénom : Note :

Seconde sujet 1 IE3 vecteurs et parallélogrammes somme de vecteurs. NOM : Prénom : Note : Seconde 2009-2010 sujet 1 NOM : Prénom : Exercice 1 : (3 points) Dire pour chaque affirmation, si elle est vraie ou fausse. 1) ABCD est un parallélogramme a) AB = CD Vrai Faux b) BC = AD Vrai Faux c) AC

Plus en détail

Feuille de TD n 1 : Logique, raisonnements mathématiques et théorie des ensembles

Feuille de TD n 1 : Logique, raisonnements mathématiques et théorie des ensembles Feuille de TD n 1 : Logique, raisonnements mathématiques et théorie des ensembles Opérateur d implication Exercice 1. ( ) On considère la proposition «s il pleut, mon jardin est mouillé». Quelle est sa

Plus en détail

QCM :(9 points : 0,75 point par bonne réponse, aucun point n est enlevé par mauvaise réponse.)

QCM :(9 points : 0,75 point par bonne réponse, aucun point n est enlevé par mauvaise réponse.) nde Eléments de correction de l évaluation n 1 du 13/10/014 Durée : h Calculatrice autorisée. Le barème est donné à titre indicatif sur 40 Le recto de cette feuille et le repère au verso sont à faire sur

Plus en détail

2 des Composition de mathématiques 3h calculatrice autorisée 8IV15

2 des Composition de mathématiques 3h calculatrice autorisée 8IV15 des Composition de mathématiques h calculatrice autorisée 8IV5 I) Soit f une fonction définie sur [ 0 ; 0] telle que f ( 5)= f (4)=0 et dont le tableau de variations est ci-dessous : x 0 7 0 6 0 var f

Plus en détail

Lycée Beaupré d Haubourdin Cahier de vacances de 2 nde été 2016

Lycée Beaupré d Haubourdin Cahier de vacances de 2 nde été 2016 Lycée Beaupré d Haubourdin Cahier de vacances de nde été 06 L objectif de ce cahier de vacances est de vous aider à revoir des notions de base indispensables pour bien démarrer votre année de seconde en

Plus en détail

Mathématiques. Pour faciliter le travail personnel de révisions en fin de vacances, ce fichier contient

Mathématiques. Pour faciliter le travail personnel de révisions en fin de vacances, ce fichier contient Mathématiques Préparation à la 1 ère ES - L - STMG Le programme de 1 ère s appuie sur les notions étudiées en 2 nde. L acquisition de ces bases est donc essentielle à la réussite en 1 ère. Pour faciliter

Plus en détail

Renforcer ses compétences en mathématiques Devoir n 1

Renforcer ses compétences en mathématiques Devoir n 1 Renforcer ses compétences en mathématiques Devoir n 1 I. Conseils pour mieux réussir Le devoir 1 porte sur les notions des chapitres I, II, III, IV et V. EXERCICE 1 Voir la division euclidienne. Il peut

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

2 nde. Mathématiques. Pascal CHAUVIN. 11 janvier 2017

2 nde. Mathématiques. Pascal CHAUVIN. 11 janvier 2017 Mathématiques Pascal CHAUVIN 2 nde 11 janvier 2017 cbed Paternité Pas d utilisation commerciale Partage des conditions initiales à l identique Licence Creative Commons 2.0 France 2 Table des matières 1

Plus en détail

Nombres-calcul algébrique

Nombres-calcul algébrique Les ensembles de nombres Notions de troisième et exemples. notations-symboles d appartenance et d inclusion L ensemble N = {0; ; ;...} est appelé ensemble des entiers naturels et se note N. L ensemble

Plus en détail

* Addition de deux vecteurs : 1) La relation de Chasles : 2) La règle du parallélogramme :

* Addition de deux vecteurs : 1) La relation de Chasles : 2) La règle du parallélogramme : I Rappels- Les vecteurs I-1 Généralités : * tout couple de points (,B dans un plan, est associé un vecteur B Soit u un représentant de B, alors u = B Lorsque = B,alors u = 0 * La norme du vecteur B est

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

Chapitre 5 : Vecteurs et. translations. Le bipoints ( A, A ) ; ( B, B ) représentent un même vecteur appelé le vecteur nul et noté :

Chapitre 5 : Vecteurs et. translations. Le bipoints ( A, A ) ; ( B, B ) représentent un même vecteur appelé le vecteur nul et noté : MR : GARY Lycée Mourouge 2 Chapitre 5 : Vecteurs et translations https://sites.google.com/site/badrmathtunisia Classe : 1 er Secondaire I ) Vecteurs 1) Définition Un vecteur est un bipoints possède les

Plus en détail

1) a) Les nombres réels : Il existe des nombres qui n appartiennent à aucun des ensembles IN,!, ID ou!

1) a) Les nombres réels : Il existe des nombres qui n appartiennent à aucun des ensembles IN,!, ID ou! 2 nd Fonctions 1 Objectifs : IR, les intervalles. Traduire le lien entre deux quantités par une formule. Pour une fonction définie par une courbe, un tableau de données ou une formule : _ identifier la

Plus en détail

Aix Marseille Université Mathématiques II Parcours PEIP Planche 1 - Logique, applications et fonctions usuelles

Aix Marseille Université Mathématiques II Parcours PEIP Planche 1 - Logique, applications et fonctions usuelles Aix Marseille Université 06-07 Mathématiques II Parcours PEIP Planche - Logique, applications et fonctions usuelles Logique Exercice Traduire à l aide de quantificateurs les énoncés suivants Tout entier

Plus en détail

Chapitre 1 : Calcul dans R

Chapitre 1 : Calcul dans R Chapitre 1 : Calcul dans R PTSI B Lycée Eiffel 6 septembre 13 Le calcul que vous trouvez si mauvais est pourtant celui de toutes les passions. Des années entières de poursuite, pour la jouissance d un

Plus en détail

Programme de mathématiques de la classe de quatrième

Programme de mathématiques de la classe de quatrième Programme de mathématiques de la classe de quatrième Activités numériques En classe de quatrième, l enseignement des mathématiques doit permettre à l élève de consolider l usage des instruments de dessin

Plus en détail

Révisions obligatoires Mathématiques Seconde à première 2013

Révisions obligatoires Mathématiques Seconde à première 2013 Des bases solides sont nécessaires pour réussir l entrée en classe de première. 50 questions à choix multiples. Cocher dans le tableau de la feuille de réponse les propositions vraies et laisser vierge

Plus en détail

Chapitre 2. Ensembles et sous-ensembles

Chapitre 2. Ensembles et sous-ensembles Chapitre 2 Ensembles et sous-ensembles 1. Notion d ensemble - Elément d un ensemble Dans une théorie mathématique, il est rare qu un objet intervienne seul ; d où l idée de considèrer des collections,

Plus en détail

Vecteurs. Seconde. Eric Leduc 2014/2015. Lycée Jacquard. Vecteurs. Eric Leduc. Translations - Vecteurs associés. Opérations sur les vecteurs

Vecteurs. Seconde. Eric Leduc 2014/2015. Lycée Jacquard. Vecteurs. Eric Leduc. Translations - Vecteurs associés. Opérations sur les vecteurs - Seconde Lycée Jacquard 2014/2015 Rappel du plan - 1-2 3 4 5 Translation - Définition n o 1: Translation On considère deux points A et B du plan. On appelle translation qui transforme A en B la transformation

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

Fiche 1 - Vocabulaire de la logique et des ensembles

Fiche 1 - Vocabulaire de la logique et des ensembles Fiche 1 - Vocabulaire de la logique et des ensembles Du langage courant au langage mathématique Exercice 1 Des maximes hautement mathématiques Pour chacune des phrases suivantes : (a) traduire la phrase

Plus en détail

Exercice 1 sur 8 points STATISTIQUES temps 25 min

Exercice 1 sur 8 points STATISTIQUES temps 25 min Exercice 1 sur 8 points STATISTIQUES temps 25 min Le tableau suivant donne le salaire brut mensuel, par catégorie socioprofessionnelle simplifiée dans une entreprise : Salaire 900 1 100 1 300 1 500 1 700

Plus en détail

COMPOSITION DE MATHÉMATIQUES SERIE S SESSION (Classes de terminale S) Durée : 5 heures

COMPOSITION DE MATHÉMATIQUES SERIE S SESSION (Classes de terminale S) Durée : 5 heures MATH CONCOURS GÉNÉRAL DES LYCÉES SESSION 2017 COMPOSITION DE MATHÉMATIQUES SERIE S (Classes de terminale S) Durée : 5 heures La calculatrice est autorisée conformément à la réglementation. La clarté et

Plus en détail

ÉGALITÉS ET INÉGALITÉS

ÉGALITÉS ET INÉGALITÉS ÉGALITÉS ET INÉGALITÉS 1 Égalités Définition 1.1 Identité On appelle identité une égalité entre deux expressions qui est valable quelles que soient les valeurs des variables entrant en jeu dans ces expressions.

Plus en détail

Baccalauréat S Centres étrangers juin 2006

Baccalauréat S Centres étrangers juin 2006 Durée : 4 heures Baccalauréat S Centres étrangers juin 6 EXERCICE Commun à tous les candidats points Partie : A Restitution organisée de connaissances En fait la démonstration n en n est pas une puisque

Plus en détail

RAISONNEMENTS. 1 Propositions logiques. 1.1 Définition et négation. 1.2 Conjonction et disjonction. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

RAISONNEMENTS. 1 Propositions logiques. 1.1 Définition et négation. 1.2 Conjonction et disjonction. Laurent Garcin MPSI Lycée Jean-Baptiste Corot RAISONNEMENTS 1 Propositions logiques 1.1 Définition et négation Définition 1.1 Proposition On appelle proposition un énoncé mathématique qui peut être vrai ou faux. Exemple 1.1 Deux propositions simples.

Plus en détail

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie.

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie. Les vecteurs Introduction : Les vecteurs sont fondamentaux : En Mathématiques : Le calcul vectoriel est un outil très puissant apparu à la fin du 19 ième siècle pour effectuer des démonstrations en Géométrie

Plus en détail

Logique, vocabulaire ensembliste et raisonnement

Logique, vocabulaire ensembliste et raisonnement Chapitre 2 Logique, vocabulaire ensembliste et raisonnement Sommaire 2.1 Quelques bases de vocabulaire et de logique.............. 34 2.1.1 Quantificateurs................................ 34 2.1.2 Différents

Plus en détail

Cours 4. La connexité

Cours 4. La connexité Université de Provence Topologie 2 1 Espaces connexes Cours 4. La connexité Définition. Un espace topologique non vide X sera dit connexe si les seules parties de X à la fois ouvertes et fermées sont la

Plus en détail

Vecteurs, cours pour la classe de seconde

Vecteurs, cours pour la classe de seconde F.Gaudon 24 janvier 2010 Table des matières 1 Notions de translation et de vecteurs 2 2 Coordonnées de vecteurs 3 3 Somme de vecteurs 5 3.1 Relation de Chasles....................................... 5

Plus en détail

3 ème : ENTRAINEMENT AU BREVET DES COLLEGES

3 ème : ENTRAINEMENT AU BREVET DES COLLEGES 3 ème : ENTRAINEMENT AU BREVET DES COLLEGES Janvier 2012 Epreuve de : MATHEMATIQUES Durée : 2 heures L emploi de la calculatrice est autorisé. En plus des 36 points prévus pour les 3 parties de l épreuve,

Plus en détail

logique I démonstration et théorie axiomatique 2 1 généralités 2 2 proposition, prédicat simple 2

logique I démonstration et théorie axiomatique 2 1 généralités 2 2 proposition, prédicat simple 2 logique Table des matières I démonstration et théorie axiomatique 1 généralités proposition, prédicat simple 3 prédicats composés 3 3.1 prédicat de négation....................................... 3 3.

Plus en détail

I Exercices I I I I I I I I I I I-2

I Exercices I I I I I I I I I I I-2 Chapitre 9 Équations de droites TABLE DES MATIÈRES page -1 Chapitre 09 Équations de droite s Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Logique - Calcul propositionnel

Logique - Calcul propositionnel Logique 1/ 6 Logique - Calcul propositionnel En mathématiques, les théorèmes sont des propriétés très importantes. Ils s écrivent le plus souvent à l aide de liens logiques liant entre elles des propositions.

Plus en détail

Devoir commun de Mathématiques (2 heures)

Devoir commun de Mathématiques (2 heures) Lycée A. Daudet SUJET A Corrigé Devoir commun de Mathématiques ( heures) Ce sujet comporte 8 pages. La page n 8 est à rendre avec la copie. La qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

Polycopié de Logique Mathématique

Polycopié de Logique Mathématique 1. Propositions. Université de la Nouvelle Calédonie. Licences Math, PC, SPI. Semestre 2. Polycopié de Logique Mathématique Une proposition est un enoncé mathématique qui peut être soit vrai (V) soit faux

Plus en détail